Impact of PCA on the assimilation of hyperspestral infrared sounder data in the frame of the AROME mesoscale convection-permitted NWP model

Javier Andrey-Andrés

CNRM, Météo-France and CNRS

March 7th, 2016

Outline

1 Introduction

2 Methodology

3 Results

- Used observations
 - IASI
 - Other satellite observations
- Forecast scores
 - Impact of lowering the top model
 - Impact of RR
- 4 Ongoing works...

5 Conclusions

Instrument	Year	Sat.	Channels	Spec. resolution
Evolu	ution of	IR sounder	S	

Assimilation of RRs - J. Andrey-Andrés

1

Assimilation of RRs - J. Andrey-Andrés

Assimilation of RRs - J. Andrey-Andrés

Use of IR data in NWP models

Data from IR sounders are the most used by NWP models in terms of number

Assimilation of RRs - J. Andrey-Andrés

Use of IR data in NWP models

Data from IR sounders are the most used by NWP models in terms of number

This tendency will continue with the arrival of new hyperspectral IR sounders, above everything IRS

Use of IR data in NWP models

Data from IR sounders are the most used by NWP models in terms of number

Assimilation of RRs - J. Andrey-Andrés

Consequences of the huge data volumes

- Atmospheric profiling errors are improved
- More chemical compounds can be profiled
- Data dissemination becomes impossible (costs) and data storage needs explose
- Inter-channel redundancy becomes more and more important. NWP center keep just 500 IASI channels from the 8461

METEO FRANCE

Why not to compress the data?

- Lossless
 - Exact reconstruction of the input (with machine precision)
- Near-lossless
 - Input reconstruction with a maximum defined error
 - Error typically a defined (small) fraction of instrument noise
 - Example: digitisation error (or quantisation error)
- Lossy
 - e.g. compression algorithms for images (jpeg, etcetera)
 - e.g. Principal Components Analysis technique for hyperspectral sounders

Why not to compress the data?

Compression types definitions (from Atkinson, 2013):

- Lossless
 - Exact reconstruction of the input (with machine precision)
- Near-lossless
 - Input reconstruction with a maximum defined error
 - Error typically a defined (small) fraction of instrument noise
 - Example: digitisation error (or quantisation error)

Lossy

- e.g. compression algorithms for images (jpeg, etcetera)
- e.g. Principal Components Analysis technique for hyperspectral sounders

Why not to compress the data?

- Lossless
 - Exact reconstruction of the input (with machine precision)
- Near-lossless
 - Input reconstruction with a maximum defined error
 - Error typically a defined (small) fraction of instrument noise
 - Example: digitisation error (or quantisation error)
- Lossy
 - e.g. compression algorithms for images (jpeg, etcetera)
 - e.g. Principal Components Analysis technique for hyperspectral sounders

Why not to compress the data?

- Lossless
 - Exact reconstruction of the input (with machine precision)
- Near-lossless
 - Input reconstruction with a maximum defined error
 - Error typically a defined (small) fraction of instrument noise
 - Example: digitisation error (or quantisation error)
- Lossy
 - e.g. compression algorithms for images (jpeg, etceteral
 - e.g. Principal Components Analysis technique for hyperspectral sounders

Why not to compress the data?

- Lossless
 - Exact reconstruction of the input (with machine precision)
- Near-lossless
 - Input reconstruction with a maximum defined error
 - Error typically a defined (small) fraction of instrument noise
 - Example: digitisation error (or quantisation error)
- Lossy
 - e.g. compression algorithms for images (jpeg, etcetera)
 - e.g. Principal Components Analysis technique for hyperspectral sounders

Why not to compress the data?

- Lossless
 - Exact reconstruction of the input (with machine precision)
- Near-lossless
 - Input reconstruction with a maximum defined error
 - Error typically a defined (small) fraction of instrument noise
 - Example: digitisation error (or quantisation error)
- Lossy
 - e.g. compression algorithms for images (jpeg, etcetera)
 - e.g. Principal Components Analysis technique for hyperspectral sounders

Why not to compress the data?

