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ABTRACT
This paper focuses on the simulation and the assimilation of IASI (Infrared Atmospheric Sounding 
Interferometer)  observations  in  convective  scale  numerical  weather  prediction  (NWP)  systems.  A 
radiative transfer model that includes profiles for liquid water content, ice water content and cloud 
fraction was used to simulate cloud-affected radiances as background equivalents.  This  approach 
avoids the use of cloud parameters (cloud top pressure and effective cloud fraction) deduced from a 
CO2 slicing algorithm and the modelling of clouds by single layer clouds. The observation-screening 
procedure  that  was  developed  to  improve  the  selection  of  usable  cloudy  scenes  led  to  a  good 
agreement between observations and background equivalents. For that purpose, a radiance analysis 
of co-located AVHRR (Advanced Very High Resolution Radiometer) pixels inside each IASI field of  
view was used.  The goal of  this  preliminary work is to assess the feasibility  of  adding the cloud  
variables (liquid and ice water contents) to the state vector of the assimilation system. As it is not  
feasible to assimilate all the 8461 channels of IASI, we decided to evaluate the capability of the 366 
channels (Collard and McNally 2009) used operationally at the European Centre for Medium-Range 
Weather Forecasts (ECMWF) on cloud profiles. To this selection (called CM2009 hereafter), 134 new 
channels  were added to  optimize the retrieval  of  microphysical  variables focussing mainly on the 
Mediterranean Sea.  A  linear  approach  based on  the  Degrees  of  Freedom for  Signal  (DFS)  was 
compared to a non-linear method based on the brightness temperature response to the perturbation of  
cloud variables. To validate the new selections, observing system simulation experiments (OSSE) 
were used in the context of one-dimensional variational (1D-Var) retrievals.

INTRODUCTION
Nowadays, satellite observations are an important source of data assimilated in numerical weather 
prediction (NWP) models. They contribute positively to NWP analysis and the accuracy of forecasts 
(Kelly and Thépaut 2007).
The Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp satellite belongs to a 
new generation of advanced infrared sounders and follows the launch of the Atmospheric InfraRed 
Sounder (AIRS) on-board the Aqua satellite in 2002. AIRS with 2378 channels and IASI with 8461 
channels provide information about atmospheric temperature and humidity with a far better spectral 
resolution compared to previous instruments such as the High Resolution InfraRed Sounder (HIRS).  
All the NWP centres intend to increase the number of assimilated satellite observations which are 
limited, most of the time, to clear-sky locations. For instance, only 3% of the screened radiances are 
used in the operational data assimilation at the European Centre for Medium-Range Weather Forecast 
(ECMWF) according to Kelly and Thépaut (2007). This under-exploitation of satellite data is partly 
caused by a rejection of cloud-affected radiances during the assimilation process because of large 
innovations (observation minus background) due to cloud mislocation or deficiencies in the modelling 
of clouds, either in radiative transfer (RT) models or NWP models. The high correlation between cloud  
cover  and  meteorologically  sensitive  areas  underlines  the  need  to  use  infrared  observations  in 
presence of clouds (McNally 2002, Fourrié and Rabier 2004).
Nevertheless,  an  incorrect  modelling  of  clouds  leads  to  increased  errors  in  the  RT  calculations 
especially in the infrared (IR) spectral range which is very sensitive to cloud microphysical properties.  
Different techniques have been developed in the frame of global models to overcome this problem.  
Most of them (Pavelin et al 2008, McNally 2009, Pangaud et al 2009) are based on the use of two  
cloud parameters,  the cloud top pressure (CTOP) and the effective cloud fraction (Ne) to directly  
assimilate cloud-affected radiances. However, these techniques use a simplified modelling of clouds 
assuming single layers of opaque clouds and the calculationof the CTOP and Ne can be problematic 
in the case of low clouds or thin high clouds.
In this study, we propose new developments for the assimilation of cloud-affected radiances taking 
advantage of the high resolution of convective scale NWP models. Their kilometre-size grid mesh, 



