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ABSTRACT

Atmospheric Motion Vectors (AMV) generated from M8 geostationary satellite images have been used to 
carry out  observation usage experiments with the HIRLAM assimilation and short-range limited-area 
NWP system. The experiments have been performed at two different operational NWP centres within the 
HIRLAM  consortium,  the  Danish  Meteorological  Institute  (DMI)  and  the  Spanish  National 
Meteorological Institute (INM). The main target of these experiments has been to test the impact of some 
new features and enhancements incorporated to AMV data over recent past (e.g., new imagery data) on 
the quality of  weather predictions.  The results obtained at DMI indicate that M8-AMV data has a slight 
positive impact  on this quality as measured with surface and upper-air  in-situ  observations from the 
EWGLAM stations list. This implies that geostationary AMV wind data can be accommodated in the data 
assimilation schedule, without necessarily expecting a degradation of the forecast skill scores, together 
with other polar satellite data (scatterometer sea-surface winds and AMSU-A temperature soundings) 
currently used at DMI. The results obtained at INM indicate that AMV data has a significant impact on 
the way the model simulates the Atmospheric Dynamics at middle and low latitudes over the Northern 
Hemisphere  Atlantic  Ocean,  that  this  impact  is  positive  and  sizeable  (about  20% geopotential  error 
reduction for  the +24 h forecast)  when measured by verification with analysed fields,  and that  it  is 
particularly clear at low and middle levels in the Troposphere.

Introduction 

AMV data  have  been  around for  some time already.  In  the  context  of  European  Meteorology from 
geostationary orbit, the generation of this kind of data started soon afterwards the launch of the first 
METEOSAT in November 1977. Today, all major operators of geostationary meteorological satellites 
include tracking vectors in their products catalogues, providing so with global coverage at low and middle 
latitudes, and these data are routinely monitored and assimilated by many NWP centres around the world. 
AMV constitute a reliable and well established source of wind data, and all indicates that it will also be so 
in the future.  Since few years ago, a similar processing technique is used on data from imagers embarked 
on polar platforms (MODIS), extending the geographical coverage of these data to the whole globe. In the 
near future, hyperspectral data from geosynchronous satellites (e.g., GIFTS from USA) will very likely 
bring in qualitative changes. The opportunity of the experiments described in this communication arises 
from the consideration that the arrival of new radiometers (e.g., SEVIRI) is indeed a good occasion to 
revisit AMV data assimilation routines. This work does not deal with data from other systems able to 
measure wind from space, like scatterometer and new lidar (e.g., ADM-Aeolus, ESA) instruments. 

The  assimilation  schemes  used  operationally  in  NWP  have  experienced  significant  changes  and 
improvements over the last years. In the context of HIRLAM, this effort has led to the substitution of 
outdated  Optimal  Interpolation  assimilation  algorithms  for  global  spectral  statistical  interpolation 
methods, usually known as 3D-Var (Parrish and Derber, 1992), and to the implementation of even more 
sophisticated algorithms based on “Control  Theory” (Lions,  1971),  usually  known as  4D-Var.   This 
terminology seems to indicate that between these two schemes there is an ordinal relationship, and in fact 
this impression is not totally wrong. The 3D-Var algorithm is a convenient previous step towards the 
implementation  of  the  4D-Var  algorithm.  Both  pose  the  data  assimilation  problem  as  a  variational 
problem, the former uses model fields as a weak constraint to solve this problem, while the latter uses a 
simplified version of the model dynamics as a strong constraint to find an analysis. With an eye put on 
one topic of great interest to HIRLAM, namely mesoscale NWP, these constraints have been recently re-
formulated in order to make them flexible enough to account for model error structures that can arise in 
the  mesoscale  and  that  do  not   let  themselves  be  easily  expressed  in  an  analytical  form.  This  new 
formulation of these constraints is known as “statistical” (Berre, 2000). This communication intends to 
add  some more elements for the assessment of  the performance of these new developments.
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The M8-AMV data

