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⚈  Why ice clouds? 
o  Cover ~30% of the Earth 
 
o  A significant role in the energy budget 
 
o  Large uncertainties in numerical weather 

prediction (NWP) and climate models 
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⚈  Why microwave (MW) and sub-mm? 

IWP = 2 g m−2 
  

o  The assimilation of MW observations 
comprises ~40% of the observation impact. 

 
o  Sensitive to both large and small ice 

hydrometeors. 

Ice Cloud Imager (ICI) 
 
o  183.31–664 GHz (15 km footprint) 
 
o  Improved ice cloud representation 
 
o  Extend the scope of MW assimilations 
 
 

Mean occurrence [%]  

Atmospheric Infra-Red Sounder (AIRS)
June 2016

Introduction – Motivation !! 
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CREATE – Characterizing and REducing uncertainties in All-sky 
microwave radiative TransfEr 
  
Sensors:  
 
o Microwave Imager (MWI): 18.7 – 183.31 GHz 
o  Ice Cloud Imager (ICI): 183.31 – 664 GHz 



Introduction – Project description !! 

CREATE – Characterizing and REducing uncertainties in All-sky 
microwave radiative TransfEr 
  
Sensors:  
 
o Microwave Imager (MWI): 18.7 – 183.31 GHz 
o  Ice Cloud Imager (ICI): 183.31 – 664 GHz 
  
In stand-alone retrievals and data assimilation (DA), several 
assumptions are still employed: 
  
o  three-dimensional (3D) radiative transfer is ignored, 
o  totally randomly oriented hydrometeors are only considered. 
 
Models: 
 
o  ARTS 
o  RTTOV (–SCATT) 
 
=> Prepare for all-sky assimilation of ICI data 
 
 



3D Radiative effects !!!!!!! 

Barlakas and Eriksson., Remote Sens., 2020 

Three Dimensional Radiative Effects in Passive 
mm/sub-mm All-sky Observations 
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Post-processing: 
 
o  Simulations in 2km grid 
o  Average over FOV 

Settings: 
o  View: 0o & 53o 
o  Freq.: 186.3 & 668 GHz 
o  FOV–Gauss: 6 & 15 km 
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3D Radiative effects – Simulations !!!!!!! 

1)  A 3D mode (ARTS-MC) 
2)  Independent Beam Approx. (IBA) mode (DISORT) 
3)  Plane-parallel approx. (1D) mode (DISORT) 

ü  Hydrometeor Number Density – average (HND-avg) 
ü  Hydrometeor Content – average (HC-avg) 

Hydrometeor Impact: 
 
ΔTB = TB,cloudy – TB,clear  

1) 2) 3) 

3D  vs IBA            Horizontal Photon Transport (HPT) effect 
      => Neglect of HPT along areas with different properties 

 
IBA vs 1D             Beam–Filling (BF) effect 

      => Neglect of domain heterogeneities 
 
3D vs 1D    Total Effect 

⚈  Calculation modes – 3D, IBA, 1D  
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3D Radiative effects – Synthetic scene !!!!!!! 

CloudSat overpasses: 

o  Tropics: 30 (July 2015)      => 55 scenes 
o  Mid-Latitudes: 29 (January 2015)=> 58 scenes 

o  Each scene:  160 km by 200 km 
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3D Radiative effects – Synthetic scene !!!!!!! 

Ekelund et al., 2020 
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HPT effect – Tropics (slant view)  !!!!!!! 

Barlakas and Eriksson., 2020 

RMSE: 1.17 K 
RMSEc: 1.00 K 

 

RMSE: 0.92 K 
RMSEc: 0.88 K 

 

RMSE: 1.96 K 
RMSEc: 1.87 K 

 

RMSE: 1.41 K 
RMSEc: 1.32 K 

 

Overall: 
mean < 0.43 K 
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Overall: 
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BF effect – Tropics (slant view)  !!!!!!! 

Barlakas and Eriksson., 2020 

RMSE:  1.98 K 
RMSEc: 1.72 K 
 
RMSE:  1.05 K 
RMSEc: 1.02 K 
 

RMSE:  3.97 K 
RMSEc: 3.06 K 
 
RMSE:  2.12 K 
RMSEc: 1.86 K 

RMSE:  7.10 K 
RMSEc: 6.20 K 
 
RMSE:  5.74 K 
RMSEc: 5.14 K 

RMSE:  13.1 K 
RMSEc: 10.2 K 
 
RMSE:  10.8 K 
RMSEc:  8.77 K 

Overall: 
mean < 5.97 K 
mean < 4.10 K 

Overestimation due to the non-linear 
relation between TB and ice amount 



3D Radiative effects !!!!!!! 

Barlakas and Eriksson., Remote Sens., 2020 

⚈  Summary 
o  The horizontal photon transport effect induces a slight overestimation and chiefly random 

errors. Thus, 3D simulations could be replaced by a bias correction in the forward model. 
 
o  The total effect is consistent with the BF effect. The root mean square error (RMSE) in: 

ü  1DVAR1 retrievals, it can be ~14 K at the highest frequency and footprint size. 
ü  Data assimilation (183 GHz and footprints between 9 and 36 km ) is above ~4 K. 

 
o  A significant beam-filling (BF) effect that increases primarily with frequency and, 

secondly, with footprint size and slant path; RMSE up to ~14 K. 

o  Independent beam approximation (IBA) is a necessity (e.g., retrieval databases).  
 
o  At mid-latitudes 3D effects are less pronounced due to less ice and more H2O absorption. 

o  A statistical correction scheme by means of a multiplication factor has been developed that 
compels the errors induced by the 3D effects to be more symmetric (up to 3.2 K). 

