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1. INTRODUCTION 

1.1 Purpose and Scope 

This Algorithm Theoretical Basis Document (ATBD) describes and justifies 
the algorithms used in the Bayesian Cloud Detection scheme. The 
mathematical basis is outlined in Section 3 and the scheme itself is 
described in Section 4 within the context of its original application to Along-
Track Scanning Radiometer (ATSR) data. The adaptations to this scheme 
that are required for other instruments are discussed in section 5, with 
particular application to the Advanced Very High Resolution Radiometer 
on Metop-A (AVHRR-A).  

1.2 References 

The following documents are referenced in this document: 

[1] Pearson K., Embury O. and Merchant C., Cloud Detection 
Algorithm Input Output Data Description. Issue 1. Date: 
3/12/2013 

[2] Merchant C.J., Embury O., Rayner N.A., Berry D.I., Corlett G.K., 
Lean K., Veal K.L., Kent E.C., Llewellyn-Jones D.T., Remedios 
J.J. and Saunders, R. (2012). A 20 year independent record of 
sea surface temperature for climate from Along-Track Scanning 
Radiometers, J. Geophys. Res., 117, C12013: 
doi:10.1029/2012JC008400 

[3] Embury O., Merchant C.J. and Corlett G.K. (2012). A 
reprocessing for climate of sea surface temperature from the 
along-track scanning radiometers: Initial validation, accounting for 
skin and diurnal variability effects, Rem. Sens. Env., 116, 62-78:  
doi:10.1016/j.rse.2011.02.028 

[4] Hocking J., Rayer P., Rundle D., Saunders R., Matricardi M., 
Geer A., Brunel P. and Vidot J.  RTTOV v11 Users Guide. 
NWPSAF-MO-UD-028.  Version 1.2.  Date: 24/05/2013. Available 
from: 
http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/do
cs_rttov11/users_guide_11_v1.2.pdf 

[5] Frederic Chevallier, Sabatino Di Michele and Anthony P. 
McNally. (2006). Diverse profile datasets from the ECMWF 91-
level short-range forecasts. EUMETSAT. NWP-SAF-EC-TR-010 

[6] Merchant C.J., Harris A.R., Maturi E. and Maccallum S. (2005). 
Probabilistic physically based cloud screening of satellite infrared 
imagery for operational sea surface temperature retrieval, Q. J. 
R. Meteorol. Soc., 131, 2735-2755: doi: 10.1256/qj.05.15 

http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/docs_rttov11/users_guide_11_v1.2.pdf
http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/docs_rttov11/users_guide_11_v1.2.pdf
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[7] Fox N. (2010). A guide to establish a quality indicator on a 
satellite sensor derived data product, Ed: Greening M-C. QA4EO, 
QA4EO-QAEO-GEN-DQK-001   
http://qa4eo.org/docs/QA4EO-QAEO-GEN-DQK-001_v4.0.pdf 

[8] GHRSST Science Team (2010). The Recommended GHRSST 
Data Specification (GDS) 2.0, document revision 4, available 
from the GHRSST International Project Office, 2011, pp 123 
https://www.ghrsst.org/documents/q/category/gds-
documents/operational/GDS_2.0r5.doc 

[9] Ackerman S. A., Strabala K. I. , Menzel W. P., Frey R. A., Moeller 
C. C. and Gumley L. E.  (1998). Discriminating clear-sky from 
clouds with MODIS, J. Geophys. Res., 103, D24. 32141–32157. 

[10] Stubenrauch C.J., Cros A., Guignard A. and Lamquin N. (2010). 
A 6-year global cloud climatology from the Atmospheric InfraRed 
Sounder AIRS and a statistical analysis in synergy with CALIPSO 
and CloudSat, Atmos. Chem. Phys., 10, 7197-7214: doi: 
10.5194/acp-10-7197-2010 

[11] Birks A., Cox C. and Smith D. SLSTR: Algorithm Theoretical 
Basis Definition Document for Level 1 Observables. Issue 2.0. 
Date:14-Jan-2011. S3-TN-RAL-SL-032 
https://sentinel.esa.int/documents/247904/349589/SLSTR_Level-
1_ATBD.pdf 

[12] Bulgin C. E., Eastwood S., Embury O., Merchant C. J., and 
Donlon C. (2014). The sea surface temperature climate change 
initiative: Alternative image classification algorithms for sea-ice 
affected oceans. Remote Sensing of Environment (in press). 

[13] Embury O. and Merchant C. J. (2012). A reprocessing for climate 
of sea surface temperature from the along-track scanning 
radiometers: A new retrieval scheme.  Remote Sensing of 
Environment, 116, 32-46. 

[14] Merchant C.J., Harris A.R., Murray M.J. and Zavody A.M. (1999). 
Toward the elimination of bias in satellite retrievals of skin sea 
surface temperature. 1: Theory, modeling and inter-algorithm 
comparison, J. Geophys. Res., 104, C10, 23565-23578. 

[15] Merchant C.J. and Harris A.R. (1999). Toward the elimination of 
bias in satellite retrievals of skin sea surface temperature. 2: 
Comparison with in situ measurements, J. Geophys. Res., 104, 
C10, 23579-23590. 

[16] Embury O., Merchant C.J. and Filipiak M.J. (2012). A 
Reprocessing for Climate of Sea Surface Temperature from the 

http://qa4eo.org/docs/QA4EO-QAEO-GEN-DQK-001_v4.0.pdf
https://www.ghrsst.org/documents/q/category/gds-documents/operational/GDS_2.0r5.doc
https://www.ghrsst.org/documents/q/category/gds-documents/operational/GDS_2.0r5.doc
https://sentinel.esa.int/documents/247904/349589/SLSTR_Level-1_ATBD.pdf
https://sentinel.esa.int/documents/247904/349589/SLSTR_Level-1_ATBD.pdf
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Along-Track Scanning Radiometers: Basis in Radiative Transfer, 
Rem. Sens. Env., 116, 32 - 46, doi: 10.1016/j.rse.2010.10.016 

[17] Simpson J. J. and Gobat J. I. (1996). Improved cloud detection 
for daytime AVHRR scenes over land, Rem. Sens. Env., 55,  
Issue 1, 21-49. 

[18] Bulgin C.E., Sembhi H., Ghent D., Remedios, J. J. and Merchant 
C. J. (2013). Cloud clearing techniques over land for land surface 
temperature retrieval from the Advanced Along Track Scanning 
Radiometer, Int. J. of Rem. Sens, In review. 

[19] Mecklenburg S. (2013). Sentinel-3 User Handbook. Issue 1. 
Date:2/9/2013 
https://earth.esa.int/documents/247904/685236/Sentinel-
3_User_Handbook 

[20] Mackie S. (2009). Exploiting weather forecast data for cloud 
detection, PhD thesis, University of Edinburgh. 

1.3 Acronyms 

The following acronyms are used in this document: 

Term Definition 

(A)ATSR (Advanced) Along Track Scanning Radiometer 

ARC ATSR Reprocessing for Climate 

AVHRR Advanced Very High Resolution Radiometer 

BT Brightness Temperature 

ECMWF European Centre for Medium-range Weather Forecasting 

IR Infrared 

LSD Local Standard Deviation 

LUT Look-Up Table 

NWP Numerical Weather Prediction 

PDF Probability density function 

RTTOV Radiative Transfer for the Television and Infrared Orbiting 
Satellite Operational Vertical Sounder 

SADIST Synthesis of ATSR Data Into Sea-surface Temperature 

https://earth.esa.int/documents/247904/685236/Sentinel-3_User_Handbook
https://earth.esa.int/documents/247904/685236/Sentinel-3_User_Handbook
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SRF Spectral Response Function 

SST Sea Surface Temperature 

TCWV Total Column Water Vapour 

TOA Top Of Atmosphere 



EUM-BC-ATBD-003 EUMETSAT Bayesian Cloud Detection 
Final Issue 1 Bayesian Cloud Detection Algorithm Theoretical Basis Document 
 

  Page 8 

2. SCIENTIFIC MOTIVATION 

Cloud screening is a fundamental pre-processing step for sea surface 
temperature (SST) retrieval.  Threshold based techniques have often been 
used to detect cloud, in which spectral and spatial tests have been applied 
to the data, and only those that fall within an acceptable range of values 
flagged as clear-sky.  

Threshold-setting is something of an art, in which achieving a good true 
detection rate in one circumstance leads to unsatisfactory false detections 
in a different context. The selection of the thresholds can be a subjective 
decision. While they may be chosen by an expert, it is unlikely that other 
experts would choose identical values. The stringency or otherwise of the 
thresholds may also be chosen inconsistently between the different tests 
even by the same expert.  Maintenance of expertise can be problematic, 
since periodic updates to the processing scheme are required or new 
instruments become available with different spectral characteristics. 

Another issue with typical threshold approaches is that the stringency of 
the cloud-screening is pre-determined by the processing chain and not 
available to an end user. Different applications of the data will find different 
tolerances for cloud contamination acceptable in the final SST product. 
Some users, for example, may value high-accuracy over coverage and 
others the reverse.  

More philosophically, fixed threshold approaches do not make full use of 
the other background (prior) information that may be available at the time 
the processing is performed. Rather than assuming a mean climatology in 
selecting the thresholds, it should in principle be more effective to use an 
approach that can takes into account the local conditions at the time of the 
retrieval.  

In the Bayesian approach defined in this ATBD, these issues are 
addressed by calculating a probability of clear-sky to each pixel, which 
allows the end user to select their own tolerance for cloud contamination 
depending on their particular application. The Bayesian calculation that 
assigns this probability also provides a mechanism for including 
information regarding the meteorological state local to the pixel in question 
in a systematic and objective way. This calculation also allows for 
uncertainty and correlations relating to the observations to be incorporated 
into the scheme in a robust way. 
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3. MATHEMATICAL DESCRIPTION OF BAYESIAN CLOUD 
DETECTION SCHEME 

In discussing Bayes’ theorem, the notation for conditional probability is 
used. In this, 𝑃(𝐴|𝐵,𝐶) is the probability of event 𝐴 occurring given the 
assumption that conditions/observations 𝐵 and 𝐶 are true. In this notation, 
cloud detection is the calculation of 𝑃(𝑐|𝒚𝑜 ,𝒙𝑏) -- i.e., the probability of 
clear-sky in the pixel, given the observations 𝒚𝑜 and the prior information 
we have brought to the problem, 𝒙𝑏. The Bayesian cloud detection 
scheme calculates this probability based on satellite observations and 
prior Numerical Weather Prediction (NWP) information. 

Formally Bayes theorem applied to the problem of cloud detection can be 
expressed as: 

 𝑃(𝑐|𝒚𝑜 ,𝒙𝑏) =
𝑃(𝒚𝑜|𝒙𝑏 , 𝑐)𝑃(𝒙𝑏|𝑐)𝑃(𝑐)

𝑃(𝒚𝑜|𝒙𝑏)𝑃(𝒙𝑏)
 (2.1) 

where 

𝑐  denotes clear-sky, 

𝒚𝑜  is the observation vector and  

𝒙𝑏  is the state vector (here, the meteorological conditions). 