The AMV vectors used in these experiments were generated from sequences of M8-SEVIRI images in 
four different spectral bands: 0.8, 6.2, 7.3 and 10.8 microns at a nominal spatial resolution of 72 Km. 
These vectors were produced at a rate of 24 times a day with nominal observation times 00:30Z, 01:30Z, 
...,23:30Z. The product generator ( http://www.eumetsat.int ) provides, together with the horizontal wind 
and wind height measurements, a certain amount of additional information including: vector type, height 
assignment  method  used,  correlation  method  used,  intermediate  (15  minutes)  relative  displacement 
vectors, auxiliary information related to the height assignment process and quality confidence indexes. In 
these experiments most  of  this  additional  information was not  considered,  with the exception of  the 
quality confidence indexes that were employed for the screening and thinning of the AMV data.  

The HIRLAM NWP system

For the sake of brevity, I will present the NWP system used in these experiments in a very concise way. 
These experiments have been performed with the NWP system HIRLAM (High Resolution Limited Area 
Model;  http://hirlam.knmi.nl ) version 6.3.6. In its present status, the core of this system consists of an 
assimilation  module  which  can  be  configured  for  different  algorithms,  and  an  atmosphere  primitive 
equations  hydrostatic  model  coupled  to  a  land-surface  scheme  known  as  ISBA  (Interaction-Soil-
Biosphere-Atmosphere). The system can represent properly physical processes like transfer of radiation 
energy through the atmosphere,  water  cycle  in  the  atmosphere (i.e.,  condensation and precipitation), 
convention  and  turbulence.   The  system  offers  as  well  different  possibilities  as  far  as  adiabatic 
formulation of equations and the balancing of analysed fields is concerned. Geographical domain and 
space-time resolutions are equally configurable.
 
Tuning of HIRLAM 3D-Var for AMV assimilation
 
Previous to the assimilation experiments some work was done on M8-AMV data monitoring and on 
tuning of parameters that determine the screening of these data and their weights in the analysis.   

By plotting monthly mean (Feb-March 2005) wind speed difference between AMV observations and 
short-range forecasts on a 2D graph with the x-axis for quality index (QI) and the y-axis for height (not 
shown), one can quickly get an idea about at which levels and for which QI thresholds the presence of 
systematic differences can reasonably be ruled out. The vectors from the 0.8 microns channel over sea 
surface and QI above 0.8 or 0.85 correspond well with the flow in the model at levels between 800 and 
950 hPa. The same applies to vectors from the 10.8 microns channel. A significant portion of these 10.8 
vectors are assigned height levels between 450 and 200 hPa, where they show a negative bias of a few 
m/s. The QI discriminates the worst cases, but only in part. The vertical distribution of the number of 
vectors from the 7.3 microns channel presents two local maxima at about 600 and 300 hPa. QC values 
above 0.85 or 0.9 correspond to bias-free vectors in the lower set but not in the upper set, where the bias 
is of the same order as for the 10.8 microns vectors. Vectors from the 6.2 microns concentrate at levels 
between 450 and 200 hPa. The statistics for this month show that there is a negative bias here as well, 
although those near the 400 hPa are almost bias-free. The QI discriminates the worst cases only in part. 
This  characterisation is  based on the  QI  that  does  not  include a preliminary check with short-range 
forecasts and cloudy and clear-sky water vapour vectors were treated on the same footing. 

The  quality  control  or  screening  process  of  single-level  wind  data  in  the  3D-Var  HIRLAM system 
(Gustafsson et al., 2001) consists basically of three steps: background check, thinning and variational 
quality control. The background check compares observed wind and guessed wind interpolated in space 
and time to the location and nominal time of the observation. If the difference falls outside the range 
where the distribution departs clearly from normality the observation is rejected. Figure 1 illustrates the 
procedure. The empirical distribution of innovations (i.e., differences between short-range forecast and 
observations) have been transformed and fitted to a gaussian model (slant strait lines). Some distance 
away from the origin (vertical red line) the deviation between data and model is judged significant. The 
plot on the left corresponds to low level vectors and that on the right to high level vectors. It is found that 
a mean wind component difference of about 5 m/s for low level winds and about 10 m/s for high level 
winds are adequate background check rejection thresholds. These values are somewhat bigger than those 
set up by default in the system. Another feature of this background check is the so-called “asymmetry 
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check", a scheme that makes more stringent this background check when the observation speed is below 
the guessed speed by more than 4 m/s. This asymmetry check aims at removing the structure of the 
systematic  difference  usually  found  in  AMV  data  and  confirmed  for  M8-AMV  data  as  well.  This 
asymmetry check was suppressed for vectors below 700 hPa because these vectors seem to be free of this 
bias.

