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Abstract 
The knowledge of the rain rate and other meteorological parameters such as the cloud cover, the 
instability indices and the atmospheric motion wind vectors are essential for nowcasting applications. 
The high temporal and spatial resolution of the Meteosat Second Generation – Spinning Enhanced 
Visible and Infrared Imager (MSG-SEVIRI) observations are very useful in order to study precipitation 
events characterized by short duration and high temporal variability as well as the temporal evolution 
of long duration events. This work proposes a supervised classification algorithm to detect rainy 
clouds and estimate rainfall confidence. The spectral and textural features of infrared and visible 
MSG-SEVIRI images are conveniently selected and used as inputs in a supervised classification 
algorithm that classifies the rainfall confidence in three classes: non-rainy, low/moderate rain, heavy to 
very heavy rain. The algorithm is applied to the MSG-SEVIRI pixels previously classified as cloudy 
through a classification algorithm using physical, statistical and temporal approaches. The rainfall 
rates used in the training set are derived from an algorithm based on AMSU-B measurements, the 
Precipitation Estimation at MicroWave frequencies (PEMW). The rainfall confidence results, obtained 
for some case studies analysed in the Mediterranean area, were compared with the Eumetsat Multi-
sensor Precipitation Estimate (MPE) as well as with active instrument rainfall estimates. 
 

INTRODUCTION 
Over the past decades several rain rate retrieval methods based on passive imager observations have 
been developed. Low Earth Orbiting (LEO) satellite MicroWave (MW) observations provide more 
direct and performing techniques for the retrieval of precipitation when compared with the IR/VIS 
techniques. The geostationary satellite IR/VIS techniques perform better over areas where rainfall is 
governed by deep convection than in areas where precipitation originates from the stratiform systems. 
However, the low spatial  and temporal resolutions of MW observations make them unsuitable for 
monitoring extreme events and small-scale events characterized by a high temporal variability. 
Operational network of weather radars provides rain rate measurements characterized by a high 
temporal and spatial resolution, but leaves large areas uncovered where information on the 
occurrence and intensity of rainfall are missing. Rain rate estimates from passive imagers on 
geostationary satellite may bridge LEO satellite MW and weather radar gaps. This study suggests the 
statistical algorithm RACIV, RAinfall Confidence estimation from Infrared and Visible observations, 
that uses the Meteosat Second Generation – Spinning Enhanced Visible and InfraRed Imager (MSG-
SEVIRI) Infrared/Visible observations to obtain rain rate confidences. The advantage of using MSG-
SEVIRI VIS/IR radiation comes from the possibility to get measurements with a high spatial and 
temporal resolution. These characteristics are very important both for the continuous monitoring of 
extreme events and the study of events characterized by short duration, high temporal variability, and 
size slightly larger than the MSG-SEVIRI spatial resolution. RACIV operates in the Mediterranean area 
and approximately between 35 and 45 degrees of latitude north, and 10 and 20 degrees of longitude 
east, but it could operate in principle in any area. 
The first section of this paper provides a description of the RACIV algorithm, the second presents the 
comparisons for some study cases between the estimates by RACIV, the Eumetsat Multisensor 
Precipitation Estimation (MPE) (Heinemann et al., 2002 - Eumetsat proceeding), and radar rain rate 
measurements. 
 



THE RAIN RATE CONFIDENCE ESTIMATION FROM INFRARED AND VISIBLE OBSERVATION 
(RACIV) TECHNIQUE 
  
The classification algorithm used in this study is the non-parametric classifier, K-Nearest Neighbour 
(K-NN). Non-parametric classifiers do not assume any a priori known parametric form to determine the 
probabilities, but they estimate these directly from the design samples. They implement the decision 
rule locally and the probabilities need to be estimated for each sample offered to the classifier. The K-
NN classifier is very simple to understand and easy to implement. It assumes that the pixels close to 
each other in the feature space are likely to belong to the same class. For this reason the K-NN can 
be very effective if an analysis of the neighbour is useful as an explanation. To assign the MSG-
SEVIRI pixel to a rainy/non-rainy class our K-NN classifier uses textural and spectral features 
estimated in boxes 3×3. Textural and spectral features characterizing each pixel are extracted from 
infrared and visible MSG-SEVIRI image data at 3.9 µm, 6.3 µm, 7.2 µm, 8.7 µm, 10.8 µm, 12 µm, 
0.6 µm, 0.8 µm, 1.6 µm. 