- Lossless
 - Exact reconstruction of the input (with machine precision)
- Near-lossless
 - Input reconstruction with a maximum defined error
 - Error typically a defined (small) fraction of instrument noise
 - Example: digitisation error (or quantisation error)
- Lossy
 - e.g. compression algorithms for images (jpeg, etcetera)
 - e.g. Principal Components Analysis technique for hyperspectral sounders

Why not to compress the data?

- Lossless
 - Exact reconstruction of the input (with machine precision)
- Near-lossless
 - Input reconstruction with a maximum defined error
 - Error typically a defined (small) fraction of instrument noise
 - Example: digitisation error (or quantisation error)
- Lossy
 - e.g. compression algorithms for images (jpeg, etcetera)
 - e.g. Principal Components Analysis technique for hyperspectral sounders

Why not to compress the data?

- Lossless
 - Exact reconstruction of the input (with machine precision)
- Near-lossless
 - Input reconstruction with a maximum defined error
 - Error typically a defined (small) fraction of instrument noise
 - Example: digitisation error (or quantisation error)
- Lossy
 - e.g. compression algorithms for images (jpeg, etcetera)
 - e.g. Principal Components Analysis technique for hyperspectral sounders

Why not to compress the data?

Compression types definitions (from Atkinson, 2013):

- Lossless
 - Exact reconstruction of the input (with machine precision)
- Near-lossless
 - Input reconstruction with a maximum defined error
 - Error typically a defined (small) fraction of instrument noise
 - Example: digitisation error (or quantisation error)
- Lossy
 - e.g. compression algorithms for images (jpeg, etcetera)
 - e.g. Principal Components Analysis technique for hyperspectral sounders

For IASI, the best performances were obtained using PCA plus residuals quantisation

PCA definition

PCA allows the reduction of the dimensionality of a problem by examining the linear relationship between all the variables contained in a multivariate dataset

The original set of correlated variables, y^{obs}, is replaced by a smaller number of uncorrelated variables called principal component scores (PCS, x^{pcs}). A corresponds with the eigenvectors matrix:

$$x^{pcs} = A * y^{obs}$$

▶ To return to the original space it is only need to make the following multiplication:

$$y^{pcs} = A^T * x^{pcs}$$

PCA definition

PCA allows the reduction of the dimensionality of a problem by examining the linear relationship between all the variables contained in a multivariate dataset

The original set of correlated variables, y^{obs}, is replaced by a smaller number of uncorrelated variables called principal component scores (PCS, x^{pcs}). A corresponds with the eigenvectors matrix:

$$x^{pcs} = A * y^{obs}$$

► To return to the original space it is only need to make the following multiplication:

$$y^{pcs} = A^T * x^{pcs}$$

PCA definition

PCA allows the reduction of the dimensionality of a problem by examining the linear relationship between all the variables contained in a multivariate dataset

The original set of correlated variables, y^{obs}, is replaced by a smaller number of uncorrelated variables called principal component scores (PCS, x^{pcs}). A corresponds with the eigenvectors matrix:

$$x^{pcs} = A * y^{obs}$$

► To return to the original space it is only need to make the following multiplication:

$$y^{pcs} = A^T * x^{pcs}$$

PCA definition

PCA allows the reduction of the dimensionality of a problem by examining the linear relationship between all the variables contained in a multivariate dataset

The original set of correlated variables, y^{obs}, is replaced by a smaller number of uncorrelated variables called principal component scores (PCS, x^{pcs}). A corresponds with the eigenvectors matrix:

$$x^{pcs} = A * y^{obs}$$

> To return to the original space it is only need to make the following multiplication:

$$y^{pcs} = A^T * x^{pcs}$$

$$y^{obs} = A * x^{pcs} + residuals = y^{pcs} + residuals$$

PCA definition

PCA allows the reduction of the dimensionality of a problem by examining the linear relationship between all the variables contained in a multivariate dataset

