Diffuser BRDF Analysis Modelling from On-Orbit Measurements

Final Presentation

Matthijs Krijger

Ewa Kwiatkowska, Ludovic Bourg, Ralph Snel, Xiong (Jack) Xiaoxiong

EARTH SPACE SOLUTIONS

Contents

- Issue
- OLCI Diffuser Optical Design
- On ground Calibration
- Rahman2 Diffuser Model
- Yaw Maneuvers
 - Data Corrections
- Data analysis
 - Compare to Rahman2
 - New Model & Residuals
- Conclusions & Lessons learned

Issue

Degradation

OLCI Optical

OLCI Optical

OLCI Optical

On-ground Calibration

On-ground Calibration

On-ground Calibration

BRDF Rahman model residual for the central lab measurement

Diffuser Model: Rahman2

Parameters: ρ_0 Θ

$$\rho(\theta_i, \varphi_i; \theta_r, \varphi_r; \lambda) = \rho_0 \cdot M(\theta_i, \theta_r, k) \cdot F(g) \cdot [1 + R(G)]$$

 ρ_1

k-1

$$M(\theta_i, \theta_r, k) = (\cos \theta_i \cdot \cos \theta_r)^{k-1} \cdot (\cos \theta_i + \cos \theta_r)^{k-1}$$

$$F(g) = \frac{1 - \Theta^2}{\left[1 + \Theta^2 + 2 \cdot \Theta \cdot \cos(g)\right]^{1.5}}$$

$$\cos g = \cos \theta_i \cdot \cos \theta_r + \sin \theta_i \cdot \sin \theta_r \cdot \cos(\varphi_i - \varphi_r)$$

$$1 + R(G) = 1 + \frac{1 - \rho_1}{1 + G}$$

$$G = \left[\tan^2\theta_i + \tan^2\theta_r - 2 \cdot \tan\theta_i \cdot \tan\theta_r \cdot \cos(\varphi_i - \varphi_r)\right]^{0.5}$$

Minnaert

Scattering

Phase Angle

Hot-Spot

Geometric Factor

@ESS

740 pixels, 5 cameras, 336 (536) solar angles, 7 scans

Corrections

- Start with data corrected for
 - All Instrument Effects
 - except Straylight & Gain
 - Combine Microbands to Bands
 - Correct Straylight
 - Solar Distance and Illumination geometry

536 Measurements per Maneuver

Corrections

- Throw out solar angles where no signal (536 → 500)
- Throw out solar angles where straylight drops quickly (500 → 336)

Corrections

- Relative to In-flight reference angle
 - All measurements for given pixel are divided by inflight- measurement

for that pixel, at reference angle

- Relative to On-ground reference angle
 - All measurements for given pixel are multiplied by on-ground model

for that pixel, at reference angle

Rahman2 from Onground

Relative Response

Measurement Reference

Relative

Add noise

and little left to fit

Rahman2 fit non-constrained

Non-physical parameters

Rahman2 per pixel 260 240 220 200 180 ₽ 160 =) 2000 Model—1/Meas s3r_model_rahman2 1000 3000 0 Diff 5.00×10⁻³ 3.33×10⁻³ Solar Measurement (Scan) 1,67×10⁻³ 1500 -1.67×10^{-3} 500 -3.33×10^{-3} -5.00×10⁻³ 2000 Pixel/Viewing (Cam) 1000 3000

Quite 'linear' functions And Viewing angles 'fixed'

Polynomial per pixel

P0* [absolute calibration]

```
1+P1*SZA+P2*SAA [linear]
```

 \rightarrow

P0*(1+P1*SZA+P2*SAA+P3*SAA*SZA+P4*SZA^2+P5*SAA^2)

With PO-P5 free fitting parameters (for each band)

Polynomial per pixel

P0*(1+P1*SZA+P2*SAA+P3*SAA*SZA+P4*SZA^2+P5*SAA^2)

Band Error

Speckles

Conclusion

New OLCI Diffuser BRDF Model

- Relative accuracy to < 0.05%
 - Derived from yaw maneuvers
- Absolute accuracy < 1%
 - Derived from on-ground calibration

Lessons Learned

- On-ground reference measurement dominates absolute calibration accuracy
 - So repeat several times
- Yaw maneuvers provide accurate BRDF model
- More Yaw angles allow even more accurate model by speckle characterization

Thank you