The spectral and textural features used by the classification algorithm are listed in Table 1. 
 

                                                                           Features 
                                                                           Radiance 
          Mean grey level 
             Standard deviation of grey level 
             Maximum grey level 
             Minimum grey level 
             Maximum/Minimum grey level ratio 
                                                             Texture 
                                                                                                                                        
            Edge strength per unit area  RG                                                                          

    maximum within 4 directions of Mean, Contrast, Angular Second Moment, Entropy                   
    Mean of 4 directions of Mean, Contrast, Angular Second Moment, Entropy                                       
    Edge strength per unit area of RG                                                                          
    Maximum within 4 directions Mean, Contrast, Angular Second Moment, Entropy                                
    Mean of 4 directions Mean, Contrast, Angular Second Moment, Entropy                                   

Table 1: Spectral and Textural features used as inputs in the K-NN classifier 

The initial feature vector has 23x9 during day-time (23x6 during nigh-time) components, but not all of 
these components contribute to the rainfall classification. The features are chosen by the Fisher 
criterion selection for each training dataset. The training dataset to be used is chosen on the basis of 
solar zenith angle and land cover type as well as brightness temperature range and contrast range 
calculated at 10.8 µm and 6.2 µm wavelengths. RACIV is applied to the pixels previously classified as 
cloudy by the MACSP (cloud MAsk Coupling of Statistical and Physical methods) algorithm 
(Ricciardelli et al., 2008), and precisely to those pixels classified as low/middle level and high thick 
clouds. Figures 1 and 2 show the RACIV scheme and the RACIV statistical algorithm scheme, 
respectively. 

 
Figure 1: RACIV scheme 

 



 

 
Figure 2: RACIV Statistical Algorithm scheme 

 

Training procedure 

The classifier has been trained on a set of MSG-SEVIRI images collected during day- and night-time 
with colocated rain rate values inferred from the AMSU-B algorithm for Precipitation Estimation at 
MicroWave frequencies (PEMW) (Di Tomaso et al., 2009), both over land and sea. PEMW exploits the 
observations made in both window and water vapour channels. PEMW estimates show a very good 
agreement with ground-based observations in the detection of rainfall and a reasonably good 
estimation of rain rate values. The probability of detection of precipitation is 75% and 90% for rain 
rates greater than 1mm/h and 5mm/h,respectively (Di Tomaso et al., 2009).  
During the training phase the MSG-SEVIRI pixel closest to the AMSU-B FOV classified as rainy/non-
rainy by the PEMW algorithm is assigned to one of the following classes: 
1) non-rainy (rain rate=0) 
2) light to moderate rain (0<rain rate<4mm/h) 
3) heavy to very heavy rain (rain rate>4mm/h). 
These classes are chosen so as to have a sufficient number of pixels for each class to perform a 
significant statistical analysis. The AMSU-B observations used for building the training database are 
collected during the NOAA satellite passes over the Mediterranean area on the dates listed in Table 2. 
The training-set accuracy, bias, probability of detection (POD), the Heidke Skill Score (HSS), and the 
False Alarm Ratio (FAR) (Erbert, 2008) were calculated for each sample included in the training set 
comparing against the Italian operational weather radar network rainfall values. Only the samples 
whose accuracy, POD, HSS, FAR and bias satisfied a relationship with threshold values – predefined 
for each class – are selected for the training.  
 
 
 



 
Training phase – Dates for NOAA satellite overpasses

2009 September 29th, 2009 October 01th,  2009 October 02th,2010 March 04th , 2010 March 05th, 2010 March 09th, 

2010 March 10th,  2010 April 26th, 2010 April 28th, 2010 May 05th, 2010 June 20th, 2010 June 21th,  2010 June 

22th,  2010 June 23th, 2010 July 03th,   2010 August 04th 

Table 2 List of the NOAA satellite overpasses for the AMSU-B PEMW rain rate results considered in the training phase 
 