non-hydrostatic  equations  and  microphysics  parametrizations  enable  a  better  modelling  of  cloud 
variables such as liquid water content (ql), ice water content (qi) and cloud fraction.
The main purpose of this paper is to assess the feasibility of adding cloud profiles (ql,qi) in the control 
vector of a 1D-Var assimilation system preparing for the direct assimilation of such profiles in the 
three-dimensional variational data assimilation (3D-Var)  system of the French operational AROME 
model (Seity et al 2011).
To  prepare  the  1D-Var,  an  observation-screening  procedure  permitting  an  improved  selection  of 
homogeneously covered scenes from IASI observations was developed. The feasibility of using cloudy 
fields from mesoscale NWP models to simulate cloudy radiances was investigated. To that end, the 
fast RT model RTTOV has been used to improve the simulation of multi layer clouds. We evaluated 
the simulated cloud-affected radiances and their departures from observations. 
In order to optimize the retrievals of microphysical variables, new channels were added to the 366 IASI 
channels selected by Collard and McNally 2009 (called CM2009 selection hereafter). 
Finally,  some 1D-Var  experiments  using  Observing System Simulation  Experiments  (OSSE)   are 
presented.

EXPERIMENTAL FRAMEWORK
In  order  to  convert  atmospheric  profiles  from the  NWP model  into  simulated  radiances,  the  fast 
radiative transfer model RTTOV is used. The version 10.1 of RTTOV (Hocking et al 2010) used in this 
study contains an advanced interface to include ql, qi and cloud fraction profiles called RTTOVCLD 
hereafter. The advanced interface RTTOVCLD enables a better modelling of clouds with the possibility 
of multi-layer clouds and two cloud types per layer. Absorption is computed in each of the 101 fixed 
vertical levels from the interpolated cloudy profiles using fast transmittance coefficients calculated by 
the line-by-line transmittance model LBLRTM.
The convective scale model AROME (Application of Research to Operations at MEsoscale) with a 2.5 
km grid mesh is used to provide cloudy profiles over the Mediterranean Sea during a period of 30 days  
(7 October 2010 to 7 November 2010).

THE AVHRR cluster
The Advanced Very High Resolution Radiometer (AVHRR)  on MetOp is helpful to define the scene 
type (partially cloudy or overcast)  and can also be used to select homogeneously covered cloudy 
scenes.
The AVHRR cluster provided by EUMETSAT in the IASI level1c files (Cayla 2001) proved to be a  
valuable tool. This product is based on a radiance analysis of co-located AVHRR pixels inside each 
IASI field of view (FOV). AVHRR measures the radiance emitted by the Earth in six spectral bands: 
two in the visible and four in the IR. All AVHRR pixels are aggregated in classes characterized by 
homogeneous properties in the radiance space using a K-means clustering. For each AVHRR class 
and each channel, the cluster product provides the mean radiance, the standard deviation and the 
coverage of the class within the IASI pixel. As the aggregation was performed with all the available 
AVHRR channels,  the algorithm can  produce  several  classes even with  relatively  small  standard 
deviations for the IR channel. As a result, a FOV with several classes with each one a small standard 
deviation and a mean radiance close to that of the other classes can be more homogeneous than a 
FOV with a single class. This is the reason why the number of AVHRR classes inside each IASI pixel 
was not used as the homogeneity criterion. Alternatively, these characteristics were used to compute 
global statistics of the AVHRR cluster aggregating the information provided by all the classes within  
the IASI FOV. We focused on one of the IR channels (11.5 µm) to get closer to the scene observed by 
IASI.
We calculated a weighted average considering each mean radiance and standard deviation for the 
11.5 µm band (weight depending on the coverage of the class within the IASI pixel). One part of the 
homogeneity  criterion  is  based  on  the  relative  standard  deviation  calculated  from  these  global 
statistics and represents the intra-class homogeneity of the AVHRR cluster. This first criterion assures 
that each AVHRR class is homogeneous but not that all the classes observe the same cloudy scenes. 
To evaluate  the inter-class homogeneity,  the standard deviation of  the mean radiances of  all  the 
classes has been calculated.
The AVHRR cluster gives information about the scene observed by IASI but none about AROME. To 
keep scenes for which both the observation and the simulated radiance are homogeneous, the model 
homogeneity has been evaluated by a comparable method.
Similar statistics as the ones used from the AVHRR cluster are reproduced. We used each AROME 
grid point within the IASI spot to simulate the radiances measured in the 11.5 µm band by the AVHRR 
imager with the use of the radiative transfer model RTTOVCLD. The standard deviation between each 



