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Use of satellite soil moisture data into an high-resolution short 
range forecasting model  

with an ensemble based data assimilation system

COMET NWP system

KENDA-LETKF algorithm

H-SAF ASCAT product
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Ensemble-Based  
Data Assimilation (1)

NWP is an initial/boundary value problem: given an estimate of the present state of the atmosphere 
(initial conditions), and appropriate surface and boundary conditions, the model simulates 

(forecasts) the atmospheric evolution.

Currently, operational NWP centers produce initial conditions (analysis) through a statistical 
combination of observations and short-range forecast, approach known as DATA ASSIMILATION
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ensemble data assimilation Main characteristics

• Monte Carlo techniques 
• starting point: ensemble of forecasts 
• forecast ensemble perturbations used 

to represent the forecast error 

• analysis ensemble produced
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Ensemble-based data assimilation delivers the best 
estimate and a representation of the probability density 

function for the atmospheric state



    

Ensemble-Based  
Data Assimilation (2)
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ADVANTAGES
• flow-dependent error structures 
• No Adjoint operator needed 
• intrinsically parallel 

LIMITATIONS

• sample size (sampling errors) 
• model error representation  
   (filter divergence) 

How to count this behavior in practice

• Covariance localization techniques 
• Inflation techniques
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as the Kalman filter (Kalman, 1960; Kalman and Bucy, 1961; Jazwinski, 1970 section
7.3; Gelb, 1974 section 4.2; Maybeck, 1979 section 5.3; Ghil, 1989; Daley, 1991
section 13.3; Cohn, 1997; Talagrand, 1997; Daley, 1997). We review the Kalman
filter first. The Kalman filter is an approximation to Bayesian state estimation which
assumes linearity of error growth and normality of error distributions. There are two
components of the Kalman filter, an update step where the state estimate and an
estimate of the forecast uncertainty are adjusted to new observations, and a forecast
step, where the updated state and the uncertainty estimate are propagated forward to
the time when the next set of observations becomes available.

6.3.1 The extended Kalman filter
We now consider an implementation of the Kalman filter called the extended Kalman
filter, or ‘EKF’ (Jazwinski, 1970; Gelb, 1974; Ghil and Malanotte-Rizzoli, 1991; Gau-
thier et al., 1993; Bouttier, 1994). The EKF assumes that background and observation
error distributions are Gaussian: xb

t = xt
t + e, where e ∼ N (0, Pb

t ). That is, the prob-
ability density of the prior is distributed as a multivariate normal distribution with
known n×1 mean background xb

t and n×n background-error covariance matrix Pb
t .

Similarly, y = H(xt
t) + ε, where ε ∼ N (0, R) andH is the Mt ×n ‘forward’ operator

that maps the state to the observations. Let H represent the m×n Jacobian matrix
of H: H = ∂H

∂x (see Gelb, 1974, section 6.1). Also, let M represent the non-linear
model forecast operator. M is the n×n Jacobian matrix of M, M = ∂M

∂x . M is often
called the transition matrix between times t and t + 1. MT is its adjoint (see Le Dimet
and Talagrand, 1986, and Lacarra and Talagrand, 1988). Q will represent the n×n
covariance of model errors accumulated between update cycles.

The EKF equations are

xa
t = xb

t + K
(
yt − H

(
xb

t

))
(6.6a)

K = Pb
t HT(

HPb
t HT + R

)−1
(6.6b)

Pa
t = (I − KH)Pb

t (6.6c)

xb
t+1 = M

(
xa

t

)
(6.6d)

Pb
t+1 = MPa

t MT + Q = M
(
MPa

t

) T + Q. (6.6e)

Equations (6.6a–6.6c) describe the update step. The optimal analysis state xa
t

is estimated by correcting the background xb
t toward the ‘observation increment’

yt − H(xb
t ), weighted by the Kalman-gain matrix K. The effect of K is to apply

observation increments to correct the background at relevant surrounding grid points.
Equation (6.6c) indicates how to update the background-error covariance to reflect
the reduction in uncertainty from assimilating the observations. Equations (6.6d–
6.6e) propagate the resulting analysis and error covariance forward in time to when
observations are next available. The expected analysis state is propagated forward



    

LETKF theory 
(Local Ensemble Transform Kalman Filter)
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 Hunt et al. (2007)

• analysis done in the space of ensemble 
   perturbations 

• analysis computed separately for each grid 
point selecting only the observations in the 
vicinity. The observation error covariance R 
elements are modified by distance-dependent 
localization factors so that far-away 
observations have large errors. 