VALIDATION AND COMPARISON RESULTS 
RACIV has been validated on the basis of rain rate values measured by the weather radar network 
operated by the Italian Civil Potection Department (DPC). Comparisons with the Eumetsat-MPE 
products and radar rain rate values estimated from satellite have also been considered. Only pixels 
completely clear or fully covered by radar rain pixels are considered in the validation stage.  
The Eumetsat-MPE algorithm uses the high temporal and spatial resolution MSG/SEVIRI data in order 
to obtain instantaneous rain rates every 15 minutes. The Eumetsat-MPE algorithm retrieves rain rates 
from MSG-SEVIRI brightness temperatures on the basis of look-up tables derived from a statistical 
matching between MSG-SEVIRI brightness temperatures and rain rates from SSM/I passive 
microwave data. When considering the MPE vs. radar rain rate and the RACIV vs. radar rain rate 
comparisons, it must be taken into account that the MPE algorithm is limited to convective rain 
(Heinemann et al., 2002 - Eumetsat proceeding).  
The RACIV results have been verified in a number of case studies over the Mediterranean area and 
are listed in Table 3. The validation method is based on a dichotomous statistical assessment. 
 

 
 
Case 

 
 
Date 

Radar 
Measurement 

time (GMT) 

Satellite overpass 
time (GMT) 

1 2009 September 29th  13:00 13:00 

2 2009 September 29th 17:00 17:00 

3 2010 July 06th  11:30 11:30 

4 2010 August 04th  14:15 14:15 

Table 3: List of the case studies 

 

Statistical 
score 

Case 1 
(RACIV) 

Case 1 
(MPE ) 

Case 2
(RACIV) 

Case 2
(MPE) 

Case 3
(RACIV) 

Case 3
(MPE) 

Case 4 
(RACIV) 

Case 4 
(MPE) 

Accuracy 0.99 0.99 0.99 0.99 0.91 0.91 0.98 0.98 

Bias score 1.64 0.00 1.13 0.00 0.81 0.82 1.25 0.73 

POD 0.64 0.00 0.28 0.00 0.29 0.29 0.38 0.07 

HSS 0.49 0.00 0.75 0.00 0.27 0.27 0.33 0.07 

FAR 0.60 ----- 0.26 ------ 0.65 0.64 0.69 0.90 

Table 4: Dichotomous Statistical results (RACIV/Radar and MPE/Radar) for the case studies listed in Table 3. 

Figures 3, 4, 5 and 6 show examples of RACIV results and corresponding MPE and radar rain rate 
results for the case studies listed in Table 3. 
For the rainfall events corresponding to cases 1, 2 and 4 (Figures 3, 4 and 6, statistical scores are 
shown in Table 6) RACIV algorithm overestimates rain rates in these areas (bias > 1). On the contrary, 
for the same cases, the MPE algorithm underestimates rain rates (bias is 0.00 for cases 1 and 2 and 
0.73 for case 4). Figure 5 shows case 3 in which RACIV and MPE agree in identifying rainfall areas as 
confirmed by the statistics in Table 6. 
The contingency values for RACIV and MPE dichotomous statistical assessment are reported in 
tables 5 and 6, respectively. Table 7 shows the dichotomous statistics for all the pixels considered for 
validation, both for RACIV and MPE rain rate results. The accuracy score shows that a large fraction 
(97%) of the pixels are correctly identified as rainy or non-rainy by RACIV and MPE algorithms. 



However, it is recognized that this result is heavily influenced by the high occurrence of non-rainy 
pixels. The bias score (1.50 for RACIV and 1.29 for MPE) indicates that both RACIV and MPE have a 
general tendency to overestimate rainy pixels. POD shows that 71% of the rainy area is correctly 
detected by RACIV, while MPE detect 56% of the rainy area correctly. FAR reports that 52% and 56% 
of the pixels detected as rainy by RACIV and MPE, respectively, are false alarms. The statistical 
scores for “light to moderate” and “heavy to very heavy” classes are calculated both for RACIV and 
MPE algorithms. The RACIV/Radar and MPE/Radar accuracy score is the same for all classes. The 
bias score for  “light to moderate”  and “heavy to very heavy” classes indicates that both RACIV and 
MPE have a general tendency to overestimate rainy pixels in the two classes, and this tendency is 
higher for RACIV. POD shows that 87% and 50% of rainy pixels are correctly detected by RACIV and 
MPE in the “light to moderate” class, respectively.  RACIV and MPE correctly detects 76% and 24% of 
rainy pixels in the “heavy to very heavy” class, respectively. FAR is about 80% both for RACIV and 
MPE in the “heavy to very heavy” class, while it is 71% for MPE and 59% for RACIV in the “light to 
moderate” class.  
 

