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Use of hyperspectral IR data in NWP models

Data from IR sounders
are the most used by
NWP models in terms of
number

This tendency will
continue with the arrival
of new hyperspectral IR
sounders

IASI MTG-IRS
Spectral sampling 0.25 cm−1 0.625 cm−1

Samples per spectrum 8,461 1,808
Spatial sampling at nadir 12 km 4 km
Samples per hour 54,000 8.0 106

Estimation of data volume 0.92 GB/h 28 GB/h
(Atkinson, 2013)
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Inpact of Hyperspectral IR data

Atmospheric profiling errors are improved

More chemical compounds can be profiled

Data dissemination becomes impossible (costs) and data storage needs
explose

Inter-channel redundancy becomes more and more important. NWP center
keep just 500 IASI channels from the 8461
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There is a need to reduce the data volume. . .

Why not to compress the data?

Compression types definitions (from Atkinson, 2013):
Lossless

• Exact reconstruction of the input (with machine precision)

Near-lossless
• Input reconstruction with a maximum defined error
• Error typically a defined (small) fraction of instrument noise
• Example: digitisation error (or quantisation error)

Lossy
• e.g. compression algorithms for images (jpeg, etcetera)
• e.g. Principal Components Analysis technique for hyperspectral sounders

For IASI, the best performances were obtained using PCA plus residuals quantisation
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The PCA compression technique

PCA allows the reduction of the dimensionality of a problem by examining the linear
relationship between all the variables contained in a multivariate dataset

The original set of correlated variables, yobs , is replaced by a smaller number of uncorrelated
variables called principal component scores (PCS, xpcs). E corresponds with the
eigenvectors matrix:

xpcs = E ∗ yobs

To return to the original space it is only need to make the following multiplication:
ypcs = ET ∗ xpcs

These new variables retain most of the information contained in the original dataset (most of
the gaussian noise is filtered):

yobs = E ∗ xpcs + residuals = ypcs + residuals
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IASI PC scores and quantised residuals
From T. Lee and S. Bedford (2004), slide from N. Atkinson (2013)

It is a lossy compression, but most of the “loss” is noise

1. Noise-normalised radiance: y =
r−y0

n

y Normalised radiance
r Observed spectrum
n Noise

y0 Mean radiance

2. PC Score (integer): s = NINT ( ET y
fs

)

s PC score
ET Eigenvectors matrix transposed

fs Quantisation factor, typically 0.5

3. Residual (integer): ∆y = NINT ( y−fs E s
fr

)

fr Noise quantisation factor, typically 0.5. Gives 1% noise increase
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Example of PCA compression

IASI channel 1191, @942.5 cm−1 ⇒
Surface sensitivity channel

(a) Raw radiances (b) Raw radiances (c) Raw radiances
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How can we assimilate PCA compressed data

1. We can use reconstructed radiances from PCs. . .
+ No much work to adapt current assimilation systems
+ Channel noises are filtered by PCA
- Interchannel correlations are heavily increased

2. We can assimilate PCs directly
+ We can use all the information registered in the observation
- More difficult to understand. PCs are a mathematical representation
- Some PCs Jacobians present structures peaking low and high in the

atmosphere⇒What happen for low-top models?

(Figure from McNally (2013))

11 / 36



Plan

1 Introduction

2 Models and data used

3 Methodology

4 Results

5 Conclusions

12 / 36



AROME main figures
Upgrade from 04/2015

Increase of vertical resolution in lower atmosphere
Increase of the number of radar observations
Bias correction for satellite observations not modified
(taken from ARPEGE global model)

AROME version Old OPER EXP
Mesh grid 2.5 km 1.3 km 1.3 km
Assim. cycle 3 h 1 h 3 h
Levels 60 90 90
Model top 1 hPa 10 hPa 10 hPa
Levels < 2 km 21 33 33
Lowest model lev. 10 m 5 m 5 m

(a) AROME vertical resolutions

(b) Old AROME domain (c) New AROME domain13 / 36



AROME main figures
Weight of IASI observations and data usage

Weight of different observation types in AROME
versions:

Obs Old [%] OPER [%]
All Sats. 37.7 11.3
IASI 26.5 4.2
Radar 18.4 36.7
RS 5.4 16.0

Additionally satellite channels with contributions
above the model top need to be removed

The number of assimilated IASI channels have
decreased from 123 to 44 channels
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ARPEGE main figures
Upgrade from 04/2015

Horizontal resolution: T1198c2.2 ( 7.5km over
France, 36km over antipodes)

Vertical: 105 levels

1st Minimization: T149c1L105 (∼135km) with 40
iterations (T107c1L70 with 25 it)

2nd minimization: T399c1L105 (∼50km) with 40
iterations (T323c1L70 with 30 it)

Timeslots of 30 minutes (vs ∼1 hour)

Assimilation of SSMIS sounding channels, more
radiances in the screening (+10% assimilated
observations), use of swath ATMS data,
preparation of the SAPHIR data assimilation.

Provides lateral coupling conditions and satellite
bias corrections to AROME regional model
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Schema of experiments, period of study
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Time window: 85 days

2016/03/08 to 2016/05/31

* Same scheme for IASI diagonal and full error matrix experiments

17 / 36



Plan

1 Introduction

2 Models and data used

3 Methodology

4 Results
’RAD’-’RR’ radiance differences
Assimilation of ’RAD’ and ’RR’ IASI data using a diagonal error matrix
Very preliminary results from experiments using a full error matrix
Consequences of working with low-top models

5 Conclusions

18 / 36



Differences between ’RAD’ and ’RR’ radiances
From 8461 channels and PCs EUMETSAT products

dif =
[RR−RAD

RAD − 1
]
× 100

Calculated using a full IASI single
orbit (91,800 obs.)

