

3D wind fields extracted from EUMETSAT IASI Level 2 products

Olivier Hautecoeur (Exostaff) <u>Régis Borde (EUMETSAT)</u> Patrick Heas (INRIA)

General context

- User requirements for wind profiles
- State of the art winds extraction from IR sounders

➢ 3D Wind profiles extraction from IASI Level 2

- Algorithm description
- 3D wind product characteristics
- Performances

Summary and perspectives

User Requirements

- Requirements extracted from WMO Oscar database
 - For High Troposphere Level (~700 200 hPa)

	Application	Uncertainty	Horizontal resolution	Vertical resolution	Observation cycle	Timeliness
Wind (horizontal)	Global NWP	1 m.s ⁻¹ 3 m.s ⁻¹ 8 m.s ⁻¹	15 km 100 km 500 km	0.5 km 1 km 3 km	60 min 6 h 12 h	6 min 30 min 6 h
	High Res NWP	1 m.s ⁻¹ 3 m.s ⁻¹ 8 m.s ⁻¹	2 km 10 km 20 km	0.5 km 0.7 km 1 km	15 min 60 min 12 h	15 min 30 min 2 h
Wind (vertical)	Global NWP	1 cm.s ⁻¹ 5 cm.s ⁻¹ 5 cm.s ⁻¹	15 km 200 km 500 km	0.5 km 2 km 3 km	60 min 6 h 12 h	6 min 30 min 6 h
	High Res NWP	1 cm.s ⁻¹ 2 cm.s ⁻¹ 5 cm.s ⁻¹	5 km 10 km 20 km	0.5 km 0.65 km <mark>1 km</mark>	15 min 60 min 12 h	15 min 30 min 2 h

Colors refers to the goal ; breakthrough ; threshold

State of the art winds extraction from IR sounders

- Existing products:
 - AIRS winds operational at CIMSS
- Upcoming products:
 - Lidar mission. Aeolus to be launched in May 2018.
 - IR sounder 3D winds from EPS-IASI at EUMETSAT
 - IR sounder winds from CRiS, IASI at CIMSS
- Potential mid-term products:
 - IR sounder 3D winds from MTG-IRS
 - IR sounder 3D winds from EPS⁻SG IASI-NG
 - New spatial missions with 3D winds as primary product

3D winds algorithm at Eumetsat

- Use of a 3D optical flow model
 - Derivation of all pressure levels in one pass
 - Physical regularization introduced
 - Vertical motion is also considered
 - ➤ u, v, w retrieved at each level on each grid pixel
- "Operational model"
 - Can run in real-time with reasonable computing resources
 - Based on modern mathematics

The concept

Basic Conservation Laws Vorticity and Divergence Regularization Minimization algorithm

3D wind field

U,V,W fields derived from observations

3D winds IASI product

• Source:

IASI_SND_02 products (operational production at Eumetsat)

Platform:

Metop-A and Metop-B to maximize the overlap between the images

METIS (nría 🗭 EUMETSAT

- Humidity (water vapor mixing ratio) fields at standard pressure levels
- Interpolated data on Polar stereographic grid

Humidity at 500 hPa for successive overpasses

3D winds IASI product actual performances

METS

EUMETSAT

EUMETSAT Meteorological Satellite Conference, Rome, 2-6 october, 2017

8

3D winds IASI product actual performances

METS

EUMETSAT

3D winds IASI product characteristics (Dual)

- Dual configuration on 9:30 orbit
 - Production in 2018 and reprocessing
 - ~45-55 minutes of separation between successive views
- ♦♦

- Coverage
 - Production on Northern and Southern Hemispheres (poleward of 45°)
 - Polar Stereographic grid 512x512 pixels, resolution = 20 km (at the centre)
 - ~1 observation around 9:00-10:00 (local solar time) Same around 21:00-22:00 (ascending part) for latitude 60°.
- Profile
 - 20 levels from 10 to 1000 hPa, covering Low Stratosphere to Surface
 - Vertical resolution: ~0.5 km for LT, ~1.5 km for HT, ~2km for LS
- Timeliness (expected)
 - For SH products: ~1h 1h30 after South Pole overpass
 - For NH products: ~1h 2h30 after North Pole overpass (depending on possible secondary dump on McMurdo station)
- > Fulfill the Global NWP application requirements