Figure 1. Determination of thresholds for the background check for AMV data (see text).

Dense  wind  fields  are  thinned  up  to  minimise  the  effect  of  error  correlation  among nearby  vectors 
(Bormann et al., 2002). In NWP data assimilation, errors of observations at different places are usually 
supposed uncorrelated. This simplification  can be justified in practice because of the lack of information 
about how this correlation looks like and because it simplifies considerably the algebra. However, it is 
known that wrong specification of the error structure leads to “sub-optimal” analyses (Daley, 1991). One 
way to minimise this problem, and easy to implement, is by imposing a minimum separation between 
satellite observations. The obvious question is then how much thinning should be applied. The analysis 
error can be estimated by measuring the size of the “analysis residues”, i.e., the distance between analysis 
and  observations,  therefore  the  question  can  be  answered  by  studying  the  relationship  between  the 
degradation of the fit of the analysis to radio-sonde wind observations and the amount of thinning applied 
to the AMV vector fields.

Figure 2 summarises the results obtained from these tests. Five midday analysis were repeated five times 
each with decreasing intensity of thinning: maximum (i.e., no AMV data included), 1. degree minimum 
separation, 0.5 degrees, 0.3 degrees and 0.1 degrees. The minimum distance along the vertical was held 
fixed at 50 hPa. The radio-sonde wind data are from land-based stations south of 50 N. On the left, one 
can see the variation of the median of the distribution of the wind components normalised residues with 
the thinning intensity for the so-called “analytical formulation” of the background constraint, and on the 
right the corresponding results for the “statistical formulation” of this constraint. Each line corresponds to 
a different level in the atmosphere, as indicated by the legend included in the graphs.  In the first case, the 
degradation in the quality of the analysis is apparent (particularly at high and medium levels) when the 
thinning is applied at or less than 0.5 degrees. In the second case, the curves show a different aspect, 
indicating much reduced sensitivity to the amount of thinning applied. Here, 0.5 seems one option quite 
conservative. We see as well that if AMV data is not assimilated, the characteristic size of the residues 
from  both  formulations  are  different:  0.41  (high  level)  and  0.26  (low  and  medium  levels)  for  the 
analytical versus 0.34 and 0.21 for the statistical, this fact is a clear indication that the new formulation of 
the constraint works better than the older. This difference in the performance of both formulations is 
amplified when AMV data is introduced in the analysis. It is important to say that the differences seen in 
these graphs can not be attributed to problems with the converge of the minimisation algorithm. Converge 
is reached in all cases, although somewhat faster with the statistical formulation.



Figure 2. Determination of the amount of thinning for AMV data (see text)

The VarQC scheme (Anderson and Järvinen, 1999) solves the problem of quality control of observations 
from a bayesian approach. The scheme computes the “a posteriori” probability (P) of a given observation 
being affected by a “gross” or “non-normal” error, and this probability is then used to penalise the given 
observation if, as the iterative minimisation process progresses, the deviation between the observation and 
the updated background persists. The penalisation consists in decreasing the contribution of the given 
observation to the cost function gradient proportionally to (1-P). 

