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ABSTRACT 

 
Many operational algorithms to derive atmospheric motion vectors from satellite imagery 
utilize some form of pattern matching technique.  Two of the more familiar techniques 
are the sum of squared differences and the cross correlation methods, both of which seek 
to find the maximum correlation between the initial target and subsequent match scene.  
In particular, the operational algorithm in use at NOAA/NESDIS minimizes the sum of 
squared differences while incorporating a forecast wind field to limit the size of the 
region being searched.  In the field of computer vision one alternative to correlation-
based tracking is the computation of the “optical flow” field.  Methods to derive the 
optical flow field are fundamentally different from correlation methods in that the field of 
view or “neighborhood” is fixed in space while features move through the region.  While 
an optical-flow based technique eliminates the need for a forecast wind field altogether, it 
does require that the displacements be relatively small so as to prevent the feature of 
interest from moving out of the field of view.  For this reason, optical flow methods 
require high temporal resolution imagery to guarantee reliable results. This paper 
summarizes the experiences of the authors while testing one such optical flow algorithm.  
The algorithm tested here appears extensively in the computer vision literature where it is 
generally regarded as one of the more accurate approaches to estimate motion.  In this 
paper we review the theory behind the selected optical flow technique before discussing 
modifications made for the current application.  Following this discussion we present the 
results of testing done with a simulated (i.e., known) displacement and compare the 
optical flow field for this test case to the wind field derived using correlation-based 
tracking.  This initial testing was vital to the refinement of the algorithm and proved that 
the optical flow method could be a viable alternative to the more traditional pattern-
matching techniques.  The rest of the paper is devoted to the application of the algorithm 
to real GOES water vapor data.  The paper ends with a summary of our findings and a 
brief discussion of future avenues of research. 
 
 
1. INTRODUCTION 
 



Pattern matching techniques have been in use by the winds community since the advent 
of automatic tracking (Merrill, 1989).  Two of the more familiar techniques are the cross-
correlation and least-squares methods, both of which seek to find the best agreement 
between an initial target scene and a matching area found in a second image.  At NESDIS 
a short-range (6-12 hour) forecast is used to estimate where to begin the search process 
before the algorithm computes the sum of squared differences for all possible scenes in 
the search array.  The scene corresponding to the smallest sum is then selected as the 
match.  This process is repeated forward and backward in time before a final average 
vector is computed from the two individual estimates. 
 
In the field of computer vision pattern matching is just one of many techniques employed 
to estimate motion from a sequence of images.  One alternative approach to correlation-
based methods is the computation of the “optical flow” field (Horn and Schunk, 1981).  
In this approach, the target scene remains fixed in space as features translate through a 
field of view or “neighborhood.”  Changes in the brightness pattern are assumed to be the 
result of a simple translation of the brightness contours.  Because the neighborhood is 
stationary a forecast wind field isn’t required to guide the search process.  On the other 
hand, optical flow techniques should not be used to estimate relatively large 
displacements as this suggests that the feature of interest has moved beyond the domain 
of the fixed neighborhood.  These considerations imply that high temporal resolution 
imagery is required to achieve reliable results. 
 
In this paper we test one such optical flow algorithm in an attempt to determine whether 
or not it may be used to estimate atmospheric motion from satellite imagery.  In section 2 
we discuss the general theory behind optical flow techniques before proceeding on to a 
discussion of the specific algorithm used in this application.  In section 3 we present 
results from both the correlation-based and optical flow methods for a test case involving 
a known displacement.  Testing the optical flow algorithm with a know displacement was 
crucial to validating the results and led to important refinements of the original algorithm.  
In section 4 we apply the optical flow algorithm to real GOES water vapor imagery and 
present some radiosonde match statistics to quantify the accuracy of the algorithm.  The 
statistics are very encouraging, demonstrating a significant improvement in quality over 
the control, correlation-based result.  We conclude the paper in section 5 by summarizing 
our findings and briefly discussing future avenues of development. 
 
2. OPTICAL FLOW ALGORITHM 
 
2.1. OVERVIEW 
 
The field of computer vision defines the optical flow as the apparent motion of image 
brightness patterns in an image sequence.  In the past 25 years or so numerous optical 
flow approaches have been documented in the literature (see Barron et al., 1994, for a 
comprehensive review).  At the center of most optical flow algorithms is the so called 
brightness constancy equation: 
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Where I(x,y,t) is the image intensity and V is the horizontal wind vector. 