The original set of correlated variables, y^{obs}, is replaced by a smaller number of uncorrelated variables called principal component scores (PCS, x^{pcs}). A corresponds with the eigenvectors matrix:

$$x^{pcs} = A * y^{obs}$$

> To return to the original space it is only need to make the following multiplication:

$$y^{pcs} = A^T * x^{pcs}$$

PC scores and quantised residuals proposed by Tony Lee and Steve Bedford (2004), slide from Atkinson (2013)

It is a lossy compression, but most of the "loss" is noise

- 1. Noise-normalised radiance: $y = \frac{r-y_0}{n}$
 - y Normalised radiance
 - r Observed spectrum
 - n Noise
 - y₀ Mean

2. PC Score (integer):
$$s = NINT(\frac{E^T y}{f_s})$$

- S PC score
- E^T Eigenvectors matrix transposed
 - fs Quantisation factor, typically 0.5
- 3. Residual (integer): $\Delta y = NINT(\frac{y-f_s E s}{f_r})$
 - f_r Noise quantisation factor, typically 0.5. Gives 1% noise increase

Assimilation of RRs - J. Andrey-Andrés

An example of PCA compression for a single channel...

IASI channel 1191, @942.5 cm⁻¹ \Rightarrow Surface channel

An example of PCA compression for a single channel...

IASI channel 1191, @942.5 cm⁻¹ \Rightarrow Surface channel

dépasser les frontières

Afternoon IASI overpass the 20130806

An example of PCA compression for a single channel...

IASI channel 1191, @942.5 cm⁻¹ \Rightarrow Surface channel

dépasser les frontières

Afternoon IASI overpass the 20130806

How can we assimilate PCA compressed data

- 1. We can use reconstructed radiances from PCs...
 - + No much work to adapt current assimilation systems
 - + Channel noises are filtered by PCA
 - Interchannel correlations are heavily increased (and we use a diagonal R matrix...)
- We can assimilate PCs directly
 - + We can use all the information registered in the observation
 - More difficult to understand. PCs are a mathematical representation
 - Some PCs Jacobians present structures peaking low and high in the atmosphere \Rightarrow What happen for low-top models?

(Figure from McNally (2013))

dénasser les frontières

METEO FRANCE

Outline

1 Introduction

2 Methodology

3 Results

4 Ongoing works...

5 Conclusions

Météo France AROME NWP model

AROME is the operational convective scale non-hydrostatic limited area Numerical Weather Prediction (NWP) model used at Météo France

×.	100 m			
4		2	1	2

	AROME-OPER	AROME-EXP
Mesh grid	1.3 km	1.3 km
Assim. cycle	1h	3h
Levels	90	60/90L
Model top	10 hPa	1/10 hPa
IASI px assim	1/8	all
IASI ch assim	44	up to 123? / 44

Météo France AROME NWP model

Assir

AROME is the operational convective scale non-hydrostatic limited area Numerical Weather Prediction (NWP) model used at Météo France

197 G. B. M.	a state of the sta		AROME-OPER	AROME-EXP	
222	Alt and	Mesh grid	1.3 km	1.3 km	
and the second	E.	Assim. cycle	1h	3h	
	CAR .	Levels	90	60/90L	
		Model top	10 hPa	1/10 hPa	
1 - 1 - 0°		IASI px assim	1/8	all	
		IASI ch assim	44	up to 123? / 44	
		IASI spectrum			
290					
280		الليدياني.			
<u>م</u> 270	T' \\{""				
1 260 E	י עיויען י	LA L			
E 250					
دی 240 - ا	14				
16 230	14.		T 1		
220	ssim channels	and the state of the second	-		
210 600	1000	1500 2000	2500 2800		
		Wavenumber [cm-1]	CITS		INCE
nilation of RRs — J. Andrey-A	Indrés	9	dépasser les	frantiëres	
			-		

Météo France AROME NWP model

Assir

AROME is the operational convective scale non-hydrostatic limited area Numerical Weather Prediction (NWP) model used at Météo France

