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Abstract  
 
The time scale of tropical cyclone (TC) track and intensity changes is on the order of 6-12 hours, 
which makes Joint Polar Satellite System (JPSS) instruments well suited for the analysis and 
forecasting of these parameters. We are developing two TC applications of JPSS data. The first is 
using temperature and moisture retrievals from Advanced Technology Microwave Sounder (ATMS) in 
the near storm environment to improve intensity analysis and forecasting. The Maximum Potential 
Intensity (MPI) estimate, which is one of the key parameters in the operational Logistic Growth 
Equation Model (LGEM) and the related Rapid Intensification Index (RII), is calculated using ATMS 
data. Testing with a preliminary dataset shows up to 3.1% Brier Skill Score (BSS) improvement in the 
RII forecast relative to using model data to estimate the MPI. Possible improvements to LGEM are 
also discussed. The second application is using ATMS data for improving the center location estimate, 
which is the starting point for TC forecasts. Preliminary results for the years 2006-2011 (total of 2012 
cases) (using AMSU as a proxy for the ATMS) showed 10% improvement in accuracy in comparison 
to the best storm center estimates available in real time. Methods are being developed to use multi-
spectral imagery from Visible Infrared Imaging Radiometer Suite (VIIRS), including the low-light 
imager, in combination with ATMS sounder data to further refine accuracy of center-fix. 

INTRODUCTION  

Improving tropical cyclone (TC) track and intensity forecasts will lead to improved warnings and longer 
lead times for mitigation activities from TCs. The Suomi National Polar-Orbiting Partnership satellite 
(SNPP) launched in October, 2011, is part of the Joint Polar Satellite System (JPSS), the next 
generation polar-orbiting operational environmental satellite system. SNPP carries five instruments, 
including Visible Infrared Imaging Radiometer Suite (VIIRS) and Advanced Technology Microwave 
Sounder (ATMS).  The time scale of TC track and intensity changes is on the order of 12 hours, which 
makes JPSS instruments well suited for the forecasting of these parameters.  
 
Two basic methods exist for improving TC forecasts with SNPP. The first is to assimilate data in 
numerical forecast models, and the second is to improve analysis and statistical post-processing 
forecast products. Our group is developing two applications, focusing on the later approach. The first 
approach uses temperature and moisture retrievals from ATMS in the near storm environment to 
improve intensity analysis and forecasting.  This new information is being incorporated into existing 
intensity estimation techniques and to operational statistical-dynamical intensity forecast models, 
including the Logistic Growth Equation Model (LGEM), to improve their performance. The second uses 
VIIRS and ATMS data for improving center location estimates of TCs, which is the starting point for TC 
forecasts. Methods are being developed to use multi-spectral imagery from VIIRS, including the low-
light imager, in combination with sounder data for this purpose. These new products will be made 
available in the satellite Proving Ground to operational forecasters at the National Hurricane Center 
(NHC) and Joint Typhoon Warning Center (JTWC) for evaluation and feedback. If the evaluation is 
positive, the products can be transitioned to NHC and JTWC operations.    
 
The paper is organized in the following way: 1) in the “data and methods” section we describe ATMS 
retrievals used for this study, and in the sections 2) and 3) we discuss the results obtained for each of 
the two applications. 



DATA AND METHODS 

ATMS represents a significant improvement in temperature and moisture retrievals over the current 
Advanced Microwave Sounding Unit (AMSU) instrument. Finer resolution and wider scan swath width 
result in better and more frequent TCs observations, along with a larger number of usable soundings. 
Compared to AMSU, ATMS has almost twice the resolution at nadir (26 km ATMS vs. 52 km AMSU) in 
some channels, and the ATMS swath width is 2503 km compared to the 2200 km AMSU swath width. 
The most important improvement for TC applications is that ATMS has temperature and moisture 
sounding channels combined on the same instrument, including one new temperature channel (51.7 
GHz) for sounding the lower troposphere, and two new moisture channels (183 +- 1.8 GHz and 183 +- 
4.5 GHz), which were not previously available on AMSU.  Further details of ATMS instrument could be 
found in Weng et al. (2012). In addition to the new instrument, ATMS data are processed with the new 
MIRS retrieval scheme (Boukabara et al., 2011), which offers several advantages over the current 
operational statistical retrievals. Thus, ATMS-MIRS is better resolving the TC warm core, and the 
simultaneous retrieval of temperature and moisture profiles allows significant reductions in the artificial 
cooling in the areas of  high cloud liquid water and ice scattering, which are strongly affecting 
statistical AMSU retrievals (Bessho et al., 2006; Demuth et al., 2004).  
 

