

Uncertainty characterization of microwave and sub-millimeter in all-sky radiative transfer

Vasileios Barlakas

Annual Fellow Day 02.03.2020

ECMWF

EUMETSAT

1 Introduction

- **②** Three-dimensional effects in ice retrievals
- **③** Intercomparison study: ARTS vs RTTOV (-SCATT)
- **④** Particle orientation in data assimilation
- **5** Outlook

Why ice clouds?

CHALMERS

UNIVERSITY OF TECHNOLOGY

- Cover $\sim 30\%$ of the Earth Ο
- A significant role in the energy budget Ο
- Large uncertainties in numerical weather Ο prediction (NWP) and climate models

• Why ice clouds?

CHALMERS

UNIVERSITY OF TECHNOLOGY

- \circ Cover ~30% of the Earth
- A significant role in the energy budget
- Large uncertainties in numerical weather prediction (NWP) and climate models
- Why microwave (MW) and sub-mm?
- The assimilation of MW observations comprises ~40% of the observation impact.
- Sensitive to both large and small ice hydrometeors.

Nasa/JPL-Caltech

0%

CHALMERS

UNIVERSITY OF TECHNOLOGY

- \circ Cover ~30% of the Earth
- A significant role in the energy budget
- Large uncertainties in numerical weather prediction (NWP) and climate models
- Why microwave (MW) and sub-mm?
- The assimilation of MW observations comprises ~40% of the observation impact.
- Sensitive to both large and small ice hydrometeors.

Ice Cloud Imager (ICI)

- o 183.31–664 GHz (15 km footprint)
- Improved ice cloud representation
- Extend the scope of MW assimilations

Nasa/JPL-Caltech

Atmospheric Infra-Red Sounder (AIRS)

June 2016

Mean occurrence [%]

100%

CREATE – <u>C</u>haracterizing and <u>**RE</u>ducing uncertainties in <u>All-sky</u> microwave** radiative <u>TransfE</u>r</u>

Sensors:

- O Microwave Imager (MWI): 18.7 183.31 GHz
- Ice Cloud Imager (ICI): 183.31 664 GHz

CREATE – <u>C</u>haracterizing and <u>**RE</u>ducing uncertainties in <u>All-sky</u> microwave** radiative <u>TransfEr</u></u>

Sensors:

- O Microwave Imager (MWI): 18.7 183.31 GHz
- Ice Cloud Imager (ICI): 183.31 664 GHz

In stand-alone retrievals and data assimilation (DA), several assumptions are still employed:

 \bigcirc three-dimensional (3D) radiative transfer is ignored,

 \bigcirc totally randomly oriented hydrometeors are only considered.

Models:

- O ARTS
- O RTTOV (-SCATT)

=> Prepare for all-sky assimilation of ICI data

UNIVERSITY OF TECHNOLOGY

Three Dimensional Radiative Effects in Passive **mm/sub-mm** All-sky Observations

000000

Barlakas and Eriksson., Remote Sens., 2020

- Calculation modes 3D, IBA, 1D
- 1) A **3D** mode (ARTS-MC)

2D slice of 3D

- Calculation modes 3D, IBA, 1D
- 1) A **3D** mode (ARTS-MC)

2D slice of 3D

- Calculation modes 3D, IBA, 1D
- 1) A **3D** mode (ARTS-MC)

β ₁	β_2	ß ₃
β ₄	β_5	β_6
β ₇	β ₈	β 9

2D slice of 3D

- Calculation modes 3D, IBA, 1D
- 1) A **3D** mode (ARTS-MC)

2D slice of 3D

1) A **3D** mode (ARTS-MC)

CHALMERS

UNIVERSITY OF TECHNOLOGY

2) Independent Beam Approx. (IBA) mode (DISORT)

2D slice of 3D

1) A **3D** mode (ARTS-MC)

CHALMERS

UNIVERSITY OF TECHNOLOGY

2) Independent Beam Approx. (IBA) mode (DISORT)

2D slice of 3D

Nadir view

1) A **3D** mode (ARTS-MC)

CHALMERS

UNIVERSITY OF TECHNOLOGY

2) Independent Beam Approx. (IBA) mode (DISORT)

2D slice of 3D

Nadir view

1) A **3D** mode (ARTS-MC)

CHALMERS

UNIVERSITY OF TECHNOLOGY

2) Independent Beam Approx. (IBA) mode (DISORT)

2D slice of 3D

Nadir view

1) A **3D** mode (ARTS-MC)

CHALMERS

UNIVERSITY OF TECHNOLOGY

2) Independent Beam Approx. (IBA) mode (DISORT)