Weather Radar rain detection

 
RaCIV rain 
detection 

 yes no marginal total

yes 6,078 6,802 12,880 

no 2,482 340,981 343,463 

marginal total 8,560 347,783 356,343 

Table 5: Contingency table for the dichotomous statistical assessment of the RACIV algorithm for all the pixels used 
for validation.  
 

Weather Radar rain detection

 
MPE rain 
detection 

 yes no marginal total

yes 3,688  4,838 8,526 

no 2,873 344,944 347,817 

marginal total 6,561 349,782 356,343 

Table 6: Contingency table for the dichotomous statistical assessment of the MPE algorithm for all the pixels used for 
validation. 
 

Statistical 
 scores 

All pixels  
(RACIV) 

All pixels  
(MPE) 
 

Light to 
moderate 
(RACIV) 

Light to 
moderate 
(MPE) 

Heavy to Very 
Heavy 
(RACIV) 

Heavy to Very 
Heavy 
(MPE) 

Accuracy 0.97 0.97 0.97 0.98 0.99 0.99 

Bias 1.50 1.29 2.12 2.59 2.20 1.30 

POD 0.71 0.56 0.87 0.50 0.76 0.24 

HSS 0.55 0.47 0.54 0.36 0.31 0.21 

FAR 0.52 0.56 0.59 0.71 0.80 0.81 

Table 7 Dichotomous Statistics results (RACIV/Radar and MPE/Radar) for all the pixels used for validation.  



 
Figure 3: 2009 September 29th at 13:00GMT (a) MACSP results; (b) rain rate radar results collocated in MSG-SEVIRI 
grid; (c) RACIV rain rate results; (d) MPE rain rate results.   
 

 
Figure 4: 2009 September 29th at 17:00GMT (a) MACSP results; (b) rain rate radar results collocated in MSG-SEVIRI 
grid; (c) RACIV rain rate results; (d) MPE rain rate results 



 
Figure 5: 2010 July 06th at 11:30GMT (a) MACSP results; (b) rain rate radar results collocated in MSG-SEVIRI grid; (c) 
RACIV rain rate results; (d) MPE rain rate results.   
 

 
Figure 6: 2010 August 04th at 14:15GMT (a) MACSP results; (b) rain rate radar results collocated in MSG-SEVIRI grid; (c) 
RACIV rain rate results; (d) MPE rain rate results.   
 



CONCLUSIONS 
  
This study proposes the statistical algorithm, RAinfall Confidence estimation from Infrared and Visible 
observations (RACIV), which uses the MSG-SEVIRI Infrared/Visible measurements to obtain rain rate 
confidences. The advantage of using MSG-SEVIRI VIS/IR observations comes from high spatial and 
temporal resolution. These characteristics are very important for both the continuous monitoring of 
extreme events and the study of events characterized by short duration, high temporal variability, and 
small size (of the order of the MSG-SEVIRI spatial resolution). RACIV detects rainy clouds and it 
classifies the rainy pixels as “light to moderate” or “heavy to very heavy” rainy. It has been trained on 
the AMSU-B PEMW rain rates and validated on the basis of the rain rates observation from the Italian 
DPC operational weather radar network. Currently RACIV works in the Mediterranean area, 
approximately between 35 and 45 degrees of latitude north, and 10 and 20 degrees of longitude east, 
but in principle it could operate in any area. 
The accuracy score shows that large fractions (97%) of the pixels are correctly identified as rainy or 
non-rainy by RACIV. However, it is recognized that this result is heavily influenced by the high 
occurrence of non-rainy pixels. The bias score (1.50 for RACIV and 1.29 for MPE) indicates that both 
RACIV and MPE have a general tendency to overestimate rainy pixels. POD shows that 71% of the 
rainy area is correctly detected by RACIV, while MPE detect 56% of the rainy area correctly. FAR 
reports that 52% and 56% of the pixels detected as rainy by RACIV and MPE, respectively, are false 
alarms. The bias score for  “light to moderate”  and “heavy to very heavy” classes indicates that both 
RACIV and MPE have a general tendency to overestimate rainy pixels in the two classes, and this 
tendency is higher for RACIV. POD shows that 87% and 50% of rainy pixels are correctly detected by 
RACIV and MPE in the “light to moderate” class, respectively.  RACIV and MPE correctly detect 76% 
and 24% of rainy pixels in the “heavy to very heavy” class, respectively. FAR is about 80% both for 
RACIV and MPE in the “heavy to very heavy ” class, while it is 71% and 59% in the “light to moderate” 
class for RACIV and MPE, respectively.  
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