IASI orbit: 20130805, from
20:08:58 to 21:50:58

Three IASI bands well observed,
bigger noise at the beginning of
each band

PCA compresison removes the
ghost effect observed in CO2 IASI
band 3, between 2,200 and 2,400
cm−1
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Results from ARPEGE assimilation experiments
IASI interchannel correlation

(a) Error and obs. number

Error matrices computed using Desroziers
methodology

Similar number of observations of both RAD and RR
matrices

IASI error is sensibly reduced but only for temperature
and surface channels

(b) Desroziers error matrices
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Results from ARPEGE assimilation experiments
Cloud detection from CO2 slicing method, sea observations
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Results from ARPEGE assimilation experiments
Statistics on IASI used observations

 0.0

 0.5

 1.0

 1.5
Temperature

S
u
rfa

c
e

q mid 
  trop.

q low 
  trop.

F
G

 d
e
p
a
rt

u
re

s
 [
K

]  Rad - RMS
 RR - RMS
 Rad - Bias
 RR - Bias

 0.0

 0.5

 1.0

 1.5

49 61 83 11
1

12
8

14
1

15
4

16
7

18
0

20
5

21
7

23
0

25
4

27
5

29
9

34
5

36
0

38
6

41
0

43
4

11
91

29
51

30
08

31
05

54
01

Temperature

S
u
rfa

c
e

q mid 
  trop.

q low 
  trop.

A
N

 d
e
p
a
rt

u
re

s
 [
K

]

Channel number

Lower rms error for temperature channels, not for humidity ones in First Guess (FG)
departures

Very close results for Analysis Departures (AN)
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Results from ARPEGE assimilation experiments
Statistics on used observations
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Results from ARPEGE assimilation experiments
ARPEGE scores against ECMWF analysis
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Results from ARPEGE assimilation experiments
Differences in bias corrections
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Results from AROME assimilation experiments
IASI interchannel correlation

(a) Error and obs. number

Error matrices computed using Desroziers
methodology

Similar number of observations of both RAD and RR
matrices

IASI error is sensibly reduced but only for temperature
and surface channels

(b) Desroziers error matrices
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Results from AROME assimilation experiments
Statistics on IASI used observations
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Results from AROME assimilation experiments
Statistics on used observations, First Guess (FG) and Analysis departures (AN)
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Results from AROME assimilation experiments
Precipitation scores for 20.6 km neighbourhood
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Using a full error matrix in ARPEGE
Reconstructed radiances. Full vs diagonal error matrix
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Using a full error matrix in ARPEGE
Full IASI error matrix. Preliminary RR vs RAD obstats

∆#[%]

 

  -0.53

  -0.31

  -0.57

  -0.43

  -0.14

  -0.12

  -0.35

  -0.46

  -0.62

  -0.69

100

150

200

250

300

400

500

700

850

1000

 0  25  50

hPa
RS: Temperature

∆#[%]

 

  -1.24

  -1.38

  -1.17

  -1.06

  -0.59

  -0.50

300

400

500

700

850

1000

 0  25  50

hPa
RS: Humidity

FG ratio
AN ratio

∆#[%]

 

   0.00

  -0.64

  -0.19

  -0.09

  -0.05

  -0.03

  -0.04

  -0.08

  -0.14

  -0.15

100

150

200

250

300

400

500

700

850

1000

-30-20-10  0  10  20

hPa
Aircraft: Temp.

∆#[%]

 

  -0.44

  -0.36

  -0.37

  -0.44

  -0.32

  -0.27

  -0.22

  -0.33

  -0.44

  -0.56

100

150

200

250

300

400

500

700

850

1000

 0  25  50

hPa
RS: U-Wind

∆#[%]

 

  -0.44

  -0.36

  -0.37

  -0.44

  -0.32

  -0.27

  -0.22

  -0.33

  -0.44

  -0.56

100

150

200

250

300

400

500

700

850

1000

 0  25  50

hPa
RS: V-Wind

∆#[%]

 

  -1.07

  -0.99

  -1.74

3

4

5

 0  20  40

Ch.
AMSU-B MHS

ratio =
[

rmsRR
rmsRAD

− 1
]
× 100

Negative values mean an
improvement

Positive values point a
degradation of the system

Columns of numbers indicate
the cariation in percentage of
the observations number
used

Degradation of the system and
reductions in the used
observations number

Worst results on RR because of
the higher correlation
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Impact of having a low-top model
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Take home messages

RAD/RR differences are small in general terms. Bigger differences in the last IASI band,
where IASI is more noisy.

MF NWP models present no significant impact when using RAD or RR radiances. No
significant differences in cloud detection, obstats, scores or rain scores

AROME bias correction needs to be re-adapted for all satellites because of having lowered
the model top

RAD and RR radiances give different results when using a full error matrix. First examples
from MF NWP model are given. There is need of tuning the observation errors in NWP MF
models before using a full error matrix for IASI

Low-top model constraint has a huge impact in the simulation of the IASI radiance or PCs.
Lower impact for IRS. IASI PC are heavily affected by the low-top contraint, around 50 PC of
the first 100 present statistically different values when using low- or high-top models. Need to
adapt the PC eigenvectors rejecting bad channels or developing a top coupling for this kind of
models
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