The assumption is made that the background state is independent of the 
clear-sky probability at the pixel scale (1x1 km).  Writing 𝑃(𝒙𝑏|𝑐) = 𝑃(𝒙𝑏) 
then, equation (2.1) can be simplified to give: 

 𝑃(𝑐|𝒚𝑜 ,𝒙𝑏) =
𝑃(𝒚𝑜|𝒙𝑏 , 𝑐)𝑃(𝑐)

𝑃(𝒚𝑜|𝒙𝑏)  (2.2) 

The probability of the observations given the background state, 𝑃(𝒚𝑜|𝒙𝑏), 
can be expressed as the sum of the probabilities of the two possible states 
(cloud 𝑐̅ and clear 𝑐) 

 𝑃(𝒚𝑜|𝒙𝑏) = 𝑃(𝑐)𝑃(𝒚𝑜|𝒙𝑏 , 𝑐) + 𝑃(𝑐̅)𝑃(𝒚𝑜|𝒙𝑏 , 𝑐̅) (2.3) 

where 𝑃(𝑐̅) is the prior probability of cloud and is equal to one minus the 
prior probability of clear-sky 

 𝑃(𝑐̅) = 1 − 𝑃(𝑐) (2.4) 

Equations (2.2), (2.3) and (2.4) can be rearranged to give the form of the 
equation used in the cloud-detection algorithm 
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 𝑃(𝑐|𝒚𝑜 ,𝒙𝑏) = �1 +
(1 − 𝑃(𝑐))𝑃(𝒚𝑜|𝒙𝑏 , 𝑐̅)

𝑃(𝑐)𝑃(𝒚𝑜|𝒙𝑏 , 𝑐) �
−1

 (2.5) 

The term on the LHS of equation (2.5) is the required probability of clear-
sky given the observations and the assumed background state. 
Calculating this requires us to calculate suitable values for the three 
different probability terms on the RHS.  
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4. CLOUD DETECTION FOR ALONG TRACK SCANNING 
RADIOMETERS 

The (Advanced) Along Track Scanning Radiometer ((A)ATSR) instruments 
make observations at infrared and visible wavelengths at two viewing 
angles: the nadir view between 0-22° and the forward view between 52-
55°. Both views can be exploited to give additional information for cloud 
detection purposes. ATSR-1 made measurements in spectral bands 
centred at 1.6, 3.7, 10.8 and 12 µm, whilst ATSR-2 and AATSR 
instruments had additional visible wavelength channels centred at 0.55, 
0.66 and 0.87 µm. The 10.8 µm is often labelled simply as the 11 µm 
channel and, together with the 3.7 and 12 µm, described as thermal 
infrared channels.  Although the 1.6 µm channel falls in the near-infrared 
part of the spectrum, it is often grouped with the shorter wavelength 
channels as “visible” since their radiance is dominated by reflectance 
rather than emission processes. 

In principle, the method can be applied to any instrument with an arbitrary 
set of window infra-red and reflectance channels. Specifically, this includes 
conventional single-view meteorological imagers with channels similar to 
the ATSRs.  

As implemented in the processor, two of the three terms on the RHS of 
equation (2.5) are obtained solely from pre-calculated look-up tables. The 
first is the prior probability of clear sky, 𝑃(𝑐). The second is the probability 
for the observation occurring under the given meteorological conditions 
assuming cloudy sky, 𝑃(𝒚𝑜|𝒙𝑏 , 𝑐̅). The only element of the prior state 
currently used in this look-up is the SST: no dependence on the elements 
of 𝒙𝑏 describing the meteorological profile is represented in the tables.   
The third term is the probability for the observation occurring under the 
given meteorological conditions and assuming clear sky, 𝑃(𝒚𝑜|𝒙𝑏 , 𝑐). This 
is dynamically calculated making use of a forward model (here, the 
RTTOV radiative transfer code) in addition to a look-up table. The details 
regarding the determination of the three terms are dealt with sections 4.3, 
4.4 and 4.5. 

4.1 Algorithm Overview 

The Bayesian cloud detection scheme calculates a probability of clear-sky 
for any given pixel based on the satellite observations, prior information 
about the atmosphere and surface conditions and the respective 
uncertainties in these variables. Figure 4.1 shows a high level overview of 
the classification process.  The currently implemented Bayesian cloud 
detection scheme takes European Centre for Medium-range Weather 
Forecasting (ECMWF) NWP reanalysis data as input in order to simulate 
clear sky brightness temperatures and top of the atmosphere reflectances.  
The other inputs are (A)ATSR satellite observations and cloudy PDF 
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LUTs.  The Bayesian cloud detection scheme provides the probability of 
clear-sky as output on a per pixel basis.  

 

Figure 4.1. Flow chart showing an overview of the cloud detection 
processing scheme.  
 

 

A more detailed overview of the steps involved in the Bayesian 
classification is given in Figure 4.2. The rest of this section describes the 
methodology for carrying out the required calculations in detail. The inputs, 
auxiliary data and outputs are described fully in the corresponding Input 
Output Data Description document [1]. 
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Figure 4.2 Bayesian classification steps for calculating clear-sky 
probability prior to SST retrieval.  Blue rectangles denote processing 
steps, blue diamonds decision making steps and green 
parallelograms data storage. 
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4.2 Sensor Data - Brightness Temperature, Reflectance 

The (A)ATSR observations used in the Bayesian cloud detection scheme 
form the observation vector, 𝒚𝑜.  The subset of channels used in the 
observation vector is dependent on time of day. 

The channels used in the cloud detection algorithm are present on all 
ATSR sensors and give consistency over the dataset time series.  The 
cloud detection algorithm can use data for the specified channels from 
both the nadir and forward views when they are available. The observation 
vector, 𝒚𝑜, is defined under day conditions as, 

 𝒚𝑜 = �

𝑅𝑅1.6
𝐵𝐵11
𝐵𝐵12.0

𝐿𝐿𝐿3𝑋3(𝐵𝐵11)

� (4.1) 

and under night conditions as, 

 𝒚𝑜 = �

𝐵𝐵3.7
𝐵𝐵11
𝐵𝐵12.0

𝐿𝐿𝐿3𝑋3(𝐵𝐵11)

� (4.2) 

where  

BT  denotes brightness temperature, 

LSD3x3 is the local standard deviation over a 3x3 pixel box, 

RE  denotes reflectance and 

1.6, 3.7, 11, 12.0 subscripts define the (A)ATSR channel.   

As equations (4.1) and (4.2) show, the 11 and 12 µm brightness 
temperatures are used under all conditions whereas the 1.6 and 3.7 µm 
channels are switched depending on whether it is a daytime or nighttime 
observation.  Daytime conditions are defined by a solar zenith angle less 
than 90º1, and nighttime conditions by solar zenith angles above 90º. 
These single channel radiances are collectively termed “spectral” 
information. In addition, the local standard deviation in the 11 µm 
brightness temperature is used as a “textural” measure of the 
observational data. 

                                            
1 Use of forward modelled visible radiances is challenging at very high solar zenith angles because 
of the long path length. In pre-RTTOV-11 versions of the Bayesian cloud detection algorithm within 
the ARC project, a twilight zone of +/-5° was defined where only a minimum thermal channel set 
was used (i.e., no visible channels and no 3.7 µm channel either). Now that updated reflectance 
channel modelling is available, the definition and details of a twilight zone should be revisited. 
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 𝐿𝐿𝐿𝑖 = �
1

9� � (𝑦𝑖𝑜 − 〈𝑦𝑖𝑜〉)2
9 pixel box

 (4.3) 

where 

𝒚𝒊𝒐  is the 11 µm brightness temperature for a given observation  

< 𝒚𝒊𝒐 > is the mean 11 µm brightness temperature across the 3x3 
pixel box. 

 

4.3 Prior Probabilities of Clear-sky - LUT 

A LUT was developed for the prior clear-sky probability, which is a function 
of latitude and longitude.  The prior clear-sky probability was calculated by 
counting the number of clear relative to total number of AATSR pixels for 
each location, i.e., using the following equation: 

 𝑃(𝑐) =
𝑁𝑐

𝑁𝑐 + 𝑁𝑐̅
 (4.4) 

where:  

𝑁 is the number of occurrences of the given classification at the 
pixel location 

𝑐  denotes clear sky 

𝑐̅  denotes cloud 

𝑃(𝑐) was calculated at 1ºx1º resolution and the global distribution is shown 
in Figure 4.3.  The maximum prior probability of clear sky is 0.5, seen in 
the mid-Pacific and south-east Atlantic and Indian Oceans.  The Pacific 
and Atlantic oceans off the west-coasts of South America and Africa are 
typically cloudier.  
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Figure 4.3. Global map of the “prior probability of clear-sky at 1 km 
resolution” generated from ARC processing of ATSR data. 

 

4.4 Probability of the Observation Given Cloudy Conditions - LUT 

The values used to calculate 𝑃(𝒚𝑜|𝒙𝑏 , 𝑐̅) in equation (2.5) are taken from 
various LUTs depending on the channels used and the availability or 
otherwise of both forward and nadir views. The technical specifications of 
the files storing the LUTs are given in the corresponding Input Output Data 
Description [1] and the logic identifying which LUTs should be used in 
what circumstances is set out below. Each LUT contains an empirically 
generated PDF for a subset of the observation vector under a variety of 
prior conditions. The PDFs are generated using the entire (A)ATSR time 
series of observations initially bootstrapped using the operational SADIST 
cloud mask to identify cloudy pixels. These were subsequently iterated 
once using the Bayesian cloud detection scheme as part of the ATSR 
Reprocessing for Climate (ARC) project [2]. As the Bayesian cloud 
detection scheme performed better than the operational SADIST cloud 
mask (see [3]), this iteration resulted in less incorrectly classified data 
contributing to the LUTs. Furthermore, it allowed refinement of the LUT 
dimensions and the treatment of the ATSR dual-view which complicates 
cloud detection since it is possible for cloud to be present in either neither, 
one or both of the (A)ATSR views of the surface. 

In all cases the probability is decomposed into spectral and textural 
components denoted by subscripts ‘s’ and ‘t’ that are assumed to be 
independent so that 

 𝑃(𝒚𝑜|𝒙𝑏 , 𝑐̅) = 𝑃(𝒚𝑠𝑜|𝒙𝑏 , 𝑐̅)𝑃(𝒚𝑡𝑜|𝒙𝑏 , 𝑐̅) (4.5) 

Figure 4.4 shows the textural PDF (using the 11 μm channel) under day- 
and night-time conditions for the single-view nadir view data.  The cloudy 
PDF is much broader than the clear-sky PDF as cloud surfaces are more 
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heterogeneous than the underlying sea surface over a 3x3 pixel [3x3 km] 
surface area. Both the clear-sky and cloudy-sky texture PDFs appear 
different between the day and night cases. This is mainly due to the 
difficulty of classifying certain types of scenes in night-time imagery. For 
example, sea fog has a temperature close to that of the sea surface and is 
uniform with a low local standard deviation; hence it is easier to detect 
during the day when the reflectance channels are available. This can been 
seen in Figure 4.4 (left), where the daytime, cloudy-sky texture PDF has a 
stronger peak for low values of local standard deviation than the night-time 
PDF. Similarly, ocean fronts have a high local standard deviation and in 
night-time imagery they are often misclassified as clouds by automated 
detection systems. This is seen in Figure 4.4 (right) where the night-time, 
clear-sky texture PDF is narrower than the day-time one. In order to 
improve the classifier performance for night-time scenes, the textural PDF 
LUT generated from daytime data is also used at night-time. 

The textural probabilities are extracted from LUTs. If only a single view is 
available then the textural probability is extracted directly from an array 
described in Table 4.1. The relevant view LUT is selected on the basis of 
the satellite zenith angle. If both views are available then the probability for 
both views is extracted from a joint probability LUT as described in Table 
4.2.  
Table 4.1. 11 μm single-view, textural PDF array. Note: separate PDFs 
are generated for clear-sky and cloudy conditions. 
Dimension Unit Upper limit Lower limit Bin size Number of bins 
11 µm texture K 2.0 0.0 0.005 400 
Satellite zenith angle ° 60.0 0.0 30.0 2 

 
Table 4.2. 11 μm dual-view, textural PDF array. Note: separate PDFs 
are generated for clear-sky and cloudy conditions. 
Dimension Unit Upper limit Lower limit Bin size Number of bins 
11 µm nadir texture K 2.0 0.0 0.005 400 
11 µm forward texture K 2.0 0.0 0.005 400 
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Figure 4.4. Comparison of empirical 11 μm textural PDFs for both 
cloud and clear-sky observations (nadir view only, as derived from 
both night time and day time data). Note: day-time derived data are 
considered more reliable, and are used for detection for day and 
night. 