simulated radiance is the equivalent in the model space of the inter-class homogeneity and can be 
used to evaluate the model homogeneity (Martinet et al 2012). The concepts of inter-class and intra-
class homogeneity in the model space and the observation space were used to select homogeneously 
covered cloudy scenes. 
The relative standard deviation from the AVHRR cluster is correlated with the homogeneity of the 
scene. Our study is performed over a period of 30 days (7 October 2010 to 7 November 2010) on a  
domain centred on the Mediterranean Sea. 
A scatterplot comparing the values of effective cloud fraction (on the abscissa) and cluster relative 
standard deviations is given in Figure 1. The top left panel represents the inter-class homogeneity of 
the observed cluster, the top right panel represents the equivalent of this criterion in the model space. 
The bottom panel shows the intra-class homogeneity of the observed cluster. The values of effective 
cloud fraction were computed by a CO2 slicing algorithm on a IASI spectrum for the observed cluster  
and an AROME simulation for the simulated cluster.
These plots give a calibration of what a low standard deviation is (homogeneous scene) and what a 
high value is (heterogeneous scene) in order to set a threshold. The thresholds used for the definition  
of homogeneous scenes must lead to a sufficient size of the selected dataset and avoid the selection 
of fractional clouds. We decided to select an observation if it fulfils the three criteria:

• Intra-class homogeneity  of  the observed cluster  <  4% (weighted average of  the standard 
deviations of each class);

• Inter-class  homogeneity  of  the  observed  cluster  <  8%  (standard  deviation  of  the  mean 
radiances of each class);

• Inter-class  homogeneity  of  the  simulated  cluster  <  8%  (standard  deviation  of  AVHRR 
simulations from each AROME grid point in the FOV.).

Figure  1:  Scatterplot  comparing  the  values of  effective  cloud fraction  (on  the  abscissa)  and the  cluster  relative 
standard deviation (on the ordinate) (a) for the inter-class homogeneity of the observed AVHRR cluster (b) for the 
cluster simulated with AROME, (c) for the intra-class homogeneity of the observed AVHRR cluster.



EVALUATION OF THE OBSERVATION OPERATOR
In  this section,  we monitor simulated and observed cloudy  IASI  radiances during our  30-day test 
period over the Mediterranean Sea. 
To be assured that the monitoring focused on overcast scenes, the percentage of cloudy AVHRR 
pixels  within  the  IASI  FOV has  been  used  in  addition  to  the  selection  of  homogeneous  scenes 
previously described. IASI observations with 100% of cloudy AVHRR pixels were kept.
In this screening-procedure, we imposed the cloudiness of the observation by the amount of cloudy 
AVHRR pixels within the IASI FOV but we did not take into account the cloudiness of AROME. To 
sidestep this problem and check that both the observation and the model observe the same cloudy 
scene, we imposed that the difference between the mean AVHRR brightness temperatures from the 
observed and the simulated cluster is smaller than 7K. This new constraint is important to avoid a 
cloud mislocation between AROME and IASI and to be as close as possible to the true state.
Standard deviations and biases of the O-B (observation minus background) departures are shown in 
figure 2 for the different screenings: overcast scenes (left panel) and homogeneous overcast scenes 
with a condition on the AROME cloudiness (right  panel).  As should be expected,  the best  model 
statistics are found in channels least affected by clouds (CO2 and water vapour bands). Standard 
deviations are larger for window channels  revealing a dependence on the vertical  position of  the 
sensitivity functions.  Biases and standard deviations  are large for  overcast  scenes (-7K and 20K 
respectively for window channels).  Avoiding the cloud mislocation between AROME and IASI and 
focussing on homogeneously covered scenes significantly improves the bias (-1K for window channels
). The standard deviation is also decreased by more than 10K  to values less than 5K which is a 
considerable improvement.