F.S. Die	5	and a second sec			AROME-OP	ER	AROME-EX	٢P
2012		Alterna	M	esh grid	1.3	km	1.3 k	m
2	and the	E	As	ssim. cycle		1h	:	3h
	7 - 44	Contraction of the second seco	Le	evels		90	60/9	0L
	5	1	M	odel top	10 h	۱Pa	1/10 hl	Pa
15	1.00		IA	SI px assim	ı	1/8		all
			IA	SI ch assim	ı	44 u	p to 123? / 4	44
			IASIs	nectrum				
	290 [· · · · · · · · · · · · · · · · · · ·			
L.	280			ألليطافن				
칠	270	7 ' \\'44		J Harr	η, (1			
eratu	260	י עי		A ANN A MINI '				
emp	250							
esst	240		i in the second se					
rigtr	230				▼! -			
۵	220 6OL a	assim. channels						
	210 90L a	assim, channels	1500	2000	2500 290	0		
	000	1000	Wavenur	nber [cm-1]	2300 280		METEO	
nilation of RRs -	- J. Andrey-	Andrés	9		(WEIEU	
						cepasser les trantières		
- Impact on a low-top model: Old and New AROME vertical resolutions have been chosen to test
- Assimilation of both RAD and RR IASI EUMETSAT data

Lvls. / Obs.		RAD
60L	B5MK	

- Period of study: 20141108 to 20141208
- Preliminary analysis of this experiments (last results obtained last Thursday).
 Final results will be preented in the next IASI conference (Antibes, April 2016)

- Impact on a low-top model: Old and New AROME vertical resolutions have been chosen to test
- Assimilation of both RAD and RR IASI EUMETSAT data

Lvls. / Obs.	RR	RAD
90L	B5MJ	B5ML
60L	B5MK	B5J3

- Period of study: 20141108 to 20141208
- Preliminary analysis of this experiments (last results obtained last Thursday).
 Final results will be preented in the next IASI conference (Antibes, April 2016)

- Impact on a low-top model: Old and New AROME vertical resolutions have been chosen to test
- Assimilation of both RAD and RR IASI EUMETSAT data

Lvls. / Obs.	RR	RAD
90L	B5MJ	B5ML
60L	B5MK	B5J3

Period of study: 20141108 to 20141208

Preliminary analysis of this experiments (last results obtained last Thursday).
 Final results will be preented in the next IASI conference (Antibes, April 2016)

- Impact on a low-top model: Old and New AROME vertical resolutions have been chosen to test
- Assimilation of both RAD and RR IASI EUMETSAT data

Lvls. / Obs.	RR	RAD
90L	B5MJ	B5ML
60L	B5MK	B5J3

- Period of study: 20141108 to 20141208
- Preliminary analysis of this experiments (last results obtained last Thursday).
 Final results will be preented in the next IASI conference (Antibes, April 2016)

Can we use IASI PCs product?

EUMETSAT IASI PCs product was generated using a global domain. Is this product valid for a regional model?

 \Rightarrow RR-RAD Differences for 1191 channel (942.5 cm-1)

dépasser les frontières

And what is a clear channel...

And what is a clear channel...

And what is a clear channel...

And what is a clear channel...

The algorithm to detect cloudy channels comes from McNally&Watts (2003)

And what is a clear channel...

The algorithm to detect cloudy channels comes from McNally&Watts (2003)

McNally & Watts, Band 1

1 Introduction

2 Methodology

3 Results

- Used observations
- Forecast scores

4 Ongoing works...

5 Conclusions

Impact of lowering the model top

METEO FRANCE

dépasser les frontières

Used IASI observations

Impact of assimilate RR instead of RAD

METEO FRANCE

Temporal evolution of assimilation statistics - ch 327

Weighting function peaking at 825 hPa

Temporal evolution of assimilation statistics - ch 1191

Surface channel

Temporal evolution of assimilation statistics - ch 2701

Weighting function peaking at 440 hPa

METEO FRANCE

dépasser les frontières

Impact in other satellite observations (I)