 
 
Figure 1. ATMS MIRS temperature and moisture retrievals for a case from Hurricane Leslie, including the 700 hPa 
relative humidity field (RH) (upper left), and radial-height cross sections of RH (upper right), temperature anomaly 
(lower left) and RH anomaly (lower right).  
 

The MIRS temperature and moisture retrievals are not yet operational, however, a large sample of 
cases produced using the same algorithm and in the same format as will be available operationally 
were obtained from K. Garrett from NESDIS/STAR. This sample includes 43 days for 23 TCs from 



2012, providing over 200 cases from global TCs. This dataset is being used for the majority of the 
algorithm testing described below.  
 
In the MIRS retrievals the water vapor is retrieved in terms of mixing ratio. We developed methods to 
convert it to relative humidity (RH), analyze the data in storm-centered coordinates, perform azimuthal 
averages, and generate perturbation fields. Figure 1 shows an example of a 700 hPa RH field for 
Hurricane Leslie from the 2012 Atlantic season (upper left). The temperature anomaly plot (lower left) 
shows a very realistic warm core structure, which does not require low-level correction for high cloud 
liquid water (CLW) and ice scattering (Demuth et al., 2004). The structure of the moisture fields, the 
radial-height cross sections of the azimuthally averaged RH (upper right), and RH anomaly (lower 
right) look very reasonable, with RH increasing near the storm center. Preliminary comparison shows 
that RH values at 600km from the storm center are similar to Jordan mean tropical sounding (Dunion 
et. al, 2008), and RH values near the center of the storm are similar to dropsondes data (not shown). 

MAXIMUM POTENTIAL INTENSITY ESTIMATE 

TC track errors have improved dramatically over the past few decades, primarily due to improvements 
in data assimilation and forecast models. However, the ability to forecast intensity changes has 
improved much more slowly (DeMaria, 2007). An especially difficult but very important forecast 
problem, in particular for storms close to land, is predicting rapid changes in TC intensity. Improving 
these forecasts is one of the highest priorities within NOAA. Because of the importance of this 
problem, an operational tool called the Rapid Intensification Index (RII) has been developed (Kaplan et 
al, 2010). The RII uses a subset of the input to LGEM forecast in a discriminate analysis algorithm to 
estimate the probability of rapid intensity changes. 
 
. 

 
 

Figure 2: MPI estimate for hurricane Leslie (AL12). Upper panel: Best Track intensity (black line), ATMS MPI at swath 
times (red dots) and GFS MPI at synoptic times (green dots). Also statistical MPI (blue dots) NCODA SST (magenta 
diamonds) and Reynolds SST used by operational LGEM  (cyan diamonds) are shown. 

The accuracy of the LGEM forecast, the most accurate of the statistical models over the past few 
years, critically depends on the accuracy of the Maximum Potential Intensity (MPI) estimate. Currently, 
the operational LGEM and RII at National Hurricane Center (NHC) use the MPI calculated from a 
simple statistical algorithm (DeMaria and Kaplan, 1994), which only uses SST data and does not take 
into account temperature and moisture soundings. We investigate the use of ATMS-MIRS retrievals as 
input into the more general Bister and Emanuel (1998) MPI algorithm to improve RII forecast. 
Following Emanuel (1988) and Bister and Emanuel (1998), MPI can be calculated from ATMS-MIRS 
T,Q, and SLP together with SST data as 
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where Ts and To are the surface temperature and the temperature at the outflow level;  k* and k are the 
saturation enthalpy of the sea surface and the actual enthalpy of the boundary layer air, respectively; 
and Ck/CD is the specified ratio of surface exchange coefficients for momentum and enthalpy.