Figure 2: Bias and standard deviation (Std) of the differences between the model and the cloud-affected observed IASI  
brightness temperatures over a 30 day period from 7 October 2010 to 7 November 2010 on the Mediterranean Sea. Left 
panel: considering all overcast observations, right panel: only homogeneous overcast scenes with a constraint on the 
AVHRR brightness temperature.

These results prove some capability of the observation operator to simulate overcast scenes. The 
selection of  homogeneous scenes with  a constraint  on the mean AVHRR brightness temperature 
enables to decrease the bias to a value more acceptable for the assimilation.
Before  performing  1D-Var  retrievals  of  microphysical  variables,  we  decided to  revise the  already 
existing IASI channel selection to optimize the cloudy assimilations in the next sections.

CHANNEL SELECTION BASED ON THE DEGREES OF FREEDOM FOR SIGNAL (DFS)
The first channel selection that was chosen for this study is based on the methodology described by 
Rodgers (2000) which was shown to be the more optimal by Rabier et al 2002. The method consists in  
performing successive analyses considering only one channel at a time. The impact of the addition of 
single channels is evaluated by the DFS which is used as the figure of merit of the channel selection :

DFS=tr(I-AB-1  )
where Tr denotes the trace, I the identity matrix, A is the analysis-error covariance matrix and B the 
background-error covariance.
The background-error covariance matrix B is updated at the next step by the analysis-error covariance 
matrix  A previously  calculated.  In  order  to  take  into  account  the  gain  brought  by  the  previously 
selected channels, this update of the B matrix is important.
The starting point of the study is the CM2009 (Collard and McNally 2009)  selection composed of 366 
IASI channels. Firstly, the analysis-error covariance matrix A considering the 366 IASI channels of the 
CM2009  selection  is  evaluated.  Then,  new channels  are  selected  updating  the  B matrix  by  the 
previously calculated  A matrix. The atmospheric components for which information is expected are 
temperature, humidity, liquid water content (ql) and ice water content (qi).



PHYSICALLY-BASED CHANNEL SELECTION
The second channel selection methodology was used by Gambacorta and Barnet 2011 for the Cross-
Track Infrared Sounder (CrIS) and is called physical method hereafter. A spectral sensitivity study of 
the full IASI spectrum has been led with RTTOVCLD. We evaluated the brightness temperature (BT)  
response to the perturbation of each atmospheric constituent separately: ql, qi, temperature (T), skin 
temperature (Tskin), humidity (q), ozone (O3), methane (CH4), carbon monoxide (CO). The brightness 
temperature response ∆BTν  is represented by the difference between the RTTOVCLD simulation with 
the perturbed profile and the unperturbed profile. These BT differences indicate the sensitivity of each 
channel to each specific atmospheric species.
Figure 3 is an example of this sensitivity analysis applied on three profiles representative of semi-
transparent  ice cloud,  ice opaque cloud and liquid cloud over the Mediterranean Sea. Each curve 
represents  the  difference  in  brightness  temperature  due  to  the  perturbation  of  each  one  of  the 
atmospheric species. We can notice that the sensitivity analysis is highly dependent on the cloudy 
profile. Based on the sensitivity analysis, channels with the highest sensitivity to ql and qi variables  
and the lowest sensitivity to the other species are chosen.

Figure  3:  Sensitivity  analysis  of  IASI  channels.  Blue  curve:  humidity  perturbation.  Green  curve:  temperature  
perturbation. Red curve: ql and qi perturbation. Cyan curve: CO. Dark purple: O3.Orange curve: skin temperature. Light 
green:  CO2.  Black  curve:  CH4.  The  sensitivity  analysis  is  performed  for  three  cloud  types:  semi-transparent  ice 
cloud(top), opaque ice cloud(middle) and liquid cloud (bottom). The cloud top pressure and the cloud optical thickness 
derived from the ql and qi profiles are given for each cloud type.