2D slice of 3D

1) A **3D** mode (ARTS-MC)

CHALMERS

UNIVERSITY OF TECHNOLOGY

- 2) Independent Beam Approx. (IBA) mode (DISORT)
- 3) Plane-parallel approx. (1D) mode (DISORT)
 - / Hydrometeor Number Density average (HND-avg)
 - ✓ Hydrometeor Content average (HC-avg)

$$\begin{array}{c|c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

IBA

1D

1) A **3D** mode (ARTS-MC)

CHALMERS

UNIVERSITY OF TECHNOLOGY

- 2) Independent Beam Approx. (IBA) mode (DISORT)
- 3) Plane-parallel approx. (1D) mode (DISORT)
 - Hydrometeor Number Density average (HND-avg)
 - ✓ Hydrometeor Content average (HC-avg)

2)

2D slice of 3D

IBA

1**D**

2D slice of 3D

1) A **3D** mode (ARTS-MC)

CHALMERS

- 2) Independent Beam Approx. (IBA) mode (DISORT)
- 3) Plane-parallel approx. (1D) mode (DISORT)
 - ✓ Hydrometeor Number Density average (HND-avg)
 - ✓ Hydrometeor Content average (HC-avg)

3D vs IBA Horizontal Photon Transport (HPT) effect => Neglect of HPT along areas with different properties

IBA vs 1D Beam-Filling (BF) effect => Neglect of domain heterogeneities

3D vs 1D Total Effect

ERA data

CHALMERS

UNIVERSITY OF TECHNOLOGY

CloudSat dBz

UNIVERSITY OF TECHNOLOGY

Scene generator

CloudSat dBz

UNIVERSITY OF TECHNOLOGY

CloudSat overpasses:

- Tropics: 30 (July 2015) =>55 scenes 0
- Mid-Latitudes: 29 (January 2015)=> 58 scenes Ο
- Each scene: 160 km by 200 km 0

D Summary

CHALMERS

UNIVERSITY OF TECHNOLOGY

- The horizontal photon transport effect induces a slight overestimation and chiefly random errors. Thus, 3D simulations could be replaced by a bias correction in the forward model.
- The total effect is consistent with the BF effect. The root mean square error (RMSE) in:
 ✓ 1DVAR¹ retrievals, it can be ~14 K at the highest frequency and footprint size.
 - ✓ Data assimilation (183 GHz and footprints between 9 and 36 km) is above ~4 K.
- \circ A significant beam-filling (BF) effect that increases primarily with frequency and, secondly, with footprint size and slant path; RMSE up to ~14 K.
- Independent beam approximation (IBA) is a necessity (e.g., retrieval databases).
- \circ At mid-latitudes 3D effects are less pronounced due to less ice and more H₂O absorption.
- A statistical correction scheme by means of a multiplication factor has been developed that compels the errors induced by the 3D effects to be more symmetric (up to 3.2 K).

Outlook

- Explore the use or the development of correction schemes for the BF effect at mm/sub-mm.
- Particle orientation and 3D effects including polarization.

¹ 1D variational retrievals: AMSU-B ATMS, GMI, MHS, SSMIS, ICI, MWI,...

Barlakas and Eriksson., Remote Sens., 2020

D Assumptions in RTTOV – SCATT

- Scattering of ice hydrometeors is treated in a simplified matter
 - Following Geer and Baordo (2014)
- It applies a two-stream approximation.
- Data is extracted column-wise and maximum cloud overlap is assumed.
- Three-dimensional effects are neglected.
- Particle orientation and polarization.

Objectives:

- By means of ARTS characterize and improve the accuracy of RTTOV-SCATT
- Prepare RTTOV–SCATT for ICI.

Assumptions in RTTOV – SCATT

- Scattering of ice hydrometeors is treated in a simplified matter
 - Following Geer and Baordo (2014)
- It applies a two-stream approx 0

CHALMERS

- Are there any systematic or random oud overlap is assumed. Data is extracted column-wise and \bigcirc
- Three-dimensional effects are neglected. 0
- Particle orientation and polarization. \bigcirc

Objectives:

- By means of ARTS characterize and improve the accuracy ARTTOV–SCATT 0
- Prepare RTTOV–SCATT for ICI. 0

ARTS vs RRTOV (-SCATT):

- Clear-sky conditions Ο
- All-sky conditions Ο

Assumptions in RTTOV – SCATT

- Scattering of ice hydrometeors is treated in a simplified matter
 - Following Geer and Baordo (2014)