y itself, this equation (a single equation in two unknowns) yields only the component of 

igure 1.  Aperture problem and normal flow.  The picture on the left (a) depicts the 
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.2 LUCAS-KANADE ALGORITHM 

o circumvent the aperture problem Lucas and Kanade (1981) proposed that equation (1) 
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motion parallel to the brightness gradient vector (Horn and Schunk, 1981).  It does not 
reveal the component of motion perpendicular to the brightness gradient vector.  This 
situation is referred to in the field of computer vision as the aperture problem. 
 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
F
aperture problem.  The true motion of the red rectangle is towards the right (red arrow
but the velocity perceived through the small aperture is that shown by the black arrow. 
Only the component of motion parallel to the image gradient is determined. On the righ
the brightness constancy equation describes a line in u- v- space that constrains the 
possible solutions.  The solution depicted by the vector drawn from the origin (0,0) 
perpendicular to the constraint line is referred to as the “normal flow.” 
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T
be applied to a small neighborhood of pixels around the region of interest.  In essence, the 
authors introduced the additional constraint that the velocity be constant over the 
neighborhood and then solved the resulting set of equations for the flow at the cen
the neighborhood.  They proposed solving the following system of linear equations 
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where A is a matrix of spatial gradients, d is the displacement vector and b is a vector of 
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he matrix to be inverted on the right hand side of equation (2) has been called the 

dient 

.2.1 IMPLEMENTATION 

he over-determined set of equations resulting from (2) serves as the basis of the current 

 

.2.2 SMOOTHING 

 the current application we start with a sequence of five images.  Following the practice 

rd 

.2.3 TARGET SELECTION 

he same target selection used by the operational winds algorithm was also used in this 

e 
ch 

. SIMULATED 2-LINE/ELEMENT SHIFT 

he optical flow algorithm outlined above was tested initially on a sequence of images 

 

temporal derivatives (also called response values).  If the neighborhood is taken to be a K
x K box then there will be K2 linear equations.  It follows that the solution is given by  
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T
“structure” matrix (Trucco and Verri, 1998) because the eigenvalues of this matrix 
measure edge strength while the eigenvectors describe the edge direction.  If the gra
vectors for an entire neighborhood all have the same direction (i.e., a single edge) then 
the minor eigenvalue vanishes and the system can not be solved directly. 
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algorithm.  There are many ways to solve this system of equations.  One way would be to 
solve it directly using Cramer’s Rule (Fraleigh and Beauregard, 1987).  This approach, 
however, fails if the structure matrix is singular, as noted above.  To avoid this situation
we choose instead to solve the system of equations using the method of Singular Value 
Decomposition (SVD, Press et al., 1986). 
 
2
 
In
of many authors (Barron et al., 1994, Simoncelli et al., 1991) we begin by smoothing the 
imagery in both the spatial and temporal domains using a Gaussian filter.  The spatial 
smoothing is performed first on all five images using a 2-D Gaussian filter with standa
deviation of 3 pixels.  This is followed by smoothing of the three middle images in the 
temporal domain using a 1-D Gaussian filter with standard deviation of 1 pixel-frame.  
The smoothing is done to remove noise in the imagery as well as in the computation of 
the derivatives. 
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study.  This was done to facilitate the comparison of the test winds with the control 
winds.  By no means is this target selection an optimal approach when computing th
optical flow.  A selection method more suited to optical flow tracking might be to sear
the target image entirely and only track the strongest “corner” features (features with two 
strong edges). 
 
3
 
T
with a known displacement.  The starting point for the sequence was a single, full 
resolution, GOES-11 infrared image.  This initial image was displaced by a known



amount (2-lines/elements) a total of four times to produce a sequence of five images
exhibiting the same shift.  The entire sequence was then smoothed spatially with a 2-D 
Gaussian filter before applying a 1-D Gaussian filter to the middle three images to 
achieve the temporal smoothing.  A similar, but un-smoothed, test sequence was als
created for the purpose of generating winds with the routine, correlation-based, 
algorithm.   The results achieved with the test sequence are shown below in Figu
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re 2. 

he preceding results demonstrate that the optical flow algorithm is working as intended 

. WATER VAPOR RESULTS  

e now turn our attention to results obtained while using sequences of actual GOES 
cal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  The control (top) and optical flow (bottom) winds generated using a test 
sequence with a known displacement (2-lines/elements). 
 
T
and is yielding results comparable to the routine tracking method, at least for this simple 
test sequence. 
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water vapor imagery.  Initial attempts at processing the brightness values with the opti
flow algorithm yielded poor results in regions of very low contrast.  Consequently, we 



decided to process with the raw satellite counts (10-bit data) instead of the brightness 
values (8-bit data).  The increased precision resulting from this logistical change result
in a dramatic increase in coverage and coherency of the winds in these low contrast 
regions.  The optical flow results shown in the following sections were all derived us
the raw satellite counts.  
 

ed 

ing 

.1 GOES-11 5-MINUTE DATA 

he first case we will show uses a sequence of 5-minute GOES-11 water vapor imagery 

he five images comprising the loop were all smoothed according to the procedure 
d to 

he 
 

learly seemed to outperform the routine tracking method, as evidenced by the higher 
RFF (an objective measure of quality based on an analysis of forecast and satellite data) 
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T
taken on August 2, 2005.  At this time the G-11 satellite had been taken out of storage 
temporarily and was being operated in a rapid scan test mode. 
 