   (explicit localization) 

• Analysis ensemble members are locally linear 
combinations of background ensemble 
members

Operational at COMET (Italian Air Force Operational Met. Center) since 2011 
First Met. Center which uses operationally a pure EnKF DA to initialize a deterministic NWP 

model

Main characteristics



    

EUMETSAT Fellow Day, 7 March 2016                                                                                                                                                                                              

•Ensemble-Based Data Assimilation: LETKF (Local Ensemble 
Transform Kalman Filter) 

•COSMO Priority Project KENDA (Km-scale Ensemble-Based 
Data Assimilation) 

•COMET NWP system 
•H-Saf ASCAT Soil Moisture products  
•Description of the work done and future developments



    

COSMO Priority Project KENDA
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KENDA 
(Km-Scale Ensemble-Based Data Assimilation) 

TASK: To develop a separate DA scheme for the convective scale (in which conditions such as non 
gaussianity, strong non linearity, flow dependent and poorly know balance are much more 

dominant), and to use a similar approach for a generalized system for global and regional modelling.

The main FOCUS of the KENDA project has been on the algorithmic development of the LETKF

Assimilation of conventional observations and (work in progress) high resolution 
remote sensing data (radiances, RADAR data, screen level observations, ground 

based GNSS slant path delay, ASCAT soil moisture)

COSMO: Consortium for Small-scale Modeling (Germany, Switzerland, Italy,  
Greece, Poland, Romania and Russia)



    

EUMETSAT Fellow Day, 7 March 2016                                                                                                                                                                                              

•Ensemble-Based Data Assimilation: LETKF (Local Ensemble 
Transform Kalman Filter) 

•COSMO Priority Project KENDA (Km-scale Ensemble-Based 
Data Assimilation) 

•COMET NWP system 
•H-Saf ASCAT Soil Moisture products  
•Description of the work done and future developments



    

COMET NWP system
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COSMO-ME EPS

• 6 hourly intermittent data assimilation 
• cycle(T,u,v,q,ps) set of control variables  
• 40 ensemble members + control run (10 km) with 45 hybrid z-

sigma vertical levels (up to 27 km) 
• Observations: RAOB (also 4D), PILOT, SYNOP, SHIP, BUOY, Wind 

Profiler, AMDAR, ACAR, AIREP, MSG3-MET7 AMV, Metop A-B scatt 
winds, NOAA/Metop A-B AMSUA/MHS and NPP ATMS radiances
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H-SAF ASCAT Soil moisture products (1)

ASCAT soil moisture Data provided by EUMETSAT within the H-SAF project, one of the 8 
EUMETSAT SAFs, lead by the Italian Air Force Met Service

• frequency: 5.3 GHz (microwave C-band) 
• VV polarization 
• Able to provide a triplet of backscattering 

coefficients        for each swath 
• 25 km resolution

σ0 

From backscattering coefficient measurements it is possible to retrieve the soil moisture 
content in the first 2 cm below the soil by mean of microwave technique thanks to the 

high sensitivity of microwaves to the water content in the soil surface layer (for 
microwave frequencies in the C-band (< 10 GHz) the addition of liquid water to the soil 
strongly increases the soil dielectric constant, and so the backscattering coefficients).
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σ0 affected by:

• soil moisture content 
• incidence angle 
• land cover (vegetation) 
• surface roughness

CHANGE DETECTION ALGORITHM 
(TU Wien): 

Backscatter measurements are extrapolated 
to a reference incidence angle (40°) and 
corrected for the influence of vegetation; 

then they are compared to equivalent 
existing wet and dry backscatter reference, 
also defined at 40°. As a result, time series 
of the topsoil (2 cm) moisture content are 

obtained in relative units  
(degree of saturation)

H-SAF ASCAT Soil moisture products (2)

Basic assumptions:

1. The relationship between the backscattering 
coefficients and the surface soil moisture 
content is linear. 

2. The backscattering coefficient depends 
strongly on the incidence angle.  

3. An increase in soil moisture simply shift the 
backscattering-angle of incidence curve 
upwards, while a change in vegetation affects 
its shape. For sparse vegetation, the curve 
tends to drop off rapidly, while for fully grown 
vegetation it becomes less steep. 