Obtaining the spectral probability follows a similar process to the textural 
one of using LUTs appropriate to the available view but it also consults 
different tables according to whether it is a day or night-time observation. 
The multiple channels used for the spectral observations makes the 
detailed process more complex and the four combinations of single/dual 
view and daytime/night-time are dealt with individually in the following 
subsections. 

4.4.1 Daytime single-view 

For single view daytime observations the spectral probability is split into 
reflectance and thermal components that are assumed to be independent. 
Thus, 

 𝑃(𝒚𝑠𝑜|𝒙𝑏 , 𝑐̅) = 𝑃(𝒚1.6
𝑜 |𝒙𝑏 , 𝑐̅)𝑃�𝒚11,12

𝑜 �𝒙𝑏 , 𝑐̅� (4.6) 

The 1.6 μm probability is obtained from an array described in Table 4.3. 
The appropriate LUT in which to locate the observation is chosen 
according to the view selected via the satellite zenith angle and the time of 
day indicated by the solar zenith angle. The 11 and 12 μm observations 
are located simultaneously in a joint probability LUT. The specification for 
this array is given in Table 4.4. The appropriate PDF is selected based on 
the SST contained in the supplied NWP data, whether it is forward or nadir 
view. Although not utilised in the current implementation, the array also 
has a day/night flag from which the appropriate LUT is selected. In order to 
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maximize the resolution of the LUT in regions of interest, the axes are 
transformed from [𝐵𝐵11,  𝐵𝐵12] to [(𝐵𝐵11 − 𝐿𝐿𝐵), (𝐵𝐵11 − 𝐵𝐵12)]. 

 
 Table 4.3. Daytime, reflectance, cloudy, single-view, spectral PDF 
array 
Dimension Unit Upper limit Lower limit Bin size Number of bins 
𝑅𝑅1.6  1.00 0.0 0.01 100 
Solar zenith angle ° 95.00 20.0 2.5 30 
Satellite zenith angle ° 60.00 0.0 30.0 2 

 
Table 4.4. Daytime, two-channel, thermal, cloudy, single-view, 
spectral PDF array 

 
 

4.4.2 Night-time single-view 

For single view night-time observations, the spectral probability 𝑃(𝒚𝑠𝑜|𝒙𝑏 , 𝑐̅) 
comes from a joint probability LUT for the three TIR channels contained in 
an array described in Table 4.5. The appropriate PDF is selected based on 
the SST contained in the supplied NWP data, whether it is forward or nadir 
view and, as the table is used elsewhere, according to the appropriate 
day/night flag. In order to maximize the resolution of the LUT in regions of 
interest, the axes are transformed from [𝐵𝐵3.7,  𝐵𝐵11, 𝐵𝐵12] to [(𝐵𝐵11 −
𝐿𝐿𝐵),  (𝐵𝐵11 − 𝐵𝐵12),  (𝐵𝐵3.7 − 𝐵𝐵11)]. 

 
Table 4.5 Night-time, cloudy, spectral PDF array 

Dimension Unit Upper limit Lower limit Bin size Number of bins 
𝐵𝐵11 − 𝐿𝐿𝐵 K 10.00 -20.00 2.0 15 
𝐵𝐵11 − 𝐵𝐵12 K 9.0 -1.00 0.2 50 
𝐵𝐵3.7 − 𝐵𝐵11 K 10.00 -6.00 0.2 80 
NWP SST K 305.00 270.00 2.5 14 
Satellite zenith angle ° 60.00 0.0 30.0 2 

Figure 4.5 shows some slices of the spectral PDF described in Table 4.5  
The PDFs are three-dimensional but for visualization purposes have been 
collapsed along one of these dimensions. They are presented for nadir 
only data for two different NWP SST values.  The 11–12 µm BT is plotted 
as a function of 11 µm BT–NWP SST in the top panel, and as a function of 
the 11-3.7 µm BT in the bottom panel.  The PDF shape and orientation 

Dimension Unit Upper limit Lower limit Bin size Number of bins 
𝐵𝐵11 − 𝐿𝐿𝐵 K 10.00 -20.00 1.0 30 
𝐵𝐵11 − 𝐵𝐵12 K 9.0 -1.00 0.2 50 
NWP SST K 304.00 271.00 1.0 33 
Satellite zenith angle ° 60.00 0.0 30.0 2 
Day/Night ° 180.00 0.0 90.0 2 
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shifts significantly between the two NWP SSTs in the slices presented 
indicating the importance of constraining the PDF as a function of all the 
constituent dimensions. 

 

 
Figure 4.5. Example thermal spectral PDFs for two NWP SST values. 
The top panel shows the 11 μm BT minus the NWP SST against the 
11 minus 12 μm BT. The lower panel shows the 3.7 minus 11 μm BT 
against the 11 minus 12 μm BT. The PDF shapes show significant 
variation as a function of SST. 

 

4.4.3 Daytime dual-view 

As for the single view case (section 4.4.1), the daytime dual view spectral 
probability is split into two components, assumed independent, relating to 
the reflectance and TIR channels (see eqn. 4.6). For the 1.6 μm 
reflectance channel, the probability of the observations from both views is 
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obtained from a joint probability LUT. This is contained in an array 
described in Table 4.6. The appropriate LUT is selected on the basis of the 
time of day indicated by the solar zenith angle. Figure 4.6 shows a 
graphical representation of the dual view PDF for the 1.6 µm channel with 
different solar zenith angles in the two panels.  As the solar zenith angle 
increases the PDF becomes more spread out with a tendency towards 
higher reflectance in the nadir view.   At lower solar zenith angles the 1.6 
µm nadir versus forward view PDF is closer to the 1:1 line.  The 
reflectance peak for relatively dark clouds may be the result of partially 
filled pixels flagged as cloud where some of the darker underlying ocean 
surface is also visible. 

 
Table 4.6. Daytime, reflectance, cloudy, dual-view, spectral PDF array 
Dimension Unit Upper limit Lower limit Bin size Number of bins 
𝑅𝑅1.6 forward  1.00 0.0 0.01 100 
𝑅𝑅1.6 nadir  1.00 0.0 0.01 100 
Solar zenith angle ° 90.0 20.0 2.5 28 

 

 
Figure 4.6. Visible spectral dual view PDFs showing the 1.6 μm nadir 
versus forward view reflectance given cloudy conditions. 

The probability of the observations in the two TIR channels in both views 
are obtained from a 4 dimensional joint probability LUT contained in an 
array described in Table 4.7. The appropriate LUT is selected based on 
the SST contained in the supplied NWP data. In order to maximize the 
resolution of the LUT in regions of interest, the axes are transformed from 
[𝐵𝐵11,nad,𝐵𝐵12,nad,  𝐵𝐵11,for,  𝐵𝐵12,for]  to [(𝐵𝐵11,nad − 𝐿𝐿𝐵),  (𝐵𝐵11,nad −
𝐵𝐵12,nad),  (𝐵𝐵11,for − 𝐵𝐵12,for),  (𝐵𝐵11,nad − 𝐵𝐵11,for)]. 
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Table 4.7. Daytime, two-channel, thermal, dual-view, cloudy, spectral 
PDF array 

Dimension Unit Upper limit Lower limit Bin size Number of bins 
𝐵𝐵11,nad − 𝐿𝐿𝐵 K 10.00 -20.00 2.0 15 
𝐵𝐵11,nad − 𝐵𝐵12,nad K 7.0 -1.00 0.4 20 
𝐵𝐵11,for − 𝐵𝐵12,for K 7.0 -1.00 0.4 20 
𝐵𝐵11,nad − 𝐵𝐵11,for K 7.0 -1.00 0.4 20 
NWP SST K 305.00 270.00 2.5 14 

 

4.4.4 Night-time dual-view 

The dual view night-time observations make use of the three TIR channels 
in both forward and nadir views. In principle, we could obtain the spectral 
probability directly from a 6 dimensional LUT. However, this would require 
a prohibitively large array to store the information. Instead the probability 
for each of the two views is obtained separately from the LUT described in 
Table 4.5. These are then combined according to  

 

𝑃(𝒚𝑠𝑜|𝒙𝑏 , 𝑐̅) = 𝑃�𝒚𝑠,nad
𝑜 �𝒙𝑏 , 𝑐̅�𝑃�𝒚𝑠,fwd

𝑜 �𝒙𝑏 , 𝑐̅� 

+𝑃�𝒚𝑠,nad
𝑜 �𝒙𝑏 , 𝑐�𝑃�𝒚𝑠,fwd

𝑜 �𝒙𝑏 , 𝑐̅� 

+𝑃�𝒚𝑠,nad
𝑜 �𝒙𝑏 , 𝑐̅�𝑃�𝒚𝑠,fwd

𝑜 �𝒙𝑏 , 𝑐� 

(4.7) 

where the clear sky probabilities 𝑃�𝒚𝑠,nad
𝑜 �𝒙𝑏 , 𝑐� and 𝑃�𝒚𝑠,fwd

𝑜 �𝒙𝑏 , 𝑐� are 
obtained from the radiative transfer modelling as described in the following 
section.  

4.5 Probability of the Observation Given Clear Conditions – Model 
and LUT 

The values used to calculate 𝑃(𝒚𝑜|𝒙𝑏 , 𝑐) in equation (2.5) are taken from a 
combination of a LUT and calculations using the forward model.  As in the 
previous section, the probability is split into spectral and textural 
components so that 

 𝑃(𝒚𝑜|𝒙𝑏 , 𝑐) = 𝑃(𝒚𝑠𝑜|𝒙𝑏 , 𝑐)𝑃(𝒚𝑡𝑜|𝒙𝑏 , 𝑐) (4.8) 

The texture probability is obtained from a LUT of the same specification 
(but containing different values) to that described previously in Table 4.2. 
The spectral probability comes from forward modelling carried out using 
RTTOV 11.  

RTTOV 11 is the most recent edition of a fast forward model developed at 
the EUMETSAT NWP Satellite Application Facility to calculate 
atmospheric radiative transfer at infrared wavelengths [4].  The model is 
run at the (A)ATSR geolocation tie-points at a resolution of 25 x 32 km 
using NWP data from the ECMWF as inputs.  The full background state 
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vector 𝒙𝑏 contains all the surface and atmospheric variables that can, in 
principle, influence the calculated radiance. As represented by the 
required inputs to RTTOV this is: 

 𝒙𝑏 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐵

𝑏(𝑍)
𝐿𝑆𝑏(𝑍)
𝐿𝐿𝐵𝑏
𝑃surf
𝑏

𝒖10𝑏 ⎦
⎥
⎥
⎥
⎥
⎤

 (4.9) 

where 

T(Z)  is the atmospheric temperature profile, 

SH(Z)  is the atmospheric specific humidity profile, 

SST is sea surface temperature  

Psurf  is the surface pressure and 

𝒖10  is the 10 m horizontal wind vector. 