The method assumes for the observational error the following error model: (1-A) N(0,σo) + A U(d,σo) ; 
where N(0,σo) is the normal distribution, U(d,σo) is the uniform distribution in the range [-dσo , dσo], and 
A is the “a priori” probability of non-normal error in the observation. As shown in the reference, this “a 
priori” can be estimated by fitting the empirical distribution of normalised residues of the analysis to this 
error model. The Bayes theorem is then used to obtain the “a posteriori” probability from the “a priori” 
probability. It turns out that this fit is extremely sensitive to the standard observation error assigned to the 
observation type under consideration (in this case AMV data). The graph on the left of figure 3 illustrates 
this point. The red (low level vectors) and blue (high level vectors) lines are practically vertical, rendering 
the estimates of the “a priori”s very uncertain. It was found that fitting the error model to the tails of the 
distribution, rather than to the core of it as the first method does, gives more robust results. The lines 
drawn in the graph on the right of figure 3 show more elasticity and make it possible a more precise 
estimation of these probabilities.

From the x-axis of figure 3 one can quickly read out the maximum value of  σo for which we obtain 
meaningful values of these “a priori”s (i.e., positive values). It is found that, for the current settings (σo =2 
m/s  at  low levels,  σo  =5 m/s  at  high levels),  the VarQC scheme has only a  marginal  impact  on the 
assimilation of AMV data.

Figure 3. Determination of “A priori probabilities of gross error” for AMV data (see text)



Observation Usage Experiments at DMI

Several  impact  studies (unpublished results) with the DMI-HIRLAM analysis and forecasting system 
have in the past shown a very clear negative impact of using SATOB data. However, the last impact study 
with this kind of data was made around 2000 and since then a lot of progress in the production of these 
data has been made by satellite data providers. In addition, the new instrument SEVIRI on M8 has also 
made it  possible to further improve the height assignment of these vectors in comparison with older 
METEOSAT satellites. In connection to the launch of M8, the necessary changes to use M8-AMV data 
were implemented in the HIRLAM 3D-Var/4D-Var analysis. This implementation makes it possible to 
use the quality indicators provided with the data. 

The analysis algorithm used here is the HIRLAM 3D-Var 6.3.6 OpenMP version for NEC computers, 
modified to use RTTOV8 developed in the NWP-SAF. The observation time window covers a 3 hours 
span around the analysis times (00,03,...,21UTC) except for a 6 hours span around the analyses at times 
06 and 18 UTC from which a long integration is launched. The standard observation set used includes: 
synoptic observations, ship observations, buoys (drifting and moored), pilot balloons, radio-sonde data, 
aircraft data, QuickScat and NOAA15/NOAA16 AMSU-A data. The experiments have been carried out 
over two operational DMI-HIRLAM areas. The “Global” area (DMI-HIRLAM-G) and the “European” 
area  (DMI-HIRLAM-E).  Both  domains  have  a  vertical  resolution  of  40  levels  while  the  horizontal 
resolution is 0.45 degrees for the “G” model and 0.15 degrees for the “E” model.

The results obtained from an experiment run during January 2005 are shown in figure 4. The forecast skill 
scores  are  computed  from co-locations  with  surface  and  upper-air  measurements  of  pressure,  wind, 
temperature, humidity and geopotential gathered from the EWGLAM stations list. The red (G4F) and 
green (D1F) lines correspond to the control integration (excluding M8-AMV data) for the global and 
European  areas  respectively.  The  blue  (G4C)  and  black  (D1C)  lines  correspond  to  the  experiment 
integration (with M8-AMV data). Bias and r.m.s are plotted together on the same graphs .vs. forecast 
range. We can see that the impact has the same sign on both areas and that this impact is visible and 
positive for most of the parameters. 

Based on the results  from last  year and the present  results,  M8-AMV data became part  of the DMI 
operational suite on May 31, 2005.

Observation Usage Experiments at INM

The experiment described in this section was designed to evaluate the impact of M8-AMV data in a 
context of short-range forecasts (up to 24 hours) and short 3D-Var assimilation cycles (3 hours). This 
short assimilation cycle could reveal some of the potential of the high temporal resolution offered by 
these AMV data. 

The period of time selected was 15/02/2005-15/03/2005. This choice arises from the interest in testing the 
impact under weather synoptic situations characterised by frequent transits of baroclinic disturbances. 
During that time a few of these events actually took place. Previous experiments carried out for Boreal 
Summer  typical  weather  conditions  (July  2003)  over  the  same  geographical  area,   indicated  that 
assimilation of AMV data has a clear impact on the way the model reproduces atmospheric circulation 
regimes characterised by its persistence, e.g. trade winds (see figure 5).