 
Ts,To, k*,  

and k are estimated from soundings and SST. 
 

 

 

Figure 3: Histogram of the differences between operational RI probabilities and RII calculated with ATMS MPI. Two 
upper panels show probabilities for the Atlantic Basin for 25kt (left) and 30kt (right), and two lower panels show 
corresponding probabilities for East Pacific Basin. 

 

Algorithms were developed to calculate ATMS temperature and RH soundings, and the MPI algorithm 
was successfully adapted to use as input the ATMS retrievals together with the U.S. Navy Coupled 
Ocean Data Assimilation (NCODA) SST analysis (Cummings, 2005). Values were calculated for all 
cases in the preliminary MIRS dataset. Figure 2 shows a comparison of the MPI estimates from three 
methods for Hurricane Leslie from 2012 Atlantic season, including the empirical MPI currently used by 
NHC’s statistical intensity models (dark blue circles), the MPI calculated from Bister and Emanuel 
(1998) theoretical formula with storm environmental soundings from the Global Forecast System 
(GFS) analysis (green circles), and the MPI calculated from the same formula with environmental 
soundings from ATMS (red circles). Also shown in this figure are two SST values, the weekly 
Reynolds SST (Reynolds et al., 2007) and that from the daily NCODA analyses. The Reynolds SSTs 
were used to calculate the model MPI, and NCODA SSTs were used to calculate statistical MPI and 
MPI from MIRS retrievals. There are significant differences between the MPI results, with the MIRS 
input resulting in higher values for warmer SSTs and lower values for colder SSTs, as compared to 
both the statistical and GFS MPI estimates. 
 



The Rapid Intensification Index (RII, Kaplan et al., 2010) has also been adapted to run with the new 
MPI estimates with ATMS. RII is calculated based on current MPI and four predicted MPI values at 6 h 
intervals along the forecasted storm track. As the initial value we used the calculated ATMS MPI, and 
as predicted values we used GFS MPI corrected by the initial difference between the ATMS and GFS 
MPI values. In order to evaluate RII forecast, we need to exclude all extratropical cases, as well as 
cases that are too close to the land. As result, we have a very small number of cases to work with: 100 
cases for the Atlantic Basin and only 22 cases for the East Pacific Basin. That number of cases is not 
sufficient to calculate reliable forecast statistics, so the results presented below are preliminary.  
 
Before comparing the RII forecasts to ground truth, we first tested the sensitivity of the probabilities to 
the differing methods for calculating the MPI. Figure 3 shows histograms of the changes in the 
probability of rapid intensification that results from replacing the GFS MPI with the ATMS MPI, for two 
different RI thresholds (25 and 30 kt increases in 24 hr) for the Atlantic and East Pacific. This figure 
shows that there is considerable forecast sensitivity to the MPI calculation, where the RII probability 
changed by up to 30%. A larger data set with the addition of the western North Pacific Basin is being 
tested to provide a larger statistical sample for evaluation.  
 

 

 

Figure 4: RII for 25 knots for Hurricane Michael, AL13 2013. Green dots show observed RII index, which is 0 if no RI 
occurred, and 100% if RI occurred. Blue line with triangles shows RI forecast based on operational GFS model fields, 
and red line with stars shows RI forecast with MPI calculated from ATMS data. The bias of ATMS data is 1.67 compared 
to 1.87 bias from GFS. 

 

Figure 4 shows observed and predicted 25 Kt RII for major hurricane Michael, AL13, 2012. The green 
bars indicate times for which RI occurred in next 24 hours. Red and blue stars/triangles show RII 
predicted based on MPI calculated from GFS fields (red) and from ATMS retrievals (blue). Although 
both RI estimates are somewhat late, the ATMS-based RII goes down much quicker after hurricane 
intensification ended, thus contributing to lower bias and higher Brier Skill Score (BSS). A similar 
relationship is observed for other RII cases in Atlantic (not shown). 
 