The spectral probability for clear-sky is expressed using a Gaussian 
distribution as 

 𝑃(𝒚𝑠𝑜|𝒙𝑏 , 𝑐) =
𝑒�−

1
2∆𝑦

𝑇(𝑯𝑇𝑩𝑯+𝑹)−1∆𝑦�

(2𝜋)
𝑛
2|𝑯𝑇𝑩𝑯 + 𝑹|0.5

 (4.10) 

where n is the total number of channels used and ∆𝑦 = 𝒚𝑏 − 𝒚𝑜 ie. the 
difference between the true observation vector and that derived from the 
forward model using the background state vector. The expression 𝑯𝑇𝑩𝑯 
represents the error covariance in the background state vector propagated 
through the forward model.  The 𝑯 matrix contains the tangent linear of the 
forward model 

 𝑯 = 𝜕𝒚𝑠𝑏

𝜕𝒙𝑏
  (4.11) 

This is an expression of the sensitivity of the forward model to changes in 
the state vector.  RTTOV calculates the tangent linear with respect to the 
elements of the state vector for the calculated brightness temperature or 
reflectance. Although generated at all levels for all profile variables only 
the dominant terms are considered in the subsequent matrix operations 
and a reduced state vector is used: 

 𝒙𝑏 = �
𝐿𝐿𝐵𝑏
𝐵𝐶𝑇𝑇𝑏
𝒖10𝑏

� (4.12) 
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As an example, for the selection of channels used in the spectral 
calculation at daytime, the tangent linear matrix is 

 𝑯 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑅𝑅1.6

𝜕𝐿𝐿𝐵𝑏
𝜕𝐵𝐵11
𝜕𝐿𝐿𝐵𝑏

𝜕𝐵𝐵12.0

𝜕𝐿𝐿𝐵𝑏

𝜕𝑅𝑅1.6

𝜕𝐵𝐶𝑇𝑇𝑏
𝜕𝐵𝐵11

𝜕𝐵𝐶𝑇𝑇𝑏
𝜕𝐵𝐵12.0

𝜕𝐵𝐶𝑇𝑇𝑏

𝜕𝑅𝑅1.6

𝜕𝒖10𝑏
𝜕𝐵𝐵11
𝜕𝒖10𝑏

𝜕𝐵𝐵12.0

𝜕𝒖10𝑏 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.13) 

Under night-time conditions, as would be expected, the 1.6 μm reflectance 
is replaced by the 3.7 μm brightness temperature. For both day and night, 
the derivatives with respect to wind speed are set to zero for all channels 
except the 1.6 μm. (There is an interaction of wind speed and thermal 
radiance via surface emissivity, but it is negligible compared to the other 
terms.) The value of 𝜕𝑅𝑅1.6

𝜕𝑆𝑆𝑇𝑏
 is also zero. 

The background error covariance matrix 𝑩 contains the errors in each of 
the components in the reduced state vector.  These are assumed to be 
uncorrelated so that the off-diagonal terms are zero and it is thus given by 

 𝑩 =

⎣
⎢
⎢
⎡�𝜀𝑆𝑆𝑇

𝑏 �
2

0.0 0.0

0.0 �𝜀𝑇𝑇𝑇𝑇
𝑏 �

2
0.0

0.0 0.0 �𝜀𝒖10
𝑏 �

2
⎦
⎥
⎥
⎤
 (4.14) 

 

In the current implementation, the 𝜀𝑆𝑆𝑇𝑏  component varies with location on a 
0.5ºx0.5º grid based on an a comparative analysis of ERA-40 and ATSR 
SST values. The 𝜀𝑇𝑇𝑇𝑇

𝑏  component varies with TCWV to represent a 
fractional error in TCWV.  

The matrix 𝑹 is the error covariance matrix of the differences between the 
model and observed values.  It can be decomposed into two components 
𝑹𝑚 and  𝑹𝑜. The model component, 𝑹𝑚, can be expressed as: 

 𝑹𝑚 = �
(𝜀𝑖𝑚)2 𝑟2(𝜀𝑖𝑚)(𝜀𝑗𝑚)

𝑟2(𝜀𝑖𝑚)(𝜀𝑗𝑚) �𝜀𝑗𝑚�
2 � (4.15) 

where the diagonal terms describe the forward model error in the given 
channel and the off-diagonal terms the co-variance in that error.  The 
observational component of this error, 𝑹𝑜 , is defined as the ‘noise’ in the 
observations or noise-equivalent delta brightness temperature (NEdT) in 
the thermal channels.  This is assumed to be diagonal: 
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 𝑹𝑜 = �
(𝜀𝑖𝑜)2 0.0

0.0 �𝜀𝑗𝑜�
2� (4.16) 

Ideally, NEdT levels appropriate to the observations are reported with the 
radiances and used; where this is not the case, the values may be fixed to 
the design or nominal values for the mission. We assume that r2 is equal to 
zero for the model error (ie. that the model errors are also uncorrelated 
between channels) and that therefore the off-diagonal terms of this matrix 
are zero. Hence, 

 𝑹 = 𝑹𝑚 + 𝑹𝑜 = �
(𝜀𝑖𝑚)2 + (𝜀𝑖𝑜)2 0.0

0.0 �𝜀𝑗𝑜�
2

+ �𝜀𝑗𝑚�
2�  (4.17) 

4.6 Assumptions Made 

Within the Bayesian cloud detection independence is assumed between 
the infrared and visible channel probabilities of clear and cloud 
observations.  In the context of the reduced state vector, TOA reflectance 
is assumed independent of prior SST.  This assumption is made to simplify 
the forward modelling.  Spectral and textural probabilities are also 
assumed to be independent allowing the extraction of two pieces of 
information from the observations.   

In the 𝑹𝑚 matrix an 𝒓2 value of zero is assumed in the off-diagonal term 
giving no covariance between channels.  In reality there may be a strong 
error covariance between the 11 and 12 µm channels (and the 3.7 µm 
channel at night), reflecting common fast radiative transfer approximations.  
Further research is needed to correctly determine the off-diagonal terms of 
this matrix. 

In the cloud detection scheme, the assumption is made that the pixel will 
either be ‘clear’ over ocean or ‘not clear’.  Sea-ice pixels are unlikely to be 
well represented in the cloudy PDFs and therefore are more likely to be 
misclassified. 
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5. ADAPTATIONS FOR USE WITH AVHRR-A 

There are two major factors to be considered in adapting the cloud 
detection scheme to other instruments: differences in the spectral 
response functions (SRFs) of the channels and differences in the viewing 
geometry. These effects should modify the probability density LUTs that 
the processor requires to carry out the Bayesian calculation. These LUTs 
could be regenerated from scratch for each new instrument in an iterative 
process starting from an adequate existing cloud mask. A less labour and 
computing intensive method, however, is to reuse the existing LUTs 
generated from the AATSR instrument with appropriate adaptations for a 
new instrument. This is possible for instruments with channels sufficiently 
similar to AATSR’s, which includes the AVHRR-series. 

Given that the PDFs in the LUTs are highly non-linear, it is very difficult to 
resample them in an appropriate way to match the new SRFs. Instead an 
approach is adopted that applies a brightness temperature shift to the BTs 
to make them “AATSR-like” and the appropriate probability is then 
extracted as normal from the LUTs. The shift depends, in principle, on the 
meteorological conditions. The processing scheme set out in Figure 4.1 is 
therefore modified to the form shown in Figure 5.1. 

 

Figure 5.1 Adapted processing scheme including a Brightness 
Temperature shift 

The details of the required adaptations are discussed in the following 
subsections. 
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5.1 Viewing Geometry 

The (A)ATSR instruments have a dual-view geometry with nadir viewing 
angles ranging from 0º-22º and a forward view at approximately 55º. In 
contrast, the AVHRR-A instrument has a single, wide swath with viewing 
angles ranging 0º-68º. The effect of the differing geometry between the 
AATSR forward and nadir views is examined in Figure 5.2, Figure 5.3 and 
Figure 5.4.   

 
Figure 5.2 AATSR day time IR PDF LUTs 

 
Figure 5.3 AATSR day time Visible/Near IR PDF LUTs  
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Figure 5.4 AATSR night-time IR PDF LUTs 

For the IR channels, both daytime and night-time PDFs show only minor 
differences between the two views when plotted, as here, in terms of BT 
differences. The different viewing geometry of AVHRR-A is therefore 
accounted for by linear interpolation, based on the path length for the pixel 
(measured as the secant of satellite zenith angle), between the values 
extracted from the forward and nadir single-view LUTs. For angles greater 
than the 55º of the (A)ATSR forward view, the forward-view LUT is used 
alone (although extrapolation to higher angles should be investigated in 
future). 

5.2 Spectral Response Function 

The SRFs of the 3.7 μm, 11 μm and 12 μm channels are compared for 
AVHRR-A and the ATSR family of instruments in Figure 5.5. 
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Figure 5.5 Comparison of instrumental SRFs for the 3.7 μm, 11 μm 
and 12 μm channels for Metop (Black), ATSR1 (Red), ATSR2 (Green) 
and AATSR (Blue). Light grey shows the atmospheric transmission 
for standard atmosphere. 

The AVHRR-A 3.7 µm channel is very similar to the (A)ATSR 3.7 µm 
channels, the closest match being with the ATSR1 instrument (red line). 
For the 11 µm channel the AVHRR-A response is both wider than the 
(A)ATSR instruments, and weighted towards shorter wavelengths. The 
AVHRR-A 12 µm channel is centred close to the same wavelengths as the 
(A)ATSR 12 µm channels, but the AVHRR-A response is closer to a top-
hat shape with lower out-of-band response on both sides of the function. 
For the 3.7 and 12 µm channels the difference between the AVHRR-A and 
(A)ATSR responses is similar to the differences between the (A)ATSR 
responses. The AVHRR-A response only stands out from the ATSR family 
for the 11 µm channel. Overall, the close agreement between the AVHRR-
A and (A)ATSR SRFs  mean that the AATSR PDF LUTs are usable with 
the AVHRR-A instrument with only minor modification 

Figure 5.6, Figure 5.7 and Figure 5.8 show the difference between 
simulated AVHRR-A and AATSR BTs for the a range of scenes plotted 
against TCWV. The two sets of points represent the differences for pixels 
at nadir and for pixels at a swath angle equivalent to the AATSR forward 
view angle (55.2º). It is readily apparent that the difference between the 
BTs measured by the two instruments in each of the channels is a function 
of TCWV. The shift required by each channel is determined by a quadratic 
fit to the mean of the nadir and forward cases such that 

𝐵𝐵AVHRR − 𝐵𝐵𝐴𝐴𝑇𝑆𝑅 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 

where W is the TCWV. The aim of the fit is to leave a residual that is 
smaller than the noise equivalent change in temperature (NEDT). 
Consequently, the fit for each channel is also plotted on the figures in red 
along with the NEDT range about this. The fit coefficients are stored in an 
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ASCII LUT that includes the number of channels to be corrected followed 
by a line for each listing the channel identity number (6=3.7 μm, 8=11 μm 
and 9=12 μm) and then the three coefficients for the channel. For AVHRR-
A, this contains 

 

3    

6  a3.7 b3.7 c3.7 

8  a11 b11 c11 

9  a12 b12 c12 

    

and the current values of the coefficients are listed in Table 5.1 

 
Figure 5.6 AVHRR-A - AATSR view 3.7 μm BT difference plotted 
against TCWV. Data are plotted for the cases of both instruments 
measuring at nadir and at the AATSR forward view angle. A quadratic 
fit to the mean of the two views and the NEDT about this are also 
shown. 
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Figure 5.7 AVHRR-A - AATSR nadir view 11 μm BT difference plotted 
against TCWV. Data are plotted for the cases of both instruments 
measuring at nadir and at the AATSR forward view angle. A quadratic 
fit to the mean of the two views and the NEDT about this are also 
shown. 
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Figure 5.8 AVHRR-A - AATSR nadir view 12 μm BT difference plotted 
against TCWV. Data are plotted for the cases of both instruments 
measuring at nadir and at the AATSR forward view angle. A quadratic 
fit to the mean of the two views and the NEDT about this are also 
shown. 
 
