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Abstract 
 

The paper addresses parallax computation for geostationary satellites with the Earth described by a 
reference ellipsoid. Application of parallax correction to comparison of radar and satellite data is 
demonstrated on a cold-ring shaped storm on 21-22 June 2006 above Austria using MSG/SEVIRI 
observations. Values of parallax, especially for higher cloud tops, are not insignificant. Therefore, 
parallax correction is essential for correct interpretation of high cloud top features in satellite imagery 
and may also have a crucial impact on some satellite-derived products. 
 
INTRODUCTION 
 
Parallax is an apparent displacement of cloud location with regard to the Earth’s surface in satellite 
imagery which results from a non-zero viewing angle of the satellite (Fig. 1). Parallax depends on the 
height of the cloud top, its geographic location as well as the position of the satellite. This study 
focuses on parallax for geostationary satellites. 
 

 
Figure 1: Schematic illustration of parallax. 
 
Parallax correction is important when comparing satellite and radar data, especially for high 
Cumulonimbus clouds. Two ways of correction are possible. In the first case, each cloud pixel in 
satellite imagery is shifted by a corresponding parallax value. In such a case it is necessary to know 
accurately the cloud top heights. The second possibility, which is used in this study, is based on a 
transformation of data that are to be compared with satellite imagery (radar data in our case) into the 
geostationary projection, i.e. their adjustment at particular height levels by the computed values of 
parallax shift. 



COMPUTATION OF PARALLAX FOR GEOSTATIONARY SATELLITES 
 
The computation is based on geometry with the Earth described by a reference ellipsoid. Two systems 
of coordinates are used: Cartesian coordinates – x  = (x, y, z) and geodetic coordinates – Φ (geodetic 
latitude), θ (geodetic longitude), h (geodetic height). A reference ellipsoid as well as both types of 
coordinates are illustrated in Fig. 2. 
 

 
Figure 2: Reference ellipsoid (semimajor axis: a = 6378.137 km, semiminor axis: b = 6356.752 km) and two used 
coordinate systems – Cartesian coordinates: x  = (x, y, z) and geodetic coordinates: Φ, θ, h. 
 
Satellite coordinates are marked with a subscript S in the text below. Because we consider only 
geostationary satellites, latitude ΦS = 0° and geodetic height hS = R – a, where R (= 42168 km) is the 
distance between the satellite and the center of the Earth, and a is the semimajor axis of reference 
ellipsoid. Parallax is computed for a spot in a cloud top with known coordinates ΦC, θC, hC. The line 
connecting this spot and the satellite is given by: 

,)()( txx+x=tx SCS             (1) 
where t is a parameter determining the location on the line. Since Eq. (1) gives the satellite line-of-
sight for a given spot on a cloud top, tIM exists such that x (tIM) is the apparent position of the spot (as 
seen by the satellite) on the Earth’s surface (in geodetic coordinates: ΦIM, θIM, hIM = 0 km). 
 
Converting Eq. (1) from Cartesian to geodetic coordinates, we get the system of equations: 
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By solving Eqs. (2) we obtain coordinates ΦIM, θIM that are needed for computation of parallax, i.e. the 
distance between (ΦC, θC, h = 0 km) and (ΦIM, θIM, hIM = 0 km). Geodetic coordinates change linearly 
on the shortest line between these two points: 
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where 1,0t . By substituting Eqs. (4)  into  the  equations  describing  the  surface  of  the  reference  
 
 



ellipsoid, we get a parametric representation of the curve )(txx 
  along the Earth’s surface, whose 

length is equal to the parallax: 
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It is worth noting that EUMETSAT recently published tables for parallax corrections which cover every 
MSG pixel for all MSG satellite positions – for longitude 0°, 3.4°W and 9.5°E 
(http://convection.satreponline.org/parallax.php). 
 