The integrations were done at 0.2 degrees horizontal resolution and 40 vertical levels (hybrid vertical 
coordinates). The upper-air data assimilation time window spanned three hours, from two hours before 
nominal analysis time (0, 3,...21 UTC) until one hour after this time. For each assimilation cycle three 
AMV slots were used  at  -1h30m –30m and +30m from the nominal analysis time. For the calculation of 
innovations, the background was linearly interpolated to these times. The iterative minimisation process 
run smoothly, convergence was found in all cases before the maximum number of iterations allowed 
(100) could be reached. The variational quality control filter was activated at iteration number 20. The 
analysis of surface variables was done every six hours (0,6,12,18 UTC) using an OI algorithm. Residual 
imbalances in the analyses are suppressed by using DFI methods. ECMWF operational analyses were 
used as boundary conditions with a refreshing cycle of six hours.



Figure 4. Impact on the forecast skill scores for the experiments carried out with DMI-HIRLAM-G 
(red  for  CNTL and  blue  for  +AMV )  and  DMI-HIRLAM-E (green  for  CNTL and black  for 
+AMV). (see text).



Figure 5.  Impact of M7-AMV data over the Northern Subtropical Atlantic (July 2003). The maps 
correspond to wind speed at model level 28 (about 850 hPa). The red areas indicate the zones where 
the impact on the monthly mean wind speed is significant at 0. 5% level. Upper left panel is for 
analysis, upper right +6 hours forecast, +24 is down on the left and +48 hours down on the right. 
The monthly mean difference is about +1 m/s enhanced in the experiment.

Control and experiment configurations shared the same settings with the exception of two aspects: AMV 
data  observation  usage  (absent  in  the  control  run)  and  the  background  constraint  used.  The  control 
analyses were obtained with the old analytical formulation while the statistical formulation was employed 
for the experiment analyses. The observations common to both integrations are those that may be referred 
to as “terrestrial observations”, i.e.: wind, temperature, pressure and humidity measurements taken from 
land and sea-surface based equipment, radio-sondes, balloons and aircrafts. In the experiment run, AMV 
data were not assimilated over land for latitudes above 35 degrees North. AMV data with quality index 
(without FG check) below 80 were equally discarded, independently of vector type or level. Rejection 
thresholds were given in agreement with the settings shown above (see “calibration of the assimilation 
algorithm” ). The AMV data fields were thinned up down to 0.5 degrees and 50 hPa by picking up those 
vectors closest in time to the nominal analysis time or, if simultaneous,  those with higher quality index.

The verification of the impact with “in-situ” observations (i.e., land-based stations and radio-sondes) was 
performed in a way that could enhance the visibility of its geographical distribution. Statistics of the 
comparisons between model and observations were produced and the sign and  statistical significance of 
this impact were determined for each station. The three basic statistics worked out were: bias, r.m.s, and 
Spearman rank correlation  ( S, σ, Rs ). For a given station, positive significant impact on the mean error 
or  on  the  r.m.s  is  found  when   S(exp)  <  S(cntl)  or  σ(exp)  <  σ(cntl)   at  the  5% confidence  level 
respectively. Positive impact is found for the Rs statistic when Rs(exp) is significant at 5% c.l. but not 
Rs(cntl). Negative impacts are found in opposite situations. Otherwise the impact is labelled as neutral.  

Table 1 summarises the +24 hours forecast verification results for some surface variables: m.s.l pressure, 
wind speed and wind direction at 10 meters. Each row corresponds to a different spatial aggregate of 
stations: 1) the whole Iberian Peninsula and South of France, 2) the Gibraltar Strait area, 3) the Iberian 
Mediterranean Coast, 4) the Iberian North Coast, 5) the Iberian West Coast, 6) the Iberian South-western 
Coast and 7) the South of France.  In each cell of the table two numbers appear side by side. The one on 
the left is the number of cases where positive impact was detected, the one on the right is the number of 
cases with negative impact.  The reader can quickly grasp the sign and statistical  significance of  the 