 Atlantic 

 Bias BSS(ATMS/GFS) 

RI GFS ATMS  

25 kt 1.87 1.67 1.27% 

30 kt 1.43 1.26 1.55% 

35 kt 1.45 1.25 3.00% 

40 kt 1.93 1.60 3.14% 

Table 1: Bias for Atlantic and Brier Skill Score for Atlantic and East Pacific basins. Bias is always smaller for RII 
estimate from ATMS data as compared to GFS. Brier Skill Score increases by 1 – 3 % by using ATMS data for Atlantic 
Basin, and show increase for all RI except 25kt for EP. All numbers for the Atlantic basin are based on very small 
sample size (100 cases) and could possibly change as more data become available. 

As can be seen from Table 1, the bias is always smaller for RII estimate from ATMS data as 
compared to GFS. Brier Skill Score (BSS) increases by 1 – 3 % by using ATMS data for the Atlantic 
Basin. Preliminary results for East Pacific basin also show BSS increase for all RI thresholds except 



for 25kt (not shown). Estimates for the Atlantic are based on very small sample size (100 cases) and 
could possibly change as more data become available. 

CENTER-FIX ALGORITHM  

When a TC has formed, typically the first step in producing a forecast is to perform a center-fix to 
estimate the location of the center of the storm.  An accurate center estimate is necessary to prevent 
initial errors from impacting later steps in forecast production. While aircraft reconnaissance can be 
used to produce highly accurate center estimates, only about 30% of all TC forecasts have aircraft 
data available for their production in the Atlantic, and most other TC basins have no aircraft data. 
Satellite data is available at a much higher rate; however, most of the existing center-fix algorithms are 
subjective, and due to the limited amount of time that forecasters have to perform prediction for TCs, 
satellite imagery is an underutilized resource for performing center-fixing. The only existing objective 
center-fix algorithm developed by Wimmers and Velden (2010) is primarily using spiral patterns in 
microwave imager data, but does not use microwave sounder data. Our technique uses microwave 
sounder data, which provides a more physical representation of a cyclone, to estimate pressure, and 
is novel in its use of techniques from the field of machine learning. Additionally, one of the aims of the 
proposed method is to improve performance for weak storms. 
 
Using the hydrostatic integration of AMSU MIRS temperature retrievals, the proposed algorithm poses 
the center-fixing problem as a variation of a classification problem. That is, using a grid-cell in an 
AMSU retrieval as input, the output of the algorithm should be a value indicating the probability that 
the grid-cell contains a storm center (class A) and a value indicating the probability that the grid-cell 
does not contain a storm center (class B).  Due to its relative ease to implement, Quadratic 
Discriminant Analysis (QDA) was selected as the algorithm to perform the classification 
(Bishop, 2006). In order to perform the classification, QDA must be trained.  A large dataset of 
statistical AMSU retrievals, from 2006-2011, was used to train the algorithm. The dataset was 
assembled by randomly selecting 70% of the available retrievals from  2006-2011 and further 
selecting only cases that had times that fit between the beginning and end of the appropriate NHC 
best-track file.  Additionally, only retrievals where the storm under examination had maximum winds 
over 35 kt were included.  The retrievals within the remaining 30% of available data that met the same 
criteria were selected to be the test data set.  The training set consisted of 1605 AMSU retrievals and 
the testing set consisted of 416 AMSU retrievals.   
 
A small dataset of ATMS-MIRS retrievals from 2012 was also made available for use with this 
algorithm.  Using the same method as described above, a training set of 146 ATMS retrievals and a 
testing set of 90 ATMS retrievals were assembled.  Additionally, a testing set using all 236 ATMS 
retrievals was assembled for use with the AMSU training set.  
 