APPLICATION OF PARALLAX CORRECTION TO A COMPARISON OF RADAR AND 
SATELLITE DATA 
 
A cold-ring shaped storm (Setvák et al., 2008) on 21-22 June 2006 over Austria (48.487°N, 15.768°E) 
was chosen to demonstrate an application of parallax correction to a radar and satellite data 
comparison. Values of parallax and its eastward and northward components were computed for a spot 
in the cloud top corresponding to the position of this storm and various geodetic heights for the MSG-1 
satellite (till April 2008 at nominal position 3.4°W; see Tab. 1, Fig. 3). 
 

h [km] P [km] Pe [km] Pn [km]
10 16.4 6.9 14.9
11 18.1 7.6 16.4
12 19.7 8.3 17.9
13 21.4 9.0 19.4
14 23.1 9.7 20.9
15 24.7 10.4 22.4
16 26.4 11.2 23.9
17 28.0 11.9 25.4
18 29.7 12.6 26.9
19 31.3 13.3 28.4
20 33.0 14.0 29.9  

Table 1: Parallax (P) and its eastward and northward components (Pe and Pn) related to geodetic height (h) of the spot 
in cloud top located at 48.487°N and 15.768°E for the MSG-1 satellite. 
 

 
Figure 3: Parallax (P) and its eastward and northward components (Pe and Pn) related to geodetic height (h) of the spot 
in cloud top located at 48.487°N and 15.768°E for the MSG-1 satellite. 

 
Parallax grows with cloud top height almost linearly and is not insignificant, especially for the higher 
cloud tops. The influence of the geographic location of the cloud as well as the satellite position on the 
parallax also grows with cloud top height. 
 



The cold-ring shaped storm on 21-22 June 2006 above Austria had cloud tops reaching above the 
tropopause, as can be seen in its vertical radar cross-section (Fig. 4). Soundings for this case from 
Vienna on 21 June 2006 at 12 UTC and 22 June 2006 at 03 UTC are illustrated in Fig. 5. There is a 
strong inversion perceptible above the tropopause, the presence of which is probably essential for the 
formation of a warm spot inside the cold ring. 
 
An application of parallax correction is demonstrated in Figs. 6 and 7. These show color enhanced 
images in the IR10.8 band of the MSG-1 satellite, with radar data (CAPPI 15 km) superimposed – 
without the parallax correction (Fig. 6) and after the correction (Fig. 7). From these two figures it is 
obvious that there is a large difference in the relative location of the satellite and radar data with and 
without the parallax correction.  
 
Parallax correction is important for determining the accurate location of a warm spot with respect to 
the radar data, which is essential for better understanding the mechanism of formation of warm spots 
inside cold rings. In Fig. 4, the location and extent of the warm spot with regard to the radar data is 
marked by a black arrow. 
 

 
Figure 4: Radar cross-section of the cold-ring shaped storm above Austria - along the line A-B in Fig. 7. This 
experimental vertical cross-section, extended up to 20 km, is based on CAPPI products (step 0.5 km) derived from the 
radar reflectivity volume data on 22 June 2006, 00 UTC.  
 

 
Figure 5: Soundings - Vienna, 21 June 2006, 12 UTC and 22 June 2006, 03 UTC.  
 



 
Figure 6: Cold-ring shaped storm above Austria (21 June 2006, 23:55 UTC) in color enhanced image in the IR10.8 band 
of the MSG-1 satellite, with radar data (CAPPI 15 km; 22 June 2006, 00:00 UTC) superimposed without the parallax 
correction. 
 

 
Figure 7: Same as in the Fig. 6, but with radar data superimposed after the parallax correction. The location of the 
storm's overshooting top without the parallax correction is marked by the black curve. The line A-B marks the position 
of the cross-section which is shown in Fig. 4. 
 
CONCLUSIONS 
 
Parallax correction is essential for proper interpretation of features occurring in satellite imagery 
depicting high cloud tops, particularly when comparing radar and satellite data. Parallax correction 
may also have a crucial impact on some derived satellite products, such as convective rain estimates 
(http://nwcsaf.inm.es/MeteorolProducts.html), CTTH (Šťástka et al., 2008), or storm tracking (e.g. the 
RDT product, http://www.meteorologie.eu.org/RDT/). Results for the storm on 21-22 June 2006 agree 
with findings documented for the 25 June 2006 case (Setvák et al., 2008), namely with regard to the 
spatial arrangement of the highest overshooting tops and the warm spot. 
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