T
outlined above.  Moreover, a relatively large neighborhood of 25 x 25 pixels was use
“stabilize” the solution and prevent the central feature (in this case the maximum 
gradient) from exiting the neighborhood.  Figure 4 shows a zoomed in portion of t
domain for this case.  In this region of relatively low contrast the optical flow method
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  The routine (top) and optical flow (bottom) winds for 2255Z August 2, 2005. 
The recursive filter flag (RFF) value, an objective measure of quality, is shown in blue. 
 
c



values in the bottom panel.  Note also the much better coverage provided by the optica
flow method. 
 
In all fairness i

l 

t should be noted that the routine correlation tracking for this case was 
erformed using the brightness values and not the satellite counts, as was done with the 

t 

sing GOES-12 rapid scan (7.5 minute interval) 
agery from April 3, 2006.  The operational GOES satellites are frequently in Rapid 

 
re 

lgorithm. 

p
optical flow test.  This is because the operational winds software can only process 8-bi
data.  It is unclear how the routine algorithm would have performed with the increased 
precision afforded by the satellite counts.  
 
4.2 G-12 RAPID SCAN DATA 
 
The second example was generated u
im
Scan Operations (RSO) mode, particularly during severe weather outbreaks and when
tropical cyclones threaten to make landfall in the US.  As such, this case provides a mo
realistic scenario in which to evaluate the optical flow method in a “quasi-routine” 
setting.  The optical flow winds for this case are shown below in Figure 5. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  The water vapor winds for April 3, 2006 derived with the optical flow 
a



4.2.1 COMPARISON WITH RADIOSONDES 
 
In order to assess quality, satellite winds are typically compared to collocated radiosonde  
or model forecast data.  Here we chose to compare the winds to collocated radiosonde 
observations, mainly over the continental US (CONUS).  Table 1 summarizes the results 
of our comparison of the clear-sky water vapor winds from this case. 
 
 
 
 
 
 
 
 
 
 
Table 1.  Comparison statistics between collocated GOES-12 edited water vapor winds 
(clear sky) generated using correlation matching and optical flow tracking and 
radiosondes at 00Z on April 4, 2006. 

160 160 Sample Size 

20.85 23.82 Speed 

-0.57 1.78 Sat-Raob Speed Bias 

0.33 0.36 Normalized RMS 
6.19 7.15 Mean Vector Difference 
Optical FlowCorrelationStatistic

 
It is clear from this table that correlation tracking produces significantly faster winds than 
the optical flow estimate.  This discrepancy might be the result of this method tracking 
small-scale features above the main water vapor layer.  The smoothing process attendant 
with the optical flow approach may be removing these small-scale features while tracking 
the main layer further below.  Whatever the cause, these statistics strongly suggest that 
the optical flow method is superior to the traditional correlation-based method for 
tracking clear-sky water vapor features. 
 
5. CONCLUSIONS AND FUTURE PLANS 
 
In this paper we tested an algorithm for computing the optical flow and evaluated its 
performance relative to a traditional pattern matching technique (sum of squared 
differences).  The optical flow algorithm chosen for this paper is widely used in the field 
of computer vision, where it is regarded as one of the more reliable methods for 
estimating motion.  The algorithm was tested initially on an image sequence with a 
controlled displacement to validate the results.  Following this initial testing, we applied 
the new approach to actual GOES water vapor sequences and evaluated its performance 
relative to the correlation-based algorithm in current use at NESDIS.  The evaluation 
included a comparison of the winds from both approaches to radiosonde wind 
observations.  The results of the comparison suggest that the optical flow method is a 
useful, if not superior, alternative to correlation tracking.  This is particularly true in 
regions of clear sky water vapor characterized by less structure. 
 
On the other hand, the optical flow algorithm described here should not be used in jet 
regions with low temporal resolution imagery nor should it be used, in its current form, to 
track convective clouds.  In the former situation the feature of interest is likely to move 



beyond the boundary of the neighborhood, leading to an unreliable estimate.  In the latter 
situation the brightness constancy assumption will clearly be violated.  Given the 
relatively low (by computer vision standards) temporal resolution of today’s operational 
satellites, the optical flow approach should probably be viewed as a replacement to 
correlation tracking only in certain limited situations. 
  
Future work will focus on determining the largest allowable time interval that may be 
used with the optical flow algorithm.  In addition, the algorithm will also be tested using 
data from other spectral bands (visible and infrared) to better define the conditions under 
which it will be of most use.  Given what has been learned so far, and based on 
preliminary results (not shown) with infrared imagery, it appears the algorithm may be 
very useful for tracking low-level IR features.  This will be explored more fully in future 
work. 
 
Looking further into the future, plans are to relax the brightness constancy assumption by 
incorporating a more general constraint, such as the continuity equation, into the 
algorithm.  There is also the possibility of relaxing the constant velocity assumption and 
allowing the flow to vary within the neighborhood by modeling the flow with an affine 
transformation.   
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