For each retrieval, a 5x5 grid-cell area around the real-time center fix provided by the NHC forecast 
from the first synoptic time before the time of the AMSU data (referred to as the extrapolated point) 
was selected. The grid contains the 700 hPa geopotential height fields determined from the 
hydrostatic integration of the AMSU or ATMS retrievals. The grid spacing is 0.2 latitude/longitude. The 
center-location reported by the NHC best-track was then calculated by generating a spline path 
through the locations in the appropriate best-track file and finding the interpolated position 
corresponding to the retrieval time.  Further, each grid-cell was examined to determine if the best-track 
center position was located within the grid-cell and marked as the appropriate class.  Using this 
training dataset, QDA was used to generate a function for each of the two classes relating the input 
values to the probability that they belong to that class.  These functions are referred to as discriminant 
functions. The inputs to the discriminant functions are the geopotential height field and several 
parameters derived from it, such as the distance from the height minimum and the magnitude of the 
horizontal height gradient. Once these two functions have been generated, center-fixes can then be 
performed using retrieval data.  To perform a center-fix, a 5x5 grid-cell area around the extrapolated 
point is selected.  The geopotential height field from these grid-cells are then used as input to both 
classifier (discriminant) functions. The value for the class B discriminant function is then subtracted 
from the value returned from the class A discriminant function for each grid-cell.  The grid cell with the 



maximum difference value is selected as the grid-cell that is most likely to contain the storm center for 
that retrieval. 
 
To evaluate the performance of the center-fix algorithm we compare the distances from the storm 
center reported by NHC best-track to 1) the storm center estimated by our algorithm and 2) to the 
extrapolated position (baseline distance). Figure 5 shows the results of three tests which were 
performed to measure the performance of the center-fix algorithm: the AMSU trained algorithm run 
against the AMSU test set (AMSU-AMSU, blue bars), the 146 ATMS retrieval trained algorithm run 
against the 90 ATMS retrieval test set (ATMS-ATMS, red bars), and the AMSU trained algorithm run 
against the 236 ATMS retrieval test set (AMSU-ATMS, green bars). The real-time center fixes for the 
AMSU-AMSU test had a mean error of 0.451 degrees, while the output of the center-fix algorithm 
produced a mean error of 0.400 degrees. The real-time center fixes for the ATMS-ATMS had a mean 
error of 0.604 degrees compared to the center-fix algorithm mean error of 0.520 degrees. The real-
time center fixes for the AMSU-ATMS test had a mean error of 0.587 degrees and the center-fix 
algorithm had a mean error of 0.477 degrees.  So for the AMSU-AMSU, ATMS-ATMS, and AMSU-
ATMS tests the center-fix algorithm saw an improvement over the real-time extrapolated center fixes 
of 11%, 14% and 19% respectively. It should be noted that the ATMS training and testing sets are 
very small and represent preliminary results.  The ATMS training and testing sets will be expanded in 
the future as more ATMS data becomes available.   
 

 
Figure 5: Errors in the center location estimate using the NHC best track positions interpolated to the time of the 
microwave pass. For each pair of bars (blue, red green), the left bar is the error of the first guess position and the 
second one is the error after the first guess has been updated using the quadratic discriminant analysis (QDA) 
technique. Results show that using the ATMS data provides a bigger improvement than the AMSU data, even for the 
case where the algorithm trained on AMSU data is used with ATMS input. The QDA will then be refined using the much 
higher resolution VIIRS data.  



CONCLUSIONS AND FUTURE PLANS 

Preliminary results for the RII forecast show up to 3.1% increase in Brier Skill Score with the use of 
ATMS data, and for the center-fix algorithm up to 10% better center location as compared to  the first 
guess position from the NHC real-time forecast positions. Both of these results are very encouraging, 
and will be further refined as more ATMS-MIRS data become available. LGEM and RII intensity 
forecasts are critically dependent on MPI estimate, and the impact of ATMS-calculated MPI on LGEM 
is being investigated. The next step in the center-fix algorithm is the addition of VIIRS data, especially 
the Day Night Band (DNB) data, to refine the estimates from the microwave sounder input. Finally, 
both the intensity and center-fix algorithms could be further improved by using Cross-Track Infrared 
Sounder (CrIS) data. 
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