 

Algorithm Theoretical 
Baseline Document 

ATBD-25 
(Product H25 – SM-OBS-4) 

Doc.No: SAF/HSAF/CDOP2/ATBD-25/0_4 

Date: 21/10/2013 

Page: 14/26 

 
whereby the 0th-order coefficient 𝜎0�𝜃𝑟𝑒𝑓,𝑑�  is the normalised backscatter at the 40𝑜 reference 
incidence angle, and the 1st and 2nd order coefficients 𝜎′�𝜃𝑟𝑒𝑓,𝑑� and 𝜎′′�𝜃𝑟𝑒𝑓,𝑑� are referred to as 
slope and curvature parameters (see Figure 7). Slope and curvature mediate the effect of vegetation on 
the functional relationship between 𝜎0 and 𝜃: for sparse vegetation, the curve tends to drop off rapidly, 
while for fully grown vegetation, it becomes less steep, almost horizontal in the case of rain forest 
(Figure 7b). In the model, we assume that the vegetation state is always the same at the same day of the 
year, i.e. it does not change inter-annually, and is thus a function of the day-of-year 𝑑. Hence, for each 
GPI, there will be 366 vegetation curves, each determined by a slope/curvature pair 
𝜎′�𝜃𝑟𝑒𝑓,𝑑�,  𝜎′′�𝜃𝑟𝑒𝑓,𝑑�. The slope and curvature parameters, which determine, in conjunction with the 
incidence angle, the effect of vegetation on the backscatter, are estimated during this step. 

 

Figure 7: Backscatter as function of the incidence angle. In WARP, it is assumed that an increase in soil moisture simply 
shifts the curve upwards (a), while a change in vegetation affects its shape, i.e., higher order moments (b).. 

Slope and curvature are determined as the coefficients of a straight line fitted to the so called local 
slopes. Local slopes are estimates of the first derivative of the backscatter - incidence angle dependency, 
and are computed as difference quotients between fore-and mid-beam, and aft- and mid-beam, 
respectively: 

 σlocal′  (θ, t) = ∆σ0
∆θ   

To be more specific, each backscatter beam-triple [𝜎𝑖,𝑓,𝜎𝑖,𝑚,𝜎𝑖,𝑎] (fore-, mid-, and aft-beam 
measurements) taken at incidence angles [𝜃𝑖,𝑓,𝜃𝑖,𝑚,𝜃𝑖,𝑎 ] yields two local slope estimates at day 𝑑𝑖: 

 
σi,f′   �θi,m +  θi,f

2 , di� = σi,m − σi,f
θi,m − θi,f

 

 
 

 𝜎𝑖,𝑎′  �𝜃𝑖,𝑚 + 𝜃𝑖,𝑎
2 ,𝑑𝑖� = 𝜎𝑖,𝑚 − 𝜎𝑖,𝑎

𝜃𝑖,𝑚 − 𝜃𝑖,𝑎
  

These local slopes are taken as instances of the first derivative of Eqn.3.2 

14 
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DESCRIPTION OF THE WORK DONE …

… AND FUTURE DEVELOPMENTS

• Adaptation of COMET NWP system to KENDA (implementation of 
KENDA-LETKF code in the COMET NWP system) 

• Processing of available satellite soil moisture products: computation 
and monitoring of ASCAT soil moisture observation increments 

• Quality control of ASCAT soil moisture DATA

• implementation of the soil moisture data assimilation into the KENDA-
LETKF analysis algorithm 
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Adaptation of COMET NWP system to KENDA 

September 
2015:

Start of the migration from COMET-LETKF code to the KENDA-LETKF code 
PRE-OPERATIONAL

WHAT HAS BEEN DONE ?