Table 5.1 Fit parameters for BT shift against TCWV, for AVHRR-A 

Channel ID Wavelength a b c 
 (μm) K K/(kg m-2) K/(kg m-2)2 

     
6 3.7 -0.1096 0.003215  7.559x10-7 
8 10.8 -0.04289 0.002531  3.439x10-5 
9 12  0.08537 0.02222 -1.449x10-4 

5.2.1 Summary of LUT shift calculation 

The method to generate the required BT shift values for a non-ATSR 
family sensor can be summarised as follows: 

Requirements: 

1. NWP profile dataset such as ECMWF 91L q (see [5]) available from: 
http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/profile_data
sets.html 

2. RTTOV11.1 

3. Surface emissivity model: Gbcs Sea Surface Emissivity model (included 
with the Gbcs code) recommended, otherwise RTTOV built-in model 
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Steps 

1. Filter the NWP profile data set (select ocean profiles with surface 
temperature > 271.15 K) 

2. Run RTTOV to produce TOA BTs for each channel at zenith angles of 0° 
and 55°: 

i. For AATSR 

ii. For target instrument (e.g., AVHRR-A) 

3. Adjust AATSR simulations to account for the 12 µm anomaly (nb. a global 
0.2 K adjustment has already been applied in the AATSR LUTs so only the 
water vapour dependency is required: 

i. 𝐵𝐵12,nad → 𝐵𝐵12,nad − (−0.12 + 0.0034𝑇) 

ii. 𝐵𝐵12,fwd → 𝐵𝐵12,fwd − (−0.12 + 0.0040𝑇) 

4. For each channel, calculate the quadratic fit to BT differences: 

𝐵𝐵AVHRR − 𝐵𝐵𝐴𝐴𝑇𝑆𝑅 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 
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6. PROBABILITY THRESHOLD SELECTION 

As mentioned in section 2, one of the merits of the probabilistic approach 
to cloud screening is that it allows the end-user to determine the strictness 
level of the test they use according to their particular needs. This is done 
by selecting a probability threshold that balances the competing effects 
appropriately. Figure 6.1 is reproduced from [6] that described an early 
form of the Bayesian cloud detection algorithm. Although this used a 
different observation vector (specifically only the TIR channels and two 
textural measures), it serves to illustrate the trade-offs that a user must 
consider. 

 

 
Figure 6.1 Effects of altering clear-sky probability threshold and 
including only spectral or full probability components from [6]: (a) 
histogram of the 𝑷𝒄 in the pixels, (b) and (c) for each probability bin 
the fraction of the pixels falling into the bin that truly were clear,  (d), 
(e) and (f) hit-rate (HR), false-alarm rate (FAR) and proportion perfect 
(PP) as functions of 𝑷𝒄. 

Panel (a) shows a histogram of the output probability for clear sky (labelled 
𝑃𝑐 = 𝑃(𝑐|𝒚𝑜 ,𝒙𝑏)). The distribution is clearly bimodal with the vast majority 
of pixels being either highly likely to be cloud or highly likely to be clear. A 
relatively small fraction have intermediate probabilities. The upturn at 
either end of the distribution is particularly sharp given the logarithmic 
nature of the vertical axis. Panels (b) and (c) show the fraction of pixels in 
each probability bin that truly were clear. 

Panels (d), (e) and (f) illustrate the effect that the threshold probability has 
on the correct identification of cloud or clear conditions. They show the hit 
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rate for correctly identifying a pixel as cloudy, false alarm rate for 
identifying a pixel as cloudy when in reality clear and the total proportion 
correctly identified as clear or cloudy. Such plots give the user information 
regarding the degree of contamination that is likely to occur in subsequent 
retrievals and could be repeated for new sensors. In practice however, it is 
very difficult to determine what the true cloud mask is against which a new 
scheme is to be tested. If the scheme is replacing an existing method then 
differences between the two serve only to highlight that they are indeed 
different rather than which is better or worse. One could repeat the 
process of [6] by determining a true cloud mask for test scenes using 
expert human analysis. In practice, however, a more practical solution is to 
examine retrieval validation statistics as shown schematically in Figure 
6.2. Here statistics for the difference between the retrieved SSTs and buoy 
measurements SSTs are plotted against threshold probability. At low 𝑃𝑐, 
the mean difference is large and negative as many cloudy pixels remain in 
the retrieval. As 𝑃𝑐 increases, the magnitude of the difference initially 
reduces sharply as most of the cloud pixels are rapidly removed .There is 
then a steady decrease as the difference approaches an irreducible bias 
value characteristic of the instrument in question. The standard deviation 
similarly starts out large, initially reducing rapidly but then asymptotes 
towards a minimum value. The initial rapid removal of cloud pixels is 
reflected in an initial sharp reduction in the area available for SST 
retrievals (expressed as coverage). A steady decrease in coverage 
continues until a second period of rapid removal occurs at high 𝑃𝑐. 

The task of choosing the threshold value is a compromise between 
accurate and uncontaminated retrievals and having sufficient data for the 
end purpose. Choosing a very high value for 𝑃𝑐 may be attractive to a user 
seeking a climate use for example but placing it too high will also eliminate 
many valid observations from consideration. By contrast, a forecasting 
system may be more tolerant of modest biases arising from modest cloud 
contamination, and prefer greater coverage to greater certainty of cloud-
free conditions. Experience suggests that a suitable range for the 
threshold is 0.5 < 𝑃𝑐 < 0.95. Given the similarities between the channels 
used by (A)ATSR and AVHRR highlighted in section 5 and the reuse of 
existing LUTs in the current implementation, a value of 𝑃𝑐 = 0.9 as used in 
the ARC project is perhaps a reasonable threshold for climate purposes. 



EUM-BC-ATBD-003 EUMETSAT Bayesian Cloud Detection 
Final Issue 1 Bayesian Cloud Detection Algorithm Theoretical Basis Document 
 

  Page 36 

 
Figure 6.2 Schematic illustration of the evolution of the mean 
difference between SST retrieval and observed buoy SST values (μ) 
and the standard deviation (σ), as a function of selected clear-sky 
probability threshold (Pc). Also shown is the resulting effect on the 
area covered by the SST retrieval and an indication of a reasonable 
regime for selecting a rejection threshold for climate purposes.  

The recommended default value of probability threshold for application 
with a new sensor is 0.5. During an initial period “cloudy” and “clear-sky” 
matches with validation data should be collected. Several months of (pre-
)operational application should allow a sufficient set of matches with 
validation to be built up. Validation statistics and coverage should be 
determined as a function of the threshold, to inform a judgement about the 
trade-off of coverage against validation statistics most suitable for 
applications of the product.  
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7. COMPUTATIONAL CONSIDERATIONS 

The underlying Generalized Bayesian Cloud Screening (GBCS) code that 
implements the algorithm set out above was originally intended for 
reprocessing activities. Therefore, the code is designed to be single 
threaded with modest memory requirements so that multiple instances can 
easily be run in parallel (eg. via a script). Running on a Dual-CPU Intel 
Xeon E5-2650L system, the GBCS processor takes approximately 13 
minutes to process one orbit of AVHRR data. However, the same system 
would be capable of processing 16 orbits in the same 13 minutes 
assuming adequate I/O bandwidth. 

Of the 13 minutes processing per-orbit, 1 minute is used for pre-
processing including: staging the input L1b file to the processing area, and 
extracting and interpolating ERA-interim data. The remaining 12 minutes is 
spent executing the main Fortran program which performs the cloud 
screening and generates the output netCDF file. 

In many cases, especially when multiple instances are operating in 
parallel, the processor can become I/O bound and so has several features 
to help alleviate this: 

• The Fortran program can read gzip compressed EUMETSAT Polar 
System (EPS) format files directly, thereby eliminating the need to 
unzip them before processing. If disk I/O is not a bottleneck, then 
the driving Python script may be modified to unzip the files during 
the pre-processing step instead. 
 

• The Python scripts create a temporary processing area in the 
system temporary directory (/tmp). Usually this will be mapped to a 
local disk drive; however, on Linux based systems, it can be 
redirected to the shared memory area which will be far faster than a 
disk-based processing area. 

 
• The Fortran program can output data in either netCDF3 or netCDF4 

formats, with netCDF4 offering the option of internal (gzip) 
compression. This option reduces the required disk I/O at a cost of 
increased CPU usage. Alternatively, the Python scripts can 
compress the resulting output with gzip/bzip2 during post-
processing. This option is useful to reduce the required network 
bandwidth when generating netCDF3 format outputs. 

There is scope to optimize the main Fortran program by improving the 
memory layout of arrays etc. which could reduce the CPU time 
requirement by ~50%; however, this would only be of benefit on systems 
which do not become I/O bound. 
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8. DESIRABLE FUTURE DEVELOPMENTS / RESEARCH 

8.1 Use of Bayesian probability for SST quality level determination 

Quality indicators in products provide users with additional guidance about 
use of geophysical values. Guidance on how to “establish a quality 
indicator on a satellite sensor derived data product” given by the QA4EO 
project [7] is very general. For SST products, the quality level is defined by 
the Group for High Resolution SST (GHRSST) Data Specification [8] as a 
value expressed on a scale of 0 to 5 as follows: “0 no data, 1 
(bad/unusable data e.g. cloud, rain, to close to land), 2 (worst quality 
usable data), to 5 (best quality usable data)”. Within this framework, data 
producers are free to define their own approach to population of the quality 
level field, according to their own context and insight.  

SST cannot be generally retrieved from pixels in infra-red imagery where 
significantly affected by clouds or aerosols, since these perturb (or 
destroy) the relationships between BTs and SST on which the inversion to 
SST is based. However, when the pixel-averaged optical depth of cloud or 
aerosol is small, the perturbation to the radiances can be subtle, and SST 
retrievals are made, albeit with reduced quality. Bayesian cloud detection 
essentially tests the plausibility that a set of BTs corresponds to the truly 
clear-sky conditions under which SST retrieval should perform best. Thus, 
it is reasonable to explore the degree to which the Bayesian probability 
can inform quality level (QL) assignment. 

To address this, we need to be clear about what aspect of “quality” the QL 
refers to. There are two possible points of view.  First, we could take the 
view that the QL should reflect the uncertainty in the SST, with QL = 5 
reflecting the SSTs with smallest total uncertainty. This implies the 
existence of (preferably) a context-specific means to estimate uncertainty 
for each SST, or the existence of (at a minimum) some heuristics to 
discriminate more and less certain data. The validity of the QL assignment 
can then be explored by demonstrating in validation that the statistics for 
lower QLs are inferior to those for higher QLs. However, if a context-
specific uncertainty estimate is available with the SSTs in the product 
(which is best practice), the QL on this view is then essentially redundant 
information. 

Therefore, a second view of the QL is perhaps more useful, in which the 
QL indicates the confidence we have in the SST and its associated 
uncertainty estimate. In this view, an SST with relatively large uncertainty 
is still of good quality if we are confident that the uncertainty estimate is 
realistic / valid. This would be the situation where we are confident that the 
pixel is truly clear sky with no unusual instrument noise, atmospheric 
anomalies, etc – but the retrieval is for some reason intrinsically less 
certain (e.g., it is at high satellite zenith angle, so that the atmospheric 
transmittance is low). Conversely, in this approach, the QL would be low 
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even if the uncertainty estimate is relatively small, but something in the 
context indicates that we should have less confidence that all sources of 
error are properly accounted for in the uncertainty estimate. This could be, 
for example, because the instrument is not behaving nominally, because 
there is aerosol in the field of view that is not accounted for, or because 
there is an elevated risk of cloud contamination in the pixels (while being 
treated in the retrieval as if they are clear sky pixels). 

The rest of this discussion therefore takes the second point of view when 
considering QL information. The Bayesian probability relates to the chance 
of cloud in the observed pixel, and therefore provides one component that 
could be considered in assigning QL. 

When using Bayesian cloud detection, a probability of clear-sky (i.e., of 
nominal retrieval conditions) is returned, given the observations and 
contextual information. The usual next step is to define a threshold on the 
probability, above which SSTs are generated (see section 6). Instead of 
this “all-or-nothing” approach, a series of thresholds could be chosen that 
map onto quality levels. (This doesn’t preclude further steps to modify the 
QL because of other factors – for example, if the instrument data suggest 
a period of increased noise in the sensor observations.) 

To explore whether this is a useful approach, the follow steps can be 
identified. 

1. Devise a metric or metrics for assessing the effectiveness of 
Bayesian-based QLs. An effective QL indicator will indicate our 
confidence in the realism of the SST and its uncertainty estimate. 
For the highest QL, we would expect SSTs to be consistent with 
validation data to within the estimated uncertainties (of both satellite 
and validation SST). In other words, we would expect minimal rates 
of outliers in validation. As we move to lower thresholds of 
probability (and therefore lower quality levels) we should see 
increased incidence of inconsistency, i.e., more outliers. Suitable 
metrics will therefore quantify this for different bands of clear-sky 
probability. 
 