COMPARISON OF SELECTED CHANNELS
Figure 4 shows the two global selections considering the DFS method or the physical method. The 
channels selected by  ice opaque clouds are displayed in blue points, the ones selected by semi-
transparent ice clouds in black points and the ones selected by liquid clouds in red points.
In the physically-based selection, water vapour channels are not chosen as we minimize the sensitivity 
of the spectrum with respect to humidity and the sensitivity of water vapour Jacobians .To discuss the 
results, four spectral regions were designed and correspond to those described in table1. Even if only  
52 channels are shared by the two methods of selection, most of the channels are located in the 
window regions A and D of the IASI spectrum (650-1000 cm-1, 1800-2150 cm-1). In fact, in window 
regions the transmittance is close to one and the flux emitted by the surface can reach the satellite. In  
cloudy condition, the surface emission is partly or totally attenuated by the cloud and the upwelling 
information  mainly  comes  from  the  cloud  top  pressure.  The  DFS  selection  favours  the  window 



channels at the end of the water vapour band (D) whereas the channels selected with the physical 
approach are almost equally divided between the window regions A and D.

Figure 4: Location of the selected channels averaged over 15 representative profiles chosen for the selection. The DFS 
selection (top) is compared to the physical selection (bottom).

Band Wavenumber (cm-1) DFS selection Physical Selection
A 650-1000 36 61
B 1090-1200 13 6
C 1200-1800 14 1
D 1800-2150 71 66

Table1: Number of channels selected in different spectral regions of a typical IASI spectrum for both channel 
selections.

We can note that wings of transition lines are most often selected by the DFS method (essentially in 
the water vapour band). In clear conditions, it was shown that selecting channels along the wings of  
transition lines, sharper weighting functions were obtained (Kaplan et al 1977). However, in cloudy 
conditions all the Jacobians of liquid water content and ice water content peak around the cloud top 
pressure and have almost no sensitivity to levels under or above the cloud top pressure. Thus, it would 
be useless to base our channel selection on the shape of the weighting functions. As we are interested 
in the addition of channels sensitive to cloud variables without any interference with other variables, 
channels in the wings of transition lines can also be too sensitive to water vapour.
Even if the two selections do not choose the same channels, they are located in the same spectral 
bands. Consequently, it is important to evaluate if the two selections are as suitable to use for cloudy  
retrievals.
As the main goal of this study is to optimize the 1D-Var retrievals of microphysical variables, each  
channel  selection  is  validated  with  OSSE.  The  root-mean-square  errors  (RMSE)  of  the  analysis 
performed by the 1D-Var against the `truth' is compared using the two channel selections in the next  
section.

EVALUATION OF THE TWO CHANNEL SELECTIONS

1D-Var retrievals in the context of OSSE
We have chosen to perform 1D-Var retrievals at this stage in order to test our channel set. As no 
observation is available to validate the retrievals, the 1D-Var is evaluated in the context of OSSE. For  
that purpose, the background profiles are generated from the AROME profile dataset perturbed with 
the addition of simulated forecast errors. The observations are generated from the `true' background 
profiles and simulated observation errors are added. 1D-Var retrievals are performed on a subset of 
588 ice opaque clouds, 390 semi-transparent ice clouds and 240 low liquid clouds using the 1D-Var 



code (version 3.3) provided by the Met Office in the framework of the EUMETSAT NWP Satellite 
Application Facility (Pavelin and Collard 2009). Cloud variables have been added to the state vector of 
the 1D-Var interface. 
The two selections are compared between each other and the improvement brought to the CM2009 
selection is shown in Figure 5. 
Firstly, we can note that whatever the channel selection is, the profiles of RMSE indicate that the 
analyses are always better than the backgrounds for cloud variables demonstrating the robustness of 
the channel selection algorithm employed by Collard 2007 to provide the main part of the CM2009 
selection.  Indeed,  in  the CM2009 selection,  even if  only  20 channels  were specifically  added for 
surface emissivity and cloud variables, about 130 channels were selected in window regions because 
of temperature and humidity variables (most of them being located in band A).
Secondly, we can note that the new channel selections are better than the CM2009 selection for the 
analysis of ice water content for opaque clouds and liquid water content for low clouds. However, for 
semi-transparent clouds, the addition of 134 channels does not help improving the analysis of ice 
water content.