• Creation of feedback files (containing observations and observation increments) 
as KENDA-LETKF input. Both for conventional and satellite observations 

• Introduction of a different reference atmosphere 
• Introduction of a variable horizontal localization with different length scales for 

different vertical levels 
• Some modifications to run the KENDA-LETKF code in full resolution 
• Bug errors fixed

NEXT STEP Implementation of soil moisture observations 
assimilation within the KENDA-LETKF code
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Transformed SOIL MOISTURE

NEED TO RESCALE THE SATELLITE OBS TO THE MODEL VALUES

11.2 Layer Structure and Sign Convention of the Multi-Layer Soil Model 108

evaporation rate computed by the soil model. And the second part of the soil model used
the grid-scale and convective precipitation rates as input to the hydrological computations.
In view of the short timestep of LM, the two parts have now been combined into a single
subroutine, which is called before the convection scheme.

The process of freezing/thawing of soil water/ice is accomplished by a diagnostic change of
water/ice content and of temperature using energy and water budget considerations. This
avoids an iterative solution of the thermodynamic and hydraulic equations which are coupled
by the freezing/thawing process. The small timestep of LM justifies this simple method.

11.2 Layer Structure and Sign Convention of the Multi-Layer
Soil Model

In principle the layer structure of the multi-layer soil model (Fig. 11.1) can be chosen arbi-
trarily. But interactions with the provision of initial data for temperature and for soil water
content have to be taken into account.

Figure 11.1: Layer structure of the soil model

Part II – Physical Parameterization Section 11: The Multi-Layer Soil and Vegetation Model TERRA ML
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layer structure of the hydrological part  
of the COSMO TERRA_ML soil model

• ASCAT derived Soil Moisture: degree of saturation (%) in the first 2 cm 
• COSMO TERRA_ML model soil moisture: liquid water content (m H2O) in the 

various model layers

To compare observed and model values the model values 
are transformed (to have quantities independent from the 

thickness of the layers) in volumetric water content 
(m^3/m^3) and then interpolated in the first 2 cm 

+

• CDF matching method 
• Normalization methods
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CDF matching
To scale the ASCAT derived soil moisture to the model climatology so that the 
cumulative distribution functions (CDF) of satellite and model soil moisture 

match.

SAMPLE CDF  
definition

Let X1,...,Xn be independent and 
identically distributed aleatory 

variables with distribution 
function (cdf) F(x).  

The sample cumulative 
distribution function is defined as

The concept of CDF was used in similar 
studies (Drusch et al 2005, Drusch 2007) 
to effectively remove biases of soil 
moisture observations.  

This method doesn’t allow deriving 
“correct” soil moisture. Rather it 
removes differences between satellite 
observations and model data by ensuring 
statistical consistency.                                               
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CDF matching: our implementation
OUR STUDY: 

preliminary test on operational COMET NWP configuration (10 km)

• 1 year time series of ASCAT and model SM data (january 2015 - january 2016) 

• model data from COMET-LETKF system (10 km grid spacing) 

• 2 options investigated for the choice of the soil type to assign to an ASCAT 
observation  

   - the soil type of the grid point closest to the observation 
   - the most probable soil type among these of the 9 grid points closest to the observation  
   (ASCAT resolution: 25 km, 10 km grid spacing) 

•  CDF matching performed for each soil type separately 
   - COSMO TERRA_ML soil types: sand, sandy loam, loam, loamy clay, clay, peat 

• Piece wise sample CDF for ASCAT and model sm data, using 13 percentiles 

   0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1 

• Linear regression analysis of ASCAT data plotted against model data 
   2 options investigated: 
   - total regression analysis 
   - local regression analysis
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CDF matching: example

b slope, a intercept

ASCAT sample CDF, loam, closest grid point 

model sample CDF, loam, closest grid point 

CDF matching: local regression analysis 
global regression analysis



    

Normalization methods 
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Volume of voids: maximum possible volume of water that the soil can hold 
Field capacity: amount of soil moisture held in the soil after excess water has drained 
away and the rate of downward movement has decreased. 
Wilting point: the minimal amount of water the plant requires not to wilt 
Air Dryness point: minimum possible amount of water that can remain in the soil

soil parameters values in the COSMO TERRA_ML soil model 
8 different soil types: ice, rock, sand, sandy loam, loam ,loamy clay, clay, peat



    

Observation increments statistics
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The transformed ASCAT soil moisture data has to be compared to the equivalent model values

