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ABSTRACT

A comparison study between an optical and a passive MW rainfall  retrieval over north-
western Africa is presented. Therefore the Advective-Convective-Technique (Reudenbach 
et al. 2001, Reudenbach and Nauss 2004) has been applied to the WV and IR channel of 
Meteosat-7 for  the detection  of  convective  and advective/stratiform precipitation  fields. 
Rainfall rates are assigned as a function of cloud-top temperature using 3-D cloud model 
calculations  based on radiosonde datasets from Benin.  The passive  MW technique is 
from Bauer et al.  (2002) and incorporates comparable  channels  of TRMM TMI, DMSP 
SSM/I, and Aqua AMSR-E. The resulting precipitation fields as well as the rainfall rates of 
the two retrieval techniques have been evaluated against each other. So far, probability 
matching and morphing techniques have precedently been used to interpolate microwave 
rain estimates, but the better detection and discrimination of the ACT-based precipitation 
fieldsmay lead to a better merging between geostationary IR and LEO data in the future. 
The results  of this comparison study form a valuable base for  an upcoming combined 
WV/IR and MW retrieval technique currently developed within the Advanced Multisensor 
Precipitation Estimate project (AMPE).

1. Description of the two retrieval techniques

1.1 Advective Convective Technique (ACT)

The ACT consists of two modules – one for the identification of rainfall  connected with 
deep convection and one for the identification of mainly stratiform precipitating areas (see 
figure 1). The ACT convective module is based on the Enhanced Convective Stratiform 
Technique (ECST, Reudenbach et al. 2001, Reudenbach 2003) that uses positive TBWV-
TBIR differences (DWI) in order to discriminate between deep convective, optically thick 
clouds (DWI>0) and non-raining cirrus (DWI<0, refer to Tjemkes et al. 1997). Pixels with 
positive  DWI  are  subdivided  by  analysing  the  frequency  distribution  of  brightness 



temperatures (TBIR).  Areas with TBIR<1st quartile of the frequency distribution represent 
overshooting  tops  of  convective  cores,  those  who  suit  the  1st quartile  reveal  raining 
systems at tropopause level  and pixels with TBIR<3rd quartile identify potentially  raining 
cloud systems of high vertical  extension. As a result,  isolated convective cores can be 
distinguished from directly adjacent stratiform raining areas. 
The second module  of  the ACT detects  rainfall  areas in  warmer frontal  systems (e.g. 
warm frontal clouds). The method is based on an iterative k-means clustering algorithm 
(Bradley  and  Fayyad  1998)  that  is  applied  to  TBIR,  TBWV and  3x3  infrared  standard 
deviations (StdvIR). It integrates the classified cloud process patterns from the convective 
module as core raining areas. The resulting clusters which represent potentially raining 
cloud types (advective-stratiform precipitation)  are reallocated into single cloud entities 
and  finally  classified  as  raining/non-raining  if  their  compactness  index  and  centroid 
temperature fits predefined threshold values.
After the identification and classification of raining clouds, a specific rainrate is assigned 
to each pixel with respect to the identified cloud-type and the cloud-top temperature. The 
rainrates are derived from idealised 3D cloud model runs with the mesoscale Advanced 
Regional  Prediction  System (ARPS,  Xue  et  al.  2003).  For  the  current  study  a  2002 
radiosonde  dataset  from a  testsite  in  Benin  kindly  supplied  by  the  GLOWA-Impetus 
project (see www.glowa.org) is used as initial input for the model 
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Figure 1: Overview of the ACT algorithm.

1.2 The passive Microwave Technique (PMWT)

The  passive  microwave  technique consists  of  a  two-stage  approach  to  distinguish 
precipitation signatures from other effects (Bauer et al. 2002, see figure 2): 
(1) Contributions from slowly varying parameters (surface type and state) are isolated by 
comparing observed brightness temperatures to those obtained from previous orbits only 
containing  rain-free  observations.  This  is  achieved  by  generating  maps  of  clear-sky 
temporal  averages  of  brightness  temperatures  over  land  surfaces.  Averaged  TB 
distributions from cloud free observations are generated employing the globally applicable 
screening algorithm founded by Grody (1991) and refined by Ferraro and Marks (1995). 



Based on this, all observations contaminated by wet land, precipitation, and snow cover 
were removed.
(2)  Effects  of  more  dynamic  parameters,  i.e.,  surface  temperature  and  moisture,  are 
reduced  by  successive  subtraction  from  the  observations  by  means  of  a  principal 
component analysis.  For this purpose, the general  signatures of  both temperature and 
moisture variations are deduced from radiative transfer simulations. The fundamentals of 
this approach are based on a methodology developed by Conner and Petty (1998). Their 
technique  was  modified  by  introducing  radiative  transfer  calculations  from cloud-free 
radiosonde  profiles  of  temperature  and  moisture  and  a  microwave  surface  emissivity 
model.
The final objective is the separation of the precipitation from the temperature and moisture 
signal content of the original TB. The resulting index (in units of K) is positively correlated 
to rainrate.
The technique incorporates comparable channels of TRMM TMI, DMSP SSM/I, and Aqua 
AMSR-E and the MW rain estimates are interpolated in time by means of a probability 
matching and a morphing technique using Meteosat IR images (see Bauer et al. 2002 for 
further details).
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Figure 2: Overview of the passive microwave algorithm.