impact by comparing both numbers. We can notice an overall (i.e., whole Iberian Peninsula)  positive 
impact on the bias for m.s.l pressure parameter, particularly over Gibraltar, Western and South-Western 
coasts. We can notice as well, on the other hand, a somewhat smaller negative impact on the r.m.s for 
wind direction at 10 m, distributed quite uniformly over the whole verification area of interest. It may be 
opportune to mention at this point that the FG check on wind direction was not activated for AMV data. 
The impact on wind speed is clearly neutral. The results for the upper-air variables (not shown) can be 
processed and presented in a similar way. It turns out that the impact is neutral. 

Parameter Pmsl Wind Speed 10m Wind Direction 10m

   B    σ.    Rs    B    σ.    Rs    B    σ.    Rs
Iberian Peninsula 115;10 16 ; 19  0 ; 0  0 ; 0  1 ; 2 53 ; 46 0 ; 0  4 ; 50 49 ; 60
Gibraltar Strait Area 13 ; 0 1 ;   0  0 ; 0  0 ; 0  0 ; 0 5  ;  4 0 ; 0  0 ; 9  3 ;  5
Mediterranean Coast 0   ; 0 0 ;   0  0 ; 0  0 ; 0  0 ; 0 13 ; 10 0 ; 0  0 ; 7 20 ; 6
North Coast 6   ; 1 1 ;  10  0 ; 0  0  ; 0  0 ; 0  1 ; 2 0 ; 0  0 ; 0 1 ;  0
West Coast 41 ; 4 1 ;  0  0 ; 0  0 ;  0  0 ; 0  3 ; 4 0 ; 0 0  ; 4 4  ; 6
South-West Coast 15 ; 0 1 ;  0  0 ; 0  0 ;  0  0 ; 0  1 ; 1 0 ; 0 0 ;  8 2 ;  4
South of France  0 ;  0 0 ;  7  0 ; 0  0 ; 0  0 ; 0  2 ; 5 0 ; 0 1 ; 11 2;   4

Table  1  Summary of  the  impact  verification results  with  in-situ surface  observations  over  the 
Iberian Peninsula and nearby areas (see text).

An alternative way of evaluating the impact is by comparing forecasted fields and analysed fields at the 
corresponding verification times. One obvious drawback of this method is that it does not provide with a 
unambiguous  reference for verification because two sets of analyses are available, those produced by the 
control and those originated from the experiment. These analysis may differ because they originate from 
different observations and, as is the case here, from different methods as well. One simple way around 
this difficulty is to verify each integration with its own analyses. It is then possible to see if the model 
propagates the information introduced in the system by the new data consistently. When this is actually 
what happens, our confidence in the positive impact of the data being tested rises. If this consistency is 
not  found, the analysis  of  the results  should give hints  about  possible problems with the data under 
consideration. This information is certainly very useful at the time of establishing an assimilation strategy 
for these data.

Figure 6. (top) shows the spatial distribution of the difference between control and experiment r.m.s error 
for the +24 hours forecast 500 hPa geopotential height parameter, i.e, the spatial distribution of:

VP = σ (fc(+24)-an)cntl - σ (fc(+24)-an)exp

Solid lines,  where the difference  is  positive,  indicate  a  positive impact,  i.e.,  the  error  in  the control 
integration is bigger than in the experiment integration. Dashed lines contour areas where the opposite 
situation occurs. The map corresponds to midday runs and is quite similar to those for other runs of the 
day  (not  shown).  The  shaded  areas  indicate   monthly  mean  values  of  the  baroclinic  instability  as 
measured by the Eady maximum growth rate index averaged over a layer bounded by surface and 300 
hPa,  i.e.  these  shaded  areas  indicate  areas  of  maximum baroclinic  activity  during  the  period  of  the 
experiment. We can see that the positive impact is dominant at latitudes south of about  45 N and that 
these positive impact areas are located mainly downstream of high instability zones. This result suggests 
that these data can improve the simulation of the evolution of baroclinic structures, which is remarkable 
in the sense that assimilation algorithms tend to extrapolate single level data barotropically. The time 
series at the foot of the map corresponds to the spatial average of VP over an area west of 10W and south 
of 45N, i.e. over the area where the positive impact is more significant. The error reduction amounts to 
about 22%. These values are in line with results obtained by Gelaro et al. (2000) with the NOGAPS NWP 
system and data from the NORPEX (North Hemisphere Pacific Ocean) observation campaign. At the 850 
hPa level, the results are similar with an error reduction of about 12% (not shown). 