3D winds IASI product characteristics (Tristar)

- Tristar configuration on 9:30 orbit
 - Production in 2019 after Metop-C commissioning phase
 - ~30-35 minutes of separation between successive views
 - Quality will benefit from the reduced time gap
- Coverage
 - Production on Northern and Southern Hemispheres (poleward of 45°)
 - Polar Stereographic grid 512x512 pixels, resolution = 20 km (at the centre)
 - ~3-4 successive observations around 9:00-10:00 (local solar time) Same around 21:00-22:00 (ascending part) for latitude 60°.
 - > Time consistency will benefit from successive observations capability
- Profile
 - 20 levels from 10 to 1000 hPa, covering Low Stratosphere to Surface
 - Vertical resolution: ~0.5 km for LT, ~1.5 km for HT, ~2km for LS
- Timeliness (expected)
 - For SH products: ~1h 1h30 after South Pole overpass
 - For NH products: ~1h 2h30 after North Pole overpass (depending on possible secondary dump on McMurdo station)
- ➤ Fulfill the Global NWP application requirements, at threshold for High Res NWP.

3D winds IASI products development timeline

Summary

Conclusion

- Test periode of IASI 3D winds available end 2017
- Tristar configuration production poleward of 45 deg latitude, with 35 min temporal gap between consecutive IASI humidity fields
- Low Stratospheric winds derived from IASI ozone product

• ...

Perspectives

- Scientific validation against lidar network, RadObs, FC, Aeolus
- Comparison with CIMSS AIRS winds
- Adaptation to IASI-NG
- Adaptation to MTG-IRS

3D winds MTG-IRS product characteristics

• Coverage

- 4 LAC (Local Area Coverage) defined
- LAC4 covers Europe, Mediterranean Basin and North Atlantic. It is acquired every 30 minutes.
- Pixel sampling = 4 km at SSP
- Spatial resolution enhanced will allow the use in High Res NWP application
- Profile
 - 20 levels from 10 to 1000 hPa, covering Low Stratosphere to Surface
- Frequency
 - Number of products per day depends on acquisition scheme.
 - Current baseline:
 - 48 products for LAC4
 - 16 products for LAC3
 - 12 products for LAC2
 - 8 products for LAC1
- Timeliness (expected)
 - ~45 minutes after LAC acquisition
- Fulfill the Global NWP and High Res NWP application requirements

Thanks

Additional slides

16 EUMETSAT Meteorological Satellite Conference, Rome, 2-6 october, 2017

New model specifications

- Works on T, Q and O3 3D fields simultaneously
- Physical regularization
 - · Link between the wind and the observed variables
 - Basic conservative laws
 - Thermodynamic energy equation
- Self-similar regularization
 - Turbulence statistics preserved
 - Depending on the pressure level
- Initialization and spin-up process reviewed
- Same two steps in the main minimization loop
 - Alternating vertical and horizontal minimizations using efficient mathematical algorithm
 - Vertical consistency of wind profile derived
 - Allows sparsity events

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} - \omega S_p = \frac{J}{c_p}$$

Need of concurrent inversion

- No tracer is perfect to track winds at all levels
- Transition zone around 300 hPa
 - No more water vapor above over polar regions
 - Low concentration of ozone below, even more in the ozone hole
- Temperature and vertical consistency will allow to retrieve the winds even at that intermediate atmospheric levels

EUMETSAT

Adding the true 3rd dimension

- 3D not only means (u,v) profiles
 - Vertical fluxes are also derived

EUMETSAT Meteorological Satellite Conference, Rome, 2-6 october, 2017

19