2. Results

In preparation for a future combination of infra-red and passive microwave rain retrieval 
techniques,  a  comparison  of  ACT  and  passive  microwave  rain  rates  was  made  in 
conjunction with the TRMM standard 2A12 microwave (Iguchi et al. 2000) and the TRMM 
precipitation  radar  (PR)  (Kummerow et  al.  2001)  product,  the  last  being  the  optimal 
validation source for  instantaneous rain  rate estimates. The studies were made for 10 
scenes in July 2002 over West Africa, whereas the relatively low number of cases caused 
by the need for collocated rain estimates with sufficient non-zero values as well as limited 
data availability in the water vapor channel. 
The example in  figure  3 shows the co-located results  of  the ACT (figure  3a)  and the 
PMWT (figure 3b) for a TRMM overpass on July 24th 2002.  The areas detected by the 
ACT exhibit  a more heterogeneous pattern than the rain fields detected by the PMWT 
because  of  the  higher  correlation  between  MW  ice  scattering  and  precipitation  than 
precipitation  and cloud top information.  Comparison with the infrared  image combined 
with the passive microwave  and radar estimates in figure 4 shows the ACT’s potential of 
identifying convective cores and discriminating high cirrus clouds: a high Cirrus arm in the 



middle of the PR swath is correctly discriminated while a relatively low convective rain cell 
in Benin detected by the AMSU-B sensor is also classified as rain by the ACT algorithm. 

Table 1

Skill against PR TMI PMWT TMI 2A12 ACT
Bias -5.2% +11.2% -4.9%
False Alarm Ratio 0.205 0.238 0.609
Prob. Of Detection 0.602 0.584 0.574

In the considered scenes the ACT estimates produced a negative overall  bias of 4.9% 
against the TRMM radar surface rain estimate (2A25), which is a good result considering 
that the algorithm had been calibrated neither with radar nor ground measurements. The 
PMWT algorithm had a  negative  bias  of  5.2% against  the  PR,  opposed  to  the  2A12 
product which displayed a positive bias of 11.2% as already addressed by McCollum et 
al.  (2000) and Furuzawa et al.  (2005).  The increased performance of the PMWT (see 
table 1) is not surprising since it was optimized with PR data over this region and over a 
long  time period.  The  improvements  were  the  most  pronounced  in  the  Sahel  region. 
Figure 4b also shows rain detected by the TRMM PR (visible also in white in figure 4a) 
which  remains  hidden  for  the  2a12  product  due  to  the  problematic  MW  scattering 
signature  of  semi-arid  soil  (figure  4a),  while  the  new PMWT  remains  more  sensitive 
through the regional adaptation of the MW ground emmission maps (figure 3b). 
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Figure 3: co-located measurements of the ACT (a) and the PMWT (TRMM TMI) (b)  for the 24th July 
2002 at 19:10 UTC.

mm/hour

0.1 1.0 10.0 100.0

Figure 4: Meteosat IR with collocated TMI 2A12 product, TRMM PR in white (under 2a12), and AMSU-
B measurement (a) and TRMM PR product alone (b) for the 24th July 2002 at 19:10 UTC

The next step of our work will be towards a combined passive microwave/IR product, so 
the relation of  PMWT and ACT is of  special  interest.  Figure 5 shows skill  parameters 
between the ACT and the PMWT for 10 co-located scenes representing different weather 
situations.  A  mean CSI  of  0.32  together  with  a  high  mean POD of  0.85  indicates  a 
relatively good consistency between the PMWT and the ACT regarding the precipitation 
areas. The high mean FAR of 0.65 is due to the overestimation of the rain areas by the 
ACT  as compared to TMI  (figure  1 and 2),  which may be addressed either  by further 
adapting the ACT to the region or through existing probability matching techniques in a 
combined PMW/IR product.  The temporal  evolution  of  the skill  parameters in  different 
weather  situations  from one scene to  the next  suggests  the necessity  of  an  adaptive 
ACT/PMW algorithm, which will combine the strengths of the ACT cloud classifications in 
the continuous infrared data and the high correlation of  PMW ice scattering with rain. 
Note, that the ACT algorithm has been originally developed for mid- to high-latitudes and 
has never been applied to the tropics before. Therefore, further adaptations especially 
with respect to the assigned rainfall rates are necessary. 
The  PMW  retrieval  scheme will  furthermore  be  enhanced  to  adapt  to  regionally  and 
temporally dependent biases found in passive microwave products (McCollum et al. 2000 
and Furuzawa et al. 2004), caused not only by ground emmission but also by changes in 



premature evaporation of rain and cloud characteristics. These will be investigated over a 
period of several West African rainy seasons. This first comparison study shows a good 
performance of both algorithms and the upcoming integration of the ACT and the PMWT 
within the framework of the Advanced Multisensor Precipitation Estimate project bears a 
great potential for further improvements.
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Figure 5: Critical Success Index, Probability of Detection, False Alarm Ratio and Root Mean Square 
Error  for a comparison of 10 co-located measurements of TMI and the ACT in July 2002
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