 1 1D variational retrievals: AMSU-B 
ATMS, GMI, MHS, SSMIS, ICI, MWI,… 

 
⚈  Outlook 
o  Explore the use or the development of correction schemes for the BF effect at mm/sub-mm.  
o  Particle orientation and 3D effects including polarization. 



Intercomparison project !!!! 

⚈  Assumptions in RTTOV – SCATT   
o  Scattering of ice hydrometeors is treated in a simplified matter 

§  Following Geer and Baordo (2014) 
 
o  It applies a two-stream approximation.  
 
o  Data is extracted column-wise and maximum cloud overlap is assumed. 
 
o  Three-dimensional effects are neglected. 
 
o  Particle orientation and polarization. 

Objectives: 
o  By means of ARTS characterize and improve the accuracy of RTTOV–SCATT 
o  Prepare RTTOV–SCATT for ICI. 
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⚈  Assumptions in RTTOV – SCATT   
o  Scattering of ice hydrometeors is treated in a simplified matter 

§  Following Geer and Baordo (2014) 
 
o  It applies a two-stream approximation.  
 
o  Data is extracted column-wise and maximum cloud overlap is assumed. 
 
o  Three-dimensional effects are neglected. 
 
o  Particle orientation and polarization. 

Objectives: 
o  By means of ARTS characterize and improve the accuracy of RTTOV–SCATT 
o  Prepare RTTOV–SCATT for ICI. 

ARTS vs RRTOV (–SCATT): 
o  Clear–sky conditions 
o  All–sky conditions 
 
Currently:  
o  Microwave Humidity Sounder (MHS)  
o  ARTS Scattering database 

ARTS scattering database 

o  34 freq.: 1-886.4 GHz 
o  34 particle models (PM) 
o  35-45 sizes per PM  
o  Method: DDA 

Eriksson et al., 2018 



Intercomparison project !!!! 

⚈  Clear–sky comparison 

Settings: 
o  US standard atmosphere 
o  Surface emissivity = 1 



Intercomparison project !!!! 

Settings: 
o  US standard atmosphere 
o  Surface emissivity = 1 

 
o  Rain (Liquid spheres; Marshal & Palmer) 
o  Snow (LargePlateAggregate; Field 1997) 
o  Cloud ice water (6-BulletRosette; Field 1997) 

⚈  All–sky comparison 

Open issues! 



Intercomparison project !!!! 

⚈  Summary 
o  An excellent agreement is found between ARTS and RTTOV (clear–sky): Errors are 

below ±0.1 K. For large earth incident angles, errors increase ±0.2 K due to interpolation. 
 
o  A good agreement is found between ARTS and RTTOV–SCATT (all–sky): Errors are 

below ± 4 K subject to hydrometeor content and interplolation.  

 
⚈  Outlook 
o  Further explore the discrepancies between ARTS and RTTOV–SCATT: optical properties. 
 
o  It applies a two-stream approximation.  
 
o  Data is extracted column-wise and maximum cloud overlap is assumed. 
 
o  Three-dimensional effects are neglected. 



Particle orientation – Assumptions !!!!!! 

 
⚈  Assumptions in RTTOV-SCATT 

o  Totally randomly oriented hydrometeors only 
 
o  “Scalar” radiative transfer simulations only, i.e., V– or H–polarization  
 
o  Invariant scattering properties between V– and H–simulations 
 

Oriented non-spherical particles 
produce polarization difference 



Particle orientation – Framework !!!!!! 

⚈  Methods and Tools 
o  Framework following Gong and Wu 2017, 
 
 
 
o  Experiments varying ρ (& shape to be applied)  
 
o  GMI observations at 166 GHz (V/H) 

1.2 ≤ ρ ≤1.4ρ =
τH
τV

=
τ 1+α( )
τ 1−α( )

,
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⚈  Methods and Tools 
o  Framework following Gong and Wu 2017, 
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Particle orientation – Preliminary results !!!!!! 

Control run fails to 
explain positive PDs 

…~13 K 

Results: 1 week only, ρ = 1.22 

⚈  Histograms of PDs at 166 GHz 



Particle orientation – Preliminary results !!!!!! 

Results: 1 week only, ρ = 1.22 

⚈  Histograms of differences in PDs at 166 GHz 



Particle orientation !!!!!! 

⚈  Summary 
o  The current modeling framework fails to identify the measured polarization. 
 
o  A simple modeling framework was developed to account for particle orientation. 
 
o  Scaling the cloud optical thickness in V– and H–polarization by ρ =1.22 diminishes the 

differences in the observerd polarization differences by an order of magnitude. 
 
o  Snow is found to induce the observed polarization differences. 
 
o  The observed polarization difference value range in this study therefore can be translated 

into a 12% ice water path retrieval error if polarization is neglected.  
⚈  Outlook 
o  Increase the robustness of the statistics.  
o  Sensitivity study of the scaling factor ρ. 
o  Make use of a more realistic particle habits; ARTS scattering database  
o  Improve current scattering database: 

Azimuthally randomly oriented ice hydrometeors (Brath et al., 2019) 
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o  Further explore the discrepancies between ARTS and RTTOV–SCATT: optical properties. 
 
o  It applies a two-stream approximation.  
 
o  Data is extracted column-wise and maximum cloud overlap is assumed. 
 
o  Three-dimensional effects are neglected. 

 
⚈  Intercomparison study 

o  Explore the use or the development of correction schemes for the BF effect at mm/sub-mm.  
o  Particle orientation and 3D effects including polarization. 

⚈  Three-dimensional effects in retrievals 