2. Define a method, based on the above metric, for selecting a 
coherent set of clear-sky probability thresholds for the QL 
assignment. For example, this could be done on the basis of 
estimated outlier rates in different threshold bands. 
 

3. Apply the above approaches to one or more specific sensors, e.g., 
Metop-A AVHRR. This requires a matchup dataset (MD) of satellite 
SSTs to validation data with known uncertainty characteristics, in 
order to be able to quantify the satellite SST outlier rates.  To this 
MD, an implementation of Bayesian cloud detection needs to be 
applied. This in turn requires the MD to support relevant forward 
modeling of BTs, and, importantly to contain both cloud and partly 
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cloudy matches, not pre-filtered as clear-sky only.  Since the cloud 
detection includes some spatial coherence testing, the MD content 
needs to include image extracts, not only single pixels. Thus, the 
MD may require some preparation if a suitable dataset is not pre-
existing. Characterize and document the outcomes on the MD, 
including the conclusion on appropriate QL thresholds. 
 

4. Apply the QL thresholds to a sample of orbit data for each sensor. 
Characterize the spatio-temporal distribution of QLs and ensure it is 
satisfactory for user applications. For example, it would be 
unsatisfactory if there were regions where the QL was never QL = 
5: this would need to be identified and understood. Iterate step 3 if 
necessary and document the outcomes. 
 

5. Progress arising from the above should be reported in the context 
of GHRSST, in particular to the ST-VAL working group. 

 

8.2 Exploitation of higher resolution visible channels 

Present meteorological sensors such as AVHRR have a nadir pixel 
resolution of order 1 km in both the infra-red and visible channels. 
However, other present and planned imagers have higher resolution in at 
least some reflectance channels. This raises the possibility that the 
Bayesian cloud detection could be rendered more sensitive to sub-pixel 
cloud within 1 km pixels by exploiting reflectance variability within those 
pixels. 

The reflectance detectors on the future SLSTR are on a focal plane 
assembly which projects at nadir as shown in Figure 8.1. SLSTR channels 
S4 to S6 have detectors in both green and blue locations in the figure – 
i.e., there are 8 detectors at 500 m resolution, 4 of which nominally lie 
within a given pixel for channels S7 to S9. The wavelengths of the relevant 
channel centres are given in Table 8.1. 
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Figure 8.1 Left: Visible and shortwave ground resolution, from 
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-slst, 
accessed 15/1/2014. Right: thermal (yellow) and fire channel (red) 
ground resolution. 

 
Table 8.1 Wavelengths and stated uses of selected SLSTR channels 

Channel Wavelength  
(μm) 

Stated use 

   
S4 1.375 For cirrus cloud detection over land 
S5 1.61 For cloud detection, ice, snow and vegetation monitoring 
S6 2.25 For cloud detection and vegetation monitoring 
S7 3.74 SST and LST 
S8 10.85 SST and LST 
S9 12 SST and LST 

   

The Moderate-Resolution Imaging Spectroradiometer (MODIS) also has 1 
km thermal channels and higher-resolution reflectance channels, whose 
properties are given in Table 8.2. There is therefore a reasonable 
correspondence between some SLSTR and MODIS channels: 
 

SLSTR S4  MODIS B5 

SLSTR S5  MODIS B6 

SLSTR S6  MODIS B7 

 

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-slst
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Table 8.2 Properties of selected MODIS channels (from 
http://eoweb.dlr.de:8080/short_guide/D-MODIS.html, accessed 
15/2/2014) 

Primary Use Band  Central 
wavelength 

Bandwidth Spatial resolution 

  nm nm m 
     
Land / Cloud /  
Aerosols / Boundaries 

B1 645 620 - 670 250 B2 858.5 841 - 876 
     
Land / Cloud /  
Aerosols Properties 

B3 469 459 - 479 

500 
B4 555 545 - 565 
B5 1240 1230 - 1250 
B6 1640 1628 - 1652 
B7 2130 2105 - 2155 

 

with the closest similarity being the 1.6 µm wavelengths. This wavelength 
(at 1 km resolution) is also used in the current Bayesian formulation for 
cloud detection, being present on AVHRRs and all ATSRs. Therefore, 
prior to the launch of Sentinel-3, approaches using 500 m reflectance 
could be prototyped on MODIS B6. 

Two obvious questions for exploration are:  

1. Can a spatial variability measure be formulated using 4 x 500 m 1.6 
µm reflectances that gives a useful additional discrimination within 
the Bayesian cloud detection, particularly of clouds that are sub-
pixel at 1 km? 
 

2. If yes, can this measure replace the current 3 x 3 local standard 
deviation measure for day-time cloud detection – or is it best used 
as an additional measure to inform the clear-sky probability for the 
central pixel of the 3 x 3? 

One possible set of steps to examine this issue is identified below.  

1. Review of radiometric and geometric information for 500 m 
reflectance channels on MODIS and SLSTR. This review should 
establish: the reflectance noise when viewing a uniform scene, 
stratified by the reflectance over the full geophysical range, if 
variable; the geometric overlap when viewing at off-nadir angles 
(and how that is regridded into products, if applicable). 
 

2. Analysis of radiometric and geometric information obtained for 
simple scenarios of cloud-related reflectance variability at 500 m 
scales, for nadir and off-nadir situations. This is to develop enough 
understanding to inform choices of (the) variability measure(s) to 
test, and to highlight any obvious limitations on what is possible. 
 

http://eoweb.dlr.de:8080/short_guide/D-MODIS.html
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3. Define possible measures for testing:, e.g., standard deviation 
reflectance across four 500 m pixels; range; normalised range, etc. 
 

4. Select test cases of MODIS imagery at 500 m resolution. These 
should include cases of: scattered fair-weather cumulus fields; 
marine stratocumulus; disorganised shower clouds behind a mid-
latitude cold front; Saharan dust aerosol; sun-glint over a ocean 
with a spatially variable wind field; high zenith angles as well as 
near-nadir. Use local thresholds (perhaps using more than one 
channel, perhaps even using the 250 m imagery if available) define 
by expert interpretation to determine a ‘truth’ mask at 500 m 
resolution for interesting sections of the images. For these cases, 
calculate variability measures at 2 x 2 pixel resolution, and assess 
which are most discriminating of cloud identified in the reference 
mask. 
 

5. Generalise from the insights gained in steps 1. to 4. to define a trial 
Bayesian formulation to test on full MODIS orbits. Again, a ‘truth’ 
cloud mask is required for comparison. This could be the MODIS 
mask, although expert inspection to validate it for the orbits of 
tested would be necessary. Variants in which the new measure is 
additional to and replaces the existing spatial variability measure 
should be tried and compared, using hit-rate, false-alarm-rate and 
true skill score statistics. 
 

6. If there are positive results: define how any successful formulation 
could be more formally implemented in the Bayesian processor for 
SLSTR, from a software engineering point of view. 

8.3 Use of SLSTR channel at 1.375 μm for ocean cloud detection 

As noted above, SLSTR will have a reflectance channel centred at 1.375 
µm, which has no precedent on AVHRR or ATSR instruments, and is 
therefore not part of the channel set used by current Bayesian cloud 
detection code. There is a similar channel on MODIS (1.38 µm, 1 km nadir 
resolution, Band 26). The stated purpose of the S4 channel is thin cirrus 
cloud detection over land. This wavelength is useful in this regard because 
surface-leaving radiance can be substantially attenuated by water vapour 
absorption below the height of the cirrus cloud, providing a dark 
background against which the cirrus cloud reflectance stands out [9].  

Thin cirrus cloud detection is also important over the ocean with such 
clouds pervasive in the inter-tropical convergence zone. One contributing 
mechanism is vertical wind shear in the vicinity of the tops of deep 
convective clouds. The anvils which form at the top of such clouds 
comprise ice particles, and wind shear can spread these horizontally far 
from the convective tower. Figure 8.2 shows the prevalence of high, semi-
transparent, ice cloud as a fraction of all cloud types from a 6-year 
climatology derived from AIRS [10]. In areas of tropical convergence, 10% 
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to 40% of all cloud cover observed fell into this category, which we may 
take as roughly corresponding to “thin cirrus”.  

 
Figure 8.2 the prevalence of high, semi-transparent, ice cloud as a 
fraction of all cloud types from a 6-year climatology derived from 
AIRS [10]. 

It is not clear that the current Bayesian formulation is missing thin cirrus 
that is significant for SST retrieval in terms of causing retrieval biases – it 
has not been systematically assessed. To be significant for SST retrieval, 
any undetected cloud needs to perturb the BTs in a manner that is distinct 
from the effect of varying the TCWV as this is already accounted for in the 
retrieval. So, a possible scenario is that thin cirrus is missed by the cloud 
detection scheme, but leads to small errors because the radiometric 
impact across the three SST retrieval channels is either small in absolute 
terms, or is similar to the BT variability caused by TCWV. The actual 
situation is not currently known. 

If use of the 1.375 µm channel increased the sensitivity of the Bayesian 
detection to thin cirrus significantly, there could be a large impact on the 
fraction of observations currently found to be “clear sky”, particularly in 
convective zones where clear-sky fractions are already relatively low. 
Since use of reflectance information is limited to day-time cloud detection, 
this would likely increase the disparity between day and night-time cloud 
detection rates. Moreover, from a climate perspective, such an effect 
would introduce a significant inhomogeneity between SLSTR and the 
ATSR series.   If there is benefit to greater day-time sensitivity to thin 
cirrus, the natural approach would be to use both the 1.6 and 1.38 µm 
channels together as the reflectance component of the Bayesian 
calculation.  

One possible set of steps to examine this issue is identified below.  

1. Establish whether thin cirrus cloud is missed by the present 
Bayesian method. There are various means by which this could be 
done. First, ATSR imagery should be inspected to locate thin high 
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cloud that is not detected. ATSR is advantageous for this, because 
stereo viewing of images can be used to locate clouds 
unambiguously as high or low, and to estimate the cloud height. 
Stereo viewing also increases visual sensitivity to subtle 
reflectance/BT features. By visually identifying high-level clouds and 
then switching to a view with the Bayesian cloud mask, the extent of 
missed thin high cloud can be assessed. Second, Bayesian 
detection could be applied to MODIS images (without the 1.38 µm 
cirrus test), and the results compared with the 1.38 µm cirrus mask. 
To do this, the Bayesian detection needs to be adapted to MODIS 
using similar techniques to that applied to Metop A in this ATBD.  
 

2. Assuming there is evidence of undetected thin cirrus, the next step 
is to assess the SST retrieval impact. One way to do this is to 
develop local BT correlations against 1.38 µm reflectance over 
scenes with relatively uniform SST and TCWV. BT changes 
associated with the thin cirrus optical depth changes could then be 
inferred. These inferred BT changes would then be propagated 
through an SST retrieval process, to see if they have a significant 
SST impact.  The inferred BT changes can also be compared to  
𝜕𝜕𝑇

𝜕𝑇𝑇𝑇𝑇
 values from simulations, to ascertain the degree of similarity 

of BT impact between cirrus and water vapour. The following steps 
would be a priority only if the failure to detect thin cirrus was 
significant and is found to impact SST retrieval.  
 

3. Develop a joint probability density function for 1.38 µm and 1.6 µm 
given (all) cloudy conditions, for example by using the MODIS cloud 
mask over ocean as a starting point for one or more iterations. 
Develop the capacity to simulate the 1.38 µm reflectance under 
clear-sky conditions (including in sunglint), and the joint 1.38 µm 
and 1.6 µm clear-sky PDF. Implement these in a variant of the 
Bayesian code. Run and compare results with an implementation 
without the additional channel.  The Bayesian mask including the 
1.38 µm channel can be compared to the MODIS cirrus mask from 
step 1.   
 