Figure 7 shows the spatial  distribution of  VP for geopotential  height  at  200 hPa. Around 0 degrees 
longitude and for latitudes between 45N and 25N, the introduction of AMV data degrades the agreement 
between the 24 hours forecasts and the analyses. This pattern can be seen as well in the spatial 



Figure 6.  Top.-  Spatial distribution of the impact on 500 hPa geopotential height verified using 
analyses. Bottom .- Time series for this impact averaged over the Atlantic South of 45 N (see text).

Figure 7.- Spatial distribution of the impact on 200 hPa geopotential height verified using analyses. 
(see text).



distribution of VP for other parameters like wind speed (not shown). This degradation may be caused by 
variability over a period of 24 hours in the height assigned to vectors that actually should correspond to 
the same level, in other words, it is possible to understand this effect as caused by uncertainty in the 
AMV reported level. The fact that the sign of the impact  changes over the western part of the domain, 
where  cloudy  conditions  predominated  during  the  experiment,  as  opposed  to  clear  sky  conditions 
dominating the area where negative impact has been detected, suggests that this effect could be attributed 
to clear sky AMV data. However, this possibility has not been checked out in this study. 

Conclusions

We have measured the impact of  3D-Var assimilation of M8-AMV data on the skill  of short-range 
forecasts generated by the HIRLAM hydrostatic model (version 6.3.6). Verification with conventional 
“in-situ” surface and upper-air observations at a European Continental scale (EWGLAM stations list) 
over one month period (January 2005) show a small positive impact, and this advocates in favour of the 
assimilation  in  the  DMI  operational  suite  of  M8-AMV  data  together  with  other  data  from  polar 
meteorological satellites (ocean-surface wind data from QuickScat  and temperature sounding data from 
NOAA15-NOAA16  AMSU-A).  Verification  with  conventional  “in-situ”  surface  and  upper-air 
observations over the Iberian Peninsula for one month period (February-March 2005) gives an overall 
neutral impact with small improvement on the Pmsl parameter and marginal negative impact on the 10 
meters wind direction parameter. This marginal negative impact might have been caused by a relaxation 
in the data screening process. At any rate, these verifications based on “in-situ” data suffer from very low 
S/N ratios and can only be conclusive in the sense that the assimilation of M8-AMV does not perturb 
significantly the agreement between model and “in-situ” observations.

The impact has been measured as well in terms of consistency between forecasts and analyses generated 
by the own integration (control or experiment). Over the Northern Hemisphere Atlantic Ocean and  south 
of about 45-50 degrees North,  the use of AMV data produces a sizeable positive impact at  low and 
medium  levels  in  the  Troposphere.  In  terms  of  geopotential  height,  this  impact  amounts  to  error 
reductions of 10%, 20% at 850 hPa, 500 hPa respectively for the 24 hours forecast range. The spatial 
structure of this impact indicates that this result is connected with a more precise description by the model 
of the transit of baroclinic instabilities across the Atlantic during the time period considered (February-
March 2005). This result is in qualitative and quantitative agreement with other investigations carried out 
with NORPEX data over the Northern Hemisphere Pacific Ocean. This result complements as well other 
studies where the AMV data showed a clear impact on the way the model simulates the trade winds 
circulation , making it more intense by about 1 m/s in monthly mean. Therefore it seems fair to conclude 
that assimilation of AMV data has clear potential to impact and improve the simulation of Atmospheric 
Dynamics over the North Atlantic. It  has been found as well problems with the assimilation of these 
AMV data at higher levels. The uncertainty in the height assigned to these vectors negatively impacts on 
the dispersion between forecasted and analysed model fields. 
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