Figure 5: Vertical profiles of root-mean-square errors of the background and the analysis against the 'truth' (dotted and 
plain lines respectively)  for ice water content of semi-transparent clouds (top panel),  ice water content of opaque 
clouds (middle panel) and liquid water content of low clouds (bottom panel). Comparison between the analysis with the 
new channel selection based on the physical method (red line), the DFS method (blue line) and the CM2009 selection 
used operationally at ECMWF (black line)

Finally, the analysis of cloud variables is equivalent when using the selection provided by either the  
DFS method or the physical method. This is an important result that confirms the relevance of the DFS 
even in non-linear cloudy retrievals. In fact, if the cloudy observations are well selected and the model  
profiles are close enough to the `true' state of the atmosphere, the approximation of the `true' state by 
a linear optimal estimation theory looks reasonable (Martinet et al 2012). In the context of the sounder 
AIRS and in clear conditions, Fourrié and Thépaut  2003  have also shown that the physically-based 
selection provides similar results in terms of analysis-errors to a global selection preserving the DFS.

Comparison of temperature and humidity Jacobians
As temperature, humidity and cloud variables are retrieved simultaneously, we need to make sure to 
remove the interference from other sources. Thus, a good way to evaluate the quality of the selection 
is to study the shape of temperature and humidity Jacobians for each channel selection (Figure 6). In 
Figure 6, it is clear that the channels selected by the physical approach are less sensitive to humidity  
and temperature according to the Jacobian shapes. This comparison shows the superiority of the 
physically-based channel selection that minimizes the interaction with interfering species like humidity.
As we previously described,  the DFS method favours the channels located in the wings of  water 
vapour transition lines explaining the high values of humidity Jacobians for this selection.

 



Figure 6: Temperature (left panels) and humidity (right panel) Jacobians for three representative cloud profiles: semi-
transparent (top), opaque (middle) and liquid (bottom). The Jacobians are compared with the channels selected by the  
DFS method (black lines) or the physical approach (red lines).

CONCLUSION
In this work, we have shown that encouraging results were obtained for the assimilation of IASI cloudy  
radiances using cloud microphysical variables.
Firstly, a screening procedure based on the AVHRR imager was shown to significantly improve the 
observation minus simulation innovations. Thus, the preselection of homogeneously covered scenes 
avoiding the cloud mislocation between the NWP model and the cloud-affected IASI observation is 
essential before any assimilation.
Secondly,  the  366  IASI  channels  selected  by  ECMWF in  clear  conditions  was evaluated  for  the 
retrieval  of  microphysical  variables  and  134  new  channels  were  added  to  optimize  the  cloudy 
retrievals.  For  that  purpose,  two  methods  of  selection  were  compared:  the  first  one  is  a  linear 
approach based on the DFS and the second one is a non-linear approach based on the brightness 
temperature response to the perturbation of cloud variables. Each selection was evaluated in terms of  
RMSE of 1D-Var retrievals using Observing System Simulation Experiments.  It was shown that the 
ECMWF selection already  provides  good retrievals  of  liquid water  content  and ice water  content. 
However, when deriving a specific channel selection on top of this one, a larger gain was obtained 
with  both  channel  selections.  The equivalence of  the RMSE between the two channel  selections 
confirms the quality of the selection based on the DFS which has already been implemented in other  
channel  selections.  Even  if  the  observation  operator  used  in  this  study  is  non-linear  in  cloudy  
conditions, the results of the DFS selection can be considered as reliable. However, it has been shown 
that the physically based approach provides sharper temperature Jacobians and a smaller sensitivity 
to water vapour compared to the DFS method. Minimizing the interference with atmospheric species 
like humidity, the physically based selection was found to be preferred over the DFS method. These 
revised IASI channel selections will be the subject of a dedicated publication. 



In the future, we will evaluate the potential benefit of these microphysical variables in the NWP model  
AROME. As the inclusion of the cloud water contents in the state vector has not been implemented 
yet, a one dimensional version of AROME will be used for this study. An AROME forecast will be run 
on the analysed profiles to evaluate the capability of AROME to keep the cloud information provided 
by IASI during the first time steps of simulation.
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