4. Compare day and night-time cloud detection rates and SSTs 
regionally and globally with and without the 1.38 µm channel using 
Bayesian cloud detection and MODIS data.  This will give a first 
approximation of the potential impact on the climate data record 
from the ATSR series in applying this cloud detection approach to 
SLSTR data. 
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8.4 Use of the 3.7 µm channel for ocean cloud detection during the 
day 

Viewed at 3.7 µm, clouds may be colder than or warmer than the surface, 
according to whether the clouds reflect significant solar spectral radiance 
towards the sensor.  

At the same time, this thermal channel is relatively transparent (compared 
to 11 and 12 µm) with respect to water vapour, and thus is a priori more 
tightly constrained given clear-sky conditions than the other thermal 
channels.  It is therefore a powerful channel to use in night-time cloud 
detection, and it is worthwhile to consider whether it can be exploited 
during the day. 

This possibility has become more feasible since the release of RTTOV 11, 
which accommodates simulation of the solar radiance stream in addition to 
thermal emission.  

One possible set of steps to examine this issue is identified below.  

1. Assess day-time simulation of 3.7 µm clear-sky observations using 
RTTOV 11. This needs to be done for angles remote from and close to 
specular reflection. The additional uncertainty in the simulation needs 
to be quantified and parameterised, perhaps as a function of how close 
the viewing geometry is to the specular geometry. Define limits (if any) 
beyond which the 3.7 µm BT simulation is not usable. 
 

2. In addition to using 𝜕𝜕𝑇
𝜕𝑆𝑆𝑇𝑏

 and 𝜕𝜕𝑇
𝜕𝑇𝑇𝑇𝑇𝑏

 (which are used at present), 

explore how to exploit 𝜕𝜕𝑇
𝜕𝒖10

𝑏  for the 3.7 µm channel in evaluating the 
clear-sky PDF (inclusive of solar irradiance). 
 

3. Define and derive an empirical cloudy-sky PDF, bootstrapped using the 
existing Bayesian cloud detection, including the day-time 3.7 µm. This 
will involve changing the dimensions of the PDF compared to the night-
time dimensions, to accommodate the cases of warm 3.7 µm from 
clouds. 
 

4. Implement code changes and test new Bayesian processing compared 
to configurations not using the 3.7 µm channel during the day. 

8.5 Use of SLSTR channel at 2.25 μm for ocean cloud detection 

The SLSTR Level 1 ATBD [11] proposes adding to the baseline cloud 
detection for SLSTR a histogram test based on 2.25 µm. The details of this 
are not yet specified (as far as we can ascertain). The MODIS channel 
nearest in wavelength (B7) is not used in the standard MODIS cloud 
detection [9]. Ocean surface and cloud reflectance are similarly contrasting 
at 1.6 and 2.25 µm, so it is not obvious (over ocean) a priori that this 
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channel adds useful discrimination if the 1.6 µm is already used. Thus, 
there is no clear reason to make assessing use of this channel a priority. 

 

8.6 Extension to a 3-way classifier for sea-ice areas 

Cloud detection at high latitudes is complicated by the presence of sea-
ice.  At infrared wavelengths, ice can be difficult to distinguish from open 
water due to surface temperatures close to the freezing temperature. At 
VIS wavelengths, new or partially submerged ice has low surface 
reflectance, similar to open water.  Ice melt in summer months can lead to 
the formation of melt ponds on the ice surface giving mixed pixel 
composition at 1 km spatial scales difficult to classify in remotely sensed 
data.  Misclassification can lead to sea-ice pixels erroneously flagged as 
open water which in turn affects SST retrievals.  Typically, in high latitude 
regions additional thresholds are placed on SST retrieval on the basis of a 
prior ice concentration field, which can lead to significant losses of clear-
sky data. 

The work of Bulgin et al. (2014) [12] demonstrated benefits of extending 
the Bayesian classifier to include a third class, using the 1.6, 11 and 12 µm 
channels to classify daytime imagery.  Bayesian probabilities were 
calculated offline for clear-sky, sea-ice and cloudy observations using 
RTTOV 10 to simulate sea-ice conditions.  The paper evaluated algorithm 
performance under a number of configurations and found that using a 
textural measure based on the standard deviation of the 1.6 µm 
reflectance over a 3x3 pixel box (replacing the previously used 11 µm 
measure under daytime conditions) gave a performance similar to the 
ARC algorithm in terms of the number of cloud and ice observations 
misclassified as clear [13], whilst significantly increasing the number of 
clear-sky observations correctly identified.  Inclusion of the 0.6 µm channel 
in the Bayesian scheme increased the ice detection skill with the potential 
for this to be used to derive an ice surface temperature data record from 
AATSR and SLSTR under daytime conditions.  An example of the 
classifier performance under the new configurations is shown in the figure 
below. 

 
Figure 8.3 Example of Bayesian three-way classification over an area 
of mixed ice.  The first panel shows a false colour image using the 
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0.6, 0.8 and 1.6 μm channels.  Subsequent plots show the probability 
of clear-sky over ocean using a three-way classifier, including the 1.6 
μm textural measure and then adding the 0.6 μm channel. 

The work of Bulgin et al. (2014) [12] focused on nadir view observations 
only, and for inclusion in the ATSR climate data record processing, the 
following steps need to be taken to test performance ‘globally’, on dual-
view observations and under night-time conditions. 

1. In order to test the performance of the new algorithm configurations a 
reference cloud mask for a set of scenes is required.  Within Phase 1 
of the SST CCI project an extensive database of clear, cloud and ice 
observations including mixed and thin ice was generated by expert 
inspection of match-up database extracts. This needs to be updated to 
include forward-view imagery in order to test dual-view classification.  
 

2. A database of expertly classified scenes under night-time conditions 
and both viewing angles also needs to be generated. 
 

3. Three-way Bayesian classification can be tested on this updated 
database in its current offline configuration.  Algorithm performance 
can be measured and compared to standard Bayesian and nadir-only 
classifications using hit rate, false alarm and true skill score metrics.   
 

4. If the algorithm performance at high latitudes from step three is 
comparable to or better than the nadir only results the algorithm needs 
to be validated globally (to check that spurious ice is not generated 
outside sea-ice regions) and for the period following the Mount 
Pinatubo eruption (when spectral relationships may be significantly 
different).  Several orbits of data across the climate data record should 
be processed and compared to standard Bayesian outputs to identify 
any problems occurring when using the three-way classifier and the 1.6 
µm textural measure under different atmospheric conditions.  In the 
mid-latitudes and tropics the prior probability for ice should be set to 
zero. 
 

5. If the work in (4) demonstrates a benefit to applying this scheme 
globally, the Bayesian software needs to be developed from a two-way 
to a ‘n’-way classifier for application to climate data record processing. 

8.7 Extension to accommodate post-volcanic stratospheric aerosol 
events 

Massive volcanic eruptions that inject material into the stratospheric occur 
with a return period of a few decades, with two having taken place during 
the era of meteorological satellites (El-Chichon (1982) and Mount Pinatubo 
(1991)). The sulphur injected can hydrolyse and form a layer of sulphuric 
acid aerosol droplets that perturbs brightness temperatures and introduces 
bias into retrieved SST [14].  These are long-lived (1-2 years) given the 
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relative stability of the stratosphere and slow-transport mechanism from 
the equator to the poles. 

Simulation of the effects of stratospheric aerosol on ATSR-1 BTs appear 
to be adequate to reduce these SST biases to ~0.1 to ~0.2 K (down from 
~1 to ~2 K) if used to make ATSR-1 dual-view SST retrievals “aerosol 
robust” [15][16]. This approach is less effective for three-channel single-
view SST retrievals, and impossible for two-channel single-view SST. 
Simulated relative BTs impacts for ATSR are shown in Figure 8.4 

 
Figure 8.4 Simulated relative BTs impacts for ATSR due to 
stratospheric aerosol 

Within the ARC [2] and SST CCI Phase 1 projects, a preliminary approach 
has been applied to render ATSR-1 cloud detection functional in the 
presence of stratospheric aerosol. The approach has been to define a 
priori a latitudinal estimate of the BT perturbation associated with the 
Pinatubo aerosol on a monthly basis. This dataset was inferred from the 
relative SST biases between aerosol-robust and non-aerosol-robust SST 
algorithms, which can be inverted to estimate a scaling factor (as a 
function of latitude and month) for the “mode” of variability shown as 
“ARC” in Figure 8.4. The estimated temperature deficit for each channel 
given that scaling was subtracted from each set of BTs, to give an 
estimate of the BTs expected had normal conditions prevailed. These 
modified BTs were then sent through the Bayesian cloud detection in the 
usual way. 

Two approaches could be taken based upon the ARC method summarized 
above. First, keep the same basic approach, but work to improve the prior 
estimate of the aerosol impacts. Second, devise a means of making 
Bayesian cloud detection “aerosol tolerant” by explicitly introducing 
aerosol-related BT and reflectance uncertainty into (1) the simulation of 
the conditional probability distribution function of clear sky, and (2) a 
modified look-up procedure for the cloudy condition PDF. 



EUM-BC-ATBD-003 EUMETSAT Bayesian Cloud Detection 
Final Issue 1 Bayesian Cloud Detection Algorithm Theoretical Basis Document 
 

  Page 50 

Work will be undertaken on these possibilities within the SST CCI Phase 2 
project. The work plan is reproduced below from the SST CCI Phase 2 
Implementation Plan   

Volcanic-aerosol-era cloud detection 
• Review sources of prior volcanic aerosol products for Pinatubo and El Chichon 

o Temporal and spatial coverage 
o Relationship of observation to IR optical depth / scaling of BT aerosol mode 
o Relationship to parameters usable as aerosol parameters for BTs in RTTOV-11 
o Assess simulation for reflectance channels using prior and RTTOV-11, near and 
away from sunglint angles 

• Develop (using aerosol modes from WP 21 and most useful aerosol products) prior mode-
scaling for Pinatubo and El Chichon eras  

o Or, equivalently, prior aerosol parameters suitable for RTTOV-11 
o May need to tolerate less information for El Chichon 
o Also need associated uncertainties 

• Develop means of quantitatively testing effectiveness of cloud detection alternatives 

• Define alternatives 
o prior BT perturbation estimates assumed perfect 
o prior BT perturbations estimates with realistic uncertainty in scaling of aerosol 
mode included in clear-sky pdf calculation 
o no prior BT perturbation, but with large uncertainty in scaling of aerosol mode 
included in clear-sky pdf calculation (‘aerosol robust’ method) 

• Test alternatives, first on ATSR-1 then on other relevant AVHRRs 

• Determine what cloud detection to use for stratospheric aerosol eras 
• Write up notes as basis of publication and ATBD contribution 

 

8.8 Extension of Bayesian classifier to cloud detection over land 

Over land, image classification into clear and cloud affected pixels is often 
more difficult than over ocean surfaces due to small-scale spatial structure 
of land cover features and temporal variations in reflectance and emissivity 
due to dynamic land cover change [Simpson and Gobat (1996) [17], Bulgin 
et al. (2013)[18].]  The work in Bulgin et al. (2013) [18] demonstrates the 
benefit of applying a Bayesian scheme to cloud detection over land for the 
AATSR instrument, over previously employed threshold methods.  The 
analysis focuses on daytime imagery, with the classifier using the 0.6, 1.6, 
11 and 12 µm channels.  Performance metrics are calculated in relation to 
a set of images with a reference cloud mask verified by expert inspection.  
The Bayesian scheme increases the true skill score by 5% over the 
SADIST threshold based tests and reduces the false alarm rate by 8%. 

Three key factors were identified in affecting cloud detection performance 
over land: high aerosol loadings, cloud type and land surface biome.  High 
aerosol loading can obscure the surface either by attenuation or reflection 
of solar and long-wave radiation.  Under these conditions, the retrieved 
LST can be significantly perturbed from the true LST and either needs to 
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be corrected for aerosol presence if possible, or assigned a higher 
uncertainty due to the presence of aerosol.   