CHALMERS

UNIVERSITY OF TECHNOLOGY

- Following
 At applies a two-stream approx
 Data is extracted column-wise and hors in RTTO's in RTTO Are there any systematic or random oud overlap is assumed. \bigcirc
- 0
- \bigcirc

Objectives:

- By means of ARTS characterize and improve the accuracy ARTTOV-SCATT 0
- Prepare RTTOV–SCATT for ICI. 0

ARTS vs RRTOV (-SCATT):

- Clear–sky conditions Ο
- All-sky conditions Ο

<u>Currently</u>:

- Microwave Humidity Sounder (MHS) Ο
- **ARTS Scattering database**

ARTS scattering database

- 34 freq.: 1-886.4 GHz
- 34 particle models (PM) Ο
- 35-45 sizes per PM Ο
- Method: DDA 0

Eriksson et al., 2018

0000

CHALMERS

UNIVERSITY OF TECHNOLOGY

0000

Settings:

- o US standard atmosphere
- \circ Surface emissivity = 1
- Rain (Liquid spheres; Marshal & Palmer)
- Snow (LargePlateAggregate; Field 1997)
- Cloud ice water (6-BulletRosette; Field 1997)

D Summary

CHALMERS

- An excellent agreement is found between ARTS and RTTOV (clear-sky): Errors are below ± 0.1 K. For large earth incident angles, errors increase ± 0.2 K due to interpolation.
- \circ A good agreement is found between ARTS and RTTOV–SCATT (all–sky): Errors are below ± 4 K subject to hydrometeor content and interplolation.

Outlook

- Further explore the discrepancies between ARTS and RTTOV–SCATT: optical properties.
- It applies a two-stream approximation.
- Data is extracted column-wise and maximum cloud overlap is assumed.
- Three-dimensional effects are neglected.

Particle orientation – Assumptions

Oriented non-spherical particles produce polarization difference

Assumptions in RTTOV-SCATT

- Totally randomly oriented hydrometeors only
- "Scalar" radiative transfer simulations only, i.e., V- or H-polarization
- Invariant scattering properties between V- and H-simulations

Particle orientation – Framework

000000

D Methods and Tools

CHALMERS

UNIVERSITY OF TECHNOLOGY

• Framework following Gong and Wu 2017,

$$\rho = \frac{\tau_{\mathsf{H}}}{\tau_{\mathsf{V}}} = \frac{\tau(1+\alpha)}{\tau(1-\alpha)}, \quad 1.2 \le \rho \le 1.4$$

- \circ Experiments varying ρ (& shape to be applied)
- GMI observations at 166 GHz (V/H)

UNIVERSITY OF TECHNOLOGY

Particle orientation – Framework

00000

UNIVERSITY OF TECHNOLOGY

000000

UNIVERSITY OF TECHNOLOGY

000000

UNIVERSITY OF TECHNOLOGY

Polarization differences (PDs) at 166 GHz

Polarization differences (PDs) at 166 GHz

UNIVERSITY OF TECHNOLOGY

Polarization differences (PDs) at 166 GHz

Polarization differences (PDs) at 166 GHz

Histograms of PDs at 166 GHz

UNIVERSITY OF TECHNOLOGY

• Histograms of differences in PDs at 166 GHz

D Summary

CHALMERS

- The current modeling framework fails to identify the measured polarization.
- A simple modeling framework was developed to account for particle orientation.
- \circ Scaling the cloud optical thickness in V– and H–polarization by ρ =1.22 diminishes the differences in the observerd polarization differences by an order of magnitude.
- Snow is found to induce the observed polarization differences.
- The observed polarization difference value range in this study therefore can be translated into a 12% ice water path retrieval error if polarization is neglected.

Outlook

- Increase the robustness of the statistics.
- $\circ~$ Sensitivity study of the scaling factor $\rho.$
- Make use of a more realistic particle habits; ARTS scattering database
- Improve current scattering database:

Azimuthally randomly oriented ice hydrometeors (Brath et al., 2019)

D Three-dimensional effects in retrievals

- Explore the use or the development of correction schemes for the BF effect at mm/sub-mm.
- Particle orientation and 3D effects including polarization.

Intercomparison study

- Further explore the discrepancies between ARTS and RTTOV–SCATT: optical properties.
- It applies a two-stream approximation.
- Data is extracted column-wise and maximum cloud overlap is assumed.
- Three-dimensional effects are neglected.

Particle orientation

- Increase the robustness of the statistics.
- $\circ~$ Sensitivity study of the scaling factor $\rho.$
- Make use of a more realistic particle habits; ARTS scattering database
- Improve current scattering database:

Azimuthally randomly oriented ice hydrometeors (Brath et al., 2019)