OBSERVATION INCREMENTS

• difference between the observed value and 
   its model equivalent value (ensemble mean) 
• first guess values linearly interpolated in time 
• 2 methods for space interpolation:  
  - nearest grid point 
  - average on the 9 nearest grid points 
• model values calculated using the 
   COMET-LETKF system 
• 10 km resolution

quantity directly used in  
the LETKF algorithm

Because of the assumption of no bias and  
gaussianity for the ensemble-based  DA,  
their distribution in terms of bias and  

symmetry will be analyzed 



    

Evaluation of results (CDF) (1)
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local regression analysis
bias: 0.0008242 
stdv: 0.0840188 
symm: -0.3009857

observation increments (january 2015 - january 2016)

bias: 0.0030642 
stdv: 0.0964125 
symm: 0.2132559

soil type of the closest grid point soil type most probable among the closest 9 grid points



    

Evaluation of results (CDF) (2)
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total regression analysis

observation increments (january 2015 - january 2016)

bias: -0.0012186 
stdv: 0.0800698 
symm: -0.3240673

bias: 0.0029384 
stdv: 0.0905940 
symm: -0.2627874

soil type of the closest grid point soil type most probable among the closest 9 grid points



    

Evaluation of the results: 
normalization methods comparison
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BIAS: 0.0004021 
SYMM: -0.2597088

BIAS: -0.0251703 
SYMM: -0.3667752

The first formulation is better in terms of bias and symmetry

observation increments (january 2015 - january 2016)

first formulation, soil type most probable  
among the 9 closest grid points 

second formulation, soil type most probable  
among the 9 closest grid points 



    

Evaluation of the results 
(first normalization method)
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soil type of the grid point closest to the obs soil type most probable among the 9 grid points 
closest to the obs

BIAS: 0.0012154 
SYMM: -0.3793990

BIAS: 0.0004021 
SYMM: -0.2597088

observation increments (january 2015 - january 2016)

Conversely with respect to the CDF matching method, with this normalization the choice of soil 
 type most probable among the 9 closest grid point is better in terms ob bias and symmetry



    

Evaluation of the results 
(CONCLUSIONS)

EUMETSAT Fellow Day, 7 March 2016                                                                                              22                                                                               

In terms of the observation increments, the best results have been 
obtained with: 

• CDF matching method 
   soil type of the nearest grid point 
   local regression analysis 

• Normalization method   
   First formulation  
   soil type = most probable among the soil types of the 9 closest grid  
   points 

BOTH THE METHODS WILL BE TESTED IN THE  
ASSIMILATION USING THE KENDA-LETKF CODE
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•Adaptation of COMET NWP system to KENDA 
(implementation of KENDA-LETKF code in the COMET 
NWP system) 

•Processing of available satellite soil moisture products: 
computation and monitoring of ASCAT soil moisture 
observation increments 

•Quality control of ASCAT soil moisture DATA 
• implementation of the soil moisture data assimilation 

into the KENDA-LETKF analysis algorithm
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Quality Control before assimilation  
of ASCAT soil moisture DATA (1)

Soil moisture cannot be estimated if the fraction of dense vegetation, 
open water, snow/frozen soils, mountains, sand dunes and/or wetlands 

dominates the scatterometer footprint

ASCAT data is rejected where: 
• snow: the analysed snow amount is greater than 0.05 kg/m^2 
• frost: the 2m Temperature analysis is below 275.15 K 
• wetlands: the inundation and wetland amount has a value greater than 15%         
• mountains: the topographic complexity has a value greater than 20%                   
• ASCAT estimated error: the error in the ASCAT surface soil wetness is estimated to 

be greater than 7% (Met Office) or 8% (ECMWF). This check rejects ASCAT data from 
regions with dense vegetation and sand dunes.

PRELIMINARY CHECKS



    

Quality Control before assimilation 
of ASCAT soil moisture DATA (2)
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BACKGROUND 
QUALITY CONTROL

BUT:

The soil moisture’s observation 
increments are highly non gaussian, 
too concentrated around the value 0  
(due to the fact that the obs incr are  
very close to the 0 value in dry and 

saturated condition)

To avoid discarding good quality 
observations, a control variable for 
the soil moisture whose increments 
have a gaussian behavior could be 
obtained, so to apply the quality 
control to this control variable

an observation is discarded if its observation 
increment is larger (in absolute value) than a value 
which is typically in a range between 2 and 3 times 

a typical climatological standard deviation 

The standard deviation is calculated considering a long period of data (observation  
increments) and pulling out the gaussian distribution that best fits them