Optically thin clouds are often difficult to detect, particularly where they 
over-lie cold or highly reflective surface types.  Cloudy sky empirical PDFs 
currently used in the Bayesian classifier are based on ocean-only 
observations and would benefit from regeneration over land, including 
clouds overlying surfaces with a variety of different emissivity and 
reflectance characteristics. 

Biome is also important in cloud detection where radiative transfer 
methods are used, as some surfaces are more difficult to model, for 
example urban areas and desert regions.  These often experience 
significant changes in temperature over the diurnal cycle, and high surface 
reflectance makes distinguishing clouds using visible channels more 
difficult.  Interpolation of data between observation tie-points may also lead 
to poor representation of emissivity and reflectance fields in regions of 
abrupt change in land surface cover.  The work in Bulgin et al. (2013) [18] 
was done in the context of an algorithm comparison study and has the 
potential for significant development as outlined in the steps below. 

1. The empirical PDFs used in Bulgin et al. (2013) [18] were the PDFs 
developed for the ARC project, using only observations over the ocean.   
Generation of land-based cloudy PDFs should improve classifier 
performance by including semi-transparent clouds over land surfaces with 
different surface reflectance and emissivity.  These PDFs could be 
generated using the current Bayesian classifier and iterated if necessary.  
They should also include the forward view for dual-view retrievals. 

2. As with the classifier development work described at high latitudes, 
performance analysis is dependent on the generation of reference cloud 
masks by expert inspection.  Over land, a number of nadir view images 
have been manually classified, but inclusion of the forward view imagery is 
essential for the development of a dual-view classifier.  Expert 
classification of nighttime images is also essential for algorithm 
development. 

3. The new PDFs should be implemented into the processing chain and 
the Bayesian cloud detection performance evaluated using the extended 
selection of manually classified scenes. 

4. Cloud detection is most difficult over regions with large diurnal cycles in 
temperature eg. deserts.  Numerical weather prediction data used as an 
input for the radiative transfer modelling in the Bayesian scheme is 
provided at synoptic times (0000, 0600, 1200, 1800).   Interpolation 
between these points doesn’t capture the peak temperatures in the diurnal 
cycle (typically 1400), which affects classifier performance.  The Bayesian 
calculation skill can be improved either by better representation of the 
uncertainties introduced by this process or by better representation of 
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changes in land surface temperature and emissivity over the diurnal cycle.  
Strategies for both approaches should be developed and tested. 

5. Over land, classifier performance is significantly affected by the 
presence of aerosol.  Methods should be considered as to how to make 
the retrieval ‘aerosol robust’.  The impact of aerosol on retrieved land 
surface temperature should be analysed by comparison of satellite and in-
situ data.  This should be done for a number of different land covers, 
aerosol types and where possible time of day.  Following this review, 
recommendations should be made as to whether correction for aerosol 
biases in LST is needed/can be made during the Bayesian retrieval 
process in its current configuration. 

8.9 Adaptation of Bayesian classifier to OLCI 

The basic characteristics of the Ocean and Land Colour Instrument (OLCI) 
are shown in Figure 8.5. 

 

 
Figure 8.5 The basic characteristics of the Ocean and Land Colour 
Instrument (OLCI) taken from ESA’s online Sentinel-3 handbook [19]. 

 

 

Level 1B products will be available for these channels with the following 
features: 
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• 300 m resolution for the full resolution products 
• 1.2 km resolution for the reduced resolution products 
• including ECMWF meteorological profiles and surface fields at tie-
points 
 
To adapt the Bayesian method to OLCI requires, in essence, a set of 
substitutions relative to the standard application to meteorological-type 
sensors such as AVHRR. These substitutions are summarised in Table 
8.3 

 

 
Table 8.3 Substitutions required in order to adapt the Bayesian 
scheme to OLCI. 

Aspect 
 

AVHRR-like 
configuration 
(day-time) 

Plausible 
substitution for 
adaptation to 
OLCI 

Comments 

Channel 
set 

1.6 µm, 11 µm & 
12 µm 

1020 nm, 865 
nm, 620 nm 

Although SNR is poorer for the longest 
wavelengths, both clear and turbid waters 
have very low (non-glint) reflectance at 1020 
nm. The other channels have high 
atmospheric transmittance, contrasting water 
reflectance, and similar cloud reflectance, 
which is a discriminating combination. Other 
similar channels sets should be considered. 
Four or more channels could be used in 
principle. 

Factors in 
model of 
clear-sky 
PDF 

SST, TCWV and 
(1.6 µm only) U 

TCWV and U AOD of marine and/or desert dust could be 
added if >3 channels were to be used. 

Forward 
model for 
clear sky 

RTTOV 11 Requires to be 
explored 

RTTOV 11 does have a capability to simulate 
reflectance channels, so the easiest first step 
would be to assess it for this purpose for OLCI 
channels. A key requirement is for the forward 
model to do well in conditions near sun-glint. 

PDF for 
cloudy sky 

AATSR-derived 
PDF, adapted to 
other sensors on 
reading 

New cloudy-
sky PDF 
required. 

It may be worthwhile to explore whether the 
angular separation from the specular angle 
should be an important dimension in the PDF 
(not currently used as a dimension for the 
table). 

Texture 
measure 

Local (3x3) 
standard 
deviation of 11 
µm BT 

Local standard 
deviation of 
1020 nm 
reflectance 

Alternative measures could be explored that 
may be better attuned to reflectance channels 

Clear-sky 
texture 
PDF 

Based on 11 µm 
NEDT, or using 
empirical PDF 

Based on SNR May need additional terms to allow for surface 
roughness variability in sun-glint regime 
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Each substitution implies the following steps: 
 
• Exploring detailed options scientifically: this may involve literature 

review, simulation study, etc. 
• Assessing the impact on the Bayesian code of implementation for 

different options (i.e., the complexity and likely effort involved in 
refactoring/modifying the code). 
• Selecting and fully defining an option for trials. 
• Coding and verification against an offline implementation. 
• Defining test cases (in common across all substitutions). 
• Applying code to test cases and assessing test results. 
• Iteration of the above if results show this to be necessary. 

8.10 Extension to use of forward-modelled cloudy radiances 

Clear-sky simulations are used to calculate the conditional PDF of 
brightness temperatures given clear sky conditions. This is done 
dynamically using NWP profiles describing the scene being viewed. This is 
a readily tractable approach because the main uncertainties in the clear-
sky BTs are captured by uncertainty in the surface temperature and 
TCWV. These geophysical uncertainties are estimated and propagated to 
a multi-dimensional Gaussian distribution in BT space using the tangent 
linear outputs from the forward model, i.e., using 𝜕𝜕𝑇

𝜕𝑆𝑆𝑇𝑏
 and 𝜕𝜕𝑇

𝜕𝑇𝑇𝑇𝑇𝑏
 for all of 

the thermal channels considered.  

Clear-sky reflectance simulations are also undertaken using a similar 
principle. This case is a little different, because reflectance has a 
geophysical limit at 0% and clear-sky reflectance can be very low over the 
ocean, i.e., a few percent, away from specular reflection. Thus, the 
calculated Gaussian distribution can include geophysically impossible 
negative reflectances. At present, this problem is addressed by 
approximately redistributing the probability associated with geophysically 
impossible observations, by scaling up the PDFs such that the total 
probability over the geophysically possible range is normalised.  The main 
uncertainty in prior clear-sky reflectance arises from uncertainty in wind 
speed (which affects surface reflectivity) and from uncertainty in TCWV 
(absorption in the atmosphere). Thus, as for BTs, there is a restricted state 
space to account for, and a linear perturbation around the prior state is 
adequate to describe it. 

In contrast, the present Bayesian formulation uses empirically derived 
look-up tables to describe the conditional PDFs of radiances given cloudy 
conditions. The reason for this approach is that the state space that affects 
cloudy radiances is large and cannot be linearized. The key cloud 
properties that affect the radiances are cloud top phase, cloud top height 
and cloud water/ice path. Only certain combinations of these parameters 
are common in nature. Nonetheless, the distribution of cloudy radiances 
that are possible for a given atmospheric profile is not readily formulated 
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as an analytic function – there is no obvious equivalent of the Gaussian 
distribution. Simulation of many cloud configurations is required to sample 
the state space adequately to give a sound numerical PDF of radiances for 
a given atmospheric profile of temperature and water vapour. Mackie 
(2009) [20] implemented a ‘brute-force’ approach of simulating cloudy 
radiances across the plausible state space and using the distribution of 
results in Bayesian cloud detection. In tests, there was a benefit from the 
“local” cloud PDF in reducing the false alarm rate for ocean cloud 
detection to about a fifth of the value using the global PDF (then in use). 
However, the hit-rate for a fixed probability threshold also reduced, which 
is undesirable. On balance, the results were not adequate to justify the 
additional computational cost. 

Nonetheless, it is desirable to develop local PDFs of cloudy radiances 
based on forward modelling for the following reasons: 
 
• no special steps would be required to apply the Bayesian detection 
to a different sensor, provided the sensor had been implemented in 
RTTOV 
• cloud configurations that are implausible given the NWP for a 
particular observation do contribute to the empirical global PDF, which is 
sub-optimal 
• the global PDF, being empirical, probably includes a fraction of 
contributions that were actually clear-sky, leading to higher false alarm 
rates than necessary 

There are two ways of making the approach of Mackie more 
computationally efficient.  

The first is to take advantage of native cloudy radiance calculations 
implemented in RTTOV since Mackie did her work. Many of the 
calculations of interest are presently not externally output from RTTOV 
when run in cloud mode – but this could be addressed by modification of 
the code. The advantage in extracting cloudy radiance information from 
RTTOV’s native cloudy radiance calculations is that the computational 
overhead associated with calling RTTOV multiple times to simulate 
individual clouds is avoided. 

The second approach is to recognize that only cloudy radiance simulations 
in the vicinity of the observed brightness temperatures need be evaluated. 
Configurations of cloud that lead to results too far from the observation 
don’t need to be simulated: they need only be enumerated to provide the 
appropriate normalisation of the local cloudy PDF. This approach requires 
a technique to identify which of all the plausible cloud configurations are 
those that will give results similar to the observations and do need to be 
simulated. One method to explore is to implement a simple retrieval from 
the observations of cloud top height (CTH) to define the range of CTH over 
which simulations should be performed. However, this would require 
careful treatment of errors in the CTH estimate. 
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These possibilities represent research that is rather more risky than some 
of the other extensions discussed, but which would result in a very 
significant improvement in generality of the Bayesian implementation – 
i.e., it would become even easier to apply the Bayesian code to other 
processors. 

8.11 Improved treatment of twilight conditions 

For solar zenith angles around 90°, it may be that the basic day-time 
(<90°) and night-time (>90°) configuration of the Bayesian classifier 
described here can be improved upon. 

Firstly, a fine solar-zenith-angle dependence can in principle be introduced 
into the new AVHRR-specific empirical cloudy-radiance look up tables. 
Around twilight, a resolution of ~5° in this dimension could be investigated.  

Secondly, on the clear-sky side, the quality of the forward model 
simulations needs to be considered more carefully. At extreme solar zenith 
angles, the atmospheric scatter becomes very significant, even for clear 
low-aerosol conditions. It is not necessarily required that the simulations 
perform well in these conditions (particularly since the cloud screening has 
no auxiliary information on aerosol loadings), but it is important the the 
forward model error covariance is representative under these conditions. 
Otherwise, the Bayesian probability will not realistically capture the 
variability intrinsic to twilight scenes. 

Thirdly, it may be that a “twilight zone” needs to be defined in terms of 
solar zenith angle, for which neither a day or night channel set is used. In 
fact, this was done within the ARC project for Along Track Scanning 
Radiometer cloud detection, where a minimal channel set of only 11 and 
12 µm was used for cloud detection within about 5° of the terminator. This 
choice represents that at that time, using an older version of RTTOV as 
forward model, only these channels could be simulated for this region. 
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