    

Construction of a gaussian control variable 
for the ASCAT soil moisture DATA (1)
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method proposed by Holm (2001) 
to find a variable for humidity with  

gaussian forecast differences

gaussian control variable for humid-
ity, uncorrelated with other control
variables, such that its background
error has a gaussian distribution,
starting from the fact that to find a
variable with gaussian forecast di↵er-
ences directly translates into a gaus-
sian description of the background er-
rors. The proposed method is the fol-
lowing:

• Find a variable ' whose fore-
cast di↵erence �' follows a
gaussian conditional error dis-
tribution P (�'|�) as a function
of some variable �;

• Determine the bias (b(�)) and
standard deviation (�(�)) of
the forecast di↵erences as a
function of �, with the bias
preferably negligible;

• Normalize forecast di↵erences
by the bias and standard devi-
ation,

�̃' =
�'� b(�)

�(�)
; (1)

• Change the control variable ac-
cording to equation 1.

After experimenting with several
formulations of the control variable,
Holm found that the choosing ' =
RH and � as the average of the fore-
casts, the normalized forecast di↵er-
ences derived in equation 1 have a
Gaussian distribution, with the bias
small enough to be negligible.

Starting from this method, hu-
midity quality control has been per-
mormed considering RH normalized
background increments as in 1. They
are derived as follow: step functions
for bias and standard deviation are
performed in eight di↵erent pressure
level (0 � 300 hPa, 300 � 400 hPa,
400� 500 hPa, 500� 600 hPa, 600�
700 hPa, 700 � 800 hPa, 800 � 900
hPa, > 900 hPa), partitioning the in-
terval [0, 1] in 40 bins of width 0.025:

bj(x) = bj(i),

x 2[0.025 ⇤ (i� 1), 0.025 ⇤ i],
j = 1, . . . , 8

(2)

�j(x) = �j(i),

x 2[0.025 ⇤ (i� 1), 0.025 ⇤ i],
j = 1, . . . , 8

(3)

Thus, for each observation RHobs,
the correspondent normalize incre-
ment is

(RHobs �RHfg)� bj(i)

�j(i)
,

if the pressure of RHobs is in pressure
level j and the average betweenRHobs

and RHfg is in bin i.
Unlike Holm’s results, bias is not

negligible, so it is taken into account
in formulation.

Results are summarized in figure
6: graphs describe the distribution
of normalized background increments
defined by eq. 1, in three reference
levels, at high,medium and low level.
The distribution is more symmetrical
respect to the one of variables exam-
inated in section 2, in particular at

3

IDEA: to apply the Holm method to the obs 
increments instead of to the forecast differences

•       = soil moisture observation 

•       = average between soil moisture obs and  
   its model equivalent 

• Step functions for bias and stdv for each soil    
   type, partitioning the interval between the max  
   and min value of       in 40 bins

soil type: loam
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bias ~ 0 
stdv ~ 1 

symm = -0.18

not normalized obs incr

obs increments (CDF method) (january 2015 - january 2016)

normalized obs incr

bias: -0.0012186 
stdv: 0.0800698 
symm: -0.3240673
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•Adaptation of COMET NWP system to KENDA 
(implementation of KENDA-LETKF code in the COMET 
NWP system) 

•Processing of available satellite soil moisture products: 
computation and monitoring of ASCAT soil moisture 
observation increments 

•Quality control of ASCAT soil moisture DATA 
• implementation of the soil moisture data assimilation 

into the KENDA-LETKF analysis algorithm
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Soil moisture assimilation: 
future developments

• Introduction of the soil moisture variable in the state vector 
• Use of soil moisture observations to improve the analysis of atmospheric 

variables in the lowest levels, through a suitable vertical localization 
• Implementation of an horizontal localization with a suitable length scale 

to account for the influence of a soil moisture observation on a close grid 
point

3. tuning at higher resolution (2.8 km)

1. Use of derived soil moisture increments in the KENDA-LETKF code, to 
improve the analysis of atmospheric variables in the lowest levels

2. Development of a suitable soil moisture analysis

This step requires further discussions and investigations 



    

Thanks for your 
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