AMSU-A

ANCE

dépasser les frontières

Impact in other satellite observations (II)

SEVIRI

ANCE

dépasser les frontières

Scores: low-top impact (RR90 vs RR60), 3h terms

Scores: low-top impact (RR90 vs RR60), 12h terms

Scores: low-top impact (RR90 vs RR60), 24h terms

Scores: RR impact (RR90 vs RAD90), 3h terms

Scores: RR impact (RR90 vs RAD90), 12h terms

Scores: RR impact (RR90 vs RAD90), 24h terms

1 Introduction

2 Methodology

3 Results

4 Ongoing works...

5 Conclusions

Direct assimilation of PCs

A new dataset of full IASI spectra is being grabbed at MF

- A PCs dataset will be generated using RTTOV eigenvectors (need of an adapted-to-PCs RT model)
- Preliminary 1D-VAR experiments will be carried out to asses the impact of having a low-top model
 A few days at MetOffice (wih P. Weston) for NWPSAF 1D-Var software modification

 Modification of AROME bias correction, screening and minimization steps to work with PCs instead of RAD
 A few days at ECMWF (wih M. Matricardi) are programmed to integrate PCs assimilation scheme in AROME

A new dataset of full IASI spectra is being grabbed at MF

- A PCs dataset will be generated using RTTOV eigenvectors (need of an adapted-to-PCs RT model)
- Preliminary 1D-VAR experiments will be carried out to asses the impact of having a low-top model
 A few days at MetOffice (wih P. Weston) for NWPSAF 1D-Var software modification

 Modification of AROME bias correction, screening and minimization steps to work with PCs instead of RAD
 A few days at ECMWF (wih M. Matricardi) are programmed to integrate PCs assimilation scheme in AROME

- A new dataset of full IASI spectra is being grabbed at MF
- A PCs dataset will be generated using RTTOV eigenvectors (need of an adapted-to-PCs RT model)
- Preliminary 1D-VAR experiments will be carried out to asses the impact of having a low-top model
 A few days at MetOffice (wih P. Weston) for NWPSAF 1D-Var software modification

 Modification of AROME bias correction, screening and minimization steps to work with PCs instead of RAD
 A few days at ECMWF (wih M. Matricardi) are programmed to integrate PCs assimilation scheme in AROME

- A new dataset of full IASI spectra is being grabbed at MF
- A PCs dataset will be generated using RTTOV eigenvectors (need of an adapted-to-PCs RT model)
- Preliminary 1D-VAR experiments will be carried out to asses the impact of having a low-top model
 A few days at MetOffice (wih P. Weston) for NWPSAF 1D-Var software modification
- Modification of AROME bias correction, screening and minimization steps to work with PCs instead of RAD
 A few days at ECMWF (wih M. Matricardi) are programmed to integrate PCs assimilation scheme in AROME

1 Introduction

2 Methodology

3 Results

4 Ongoing works...

5 Conclusions

- Different studies are being carried out at MF to work in the assimilation of IR hyperspectral PCA compress data in a low-top non-hydrostatic mesoscale model
- Impact of having lowered the AROME model top has been also investigated
- There are two different possibilities to assimilate IR hyperspectral PCA compress data: RR and PCs
- Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is reduced interchannel correlation is increased
- Preliminary results present almost non differences between two assimilations (Using a diagonal R-matrix RAD bias correction from ARPEGE, and same channel selection!!!)
- To assimilate PCs requires an adapted RT model
 ⇒ Last version of RTTOV RT model and ECMWF eigenvectorsfor PCs are selected
- New assimilation and forecast experiments will be run using PCs from ECMWF and original RAD

- Different studies are being carried out at MF to work in the assimilation of IR hyperspectral PCA compress data in a low-top non-hydrostatic mesoscale model
- Impact of having lowered the AROME model top has been also investigated
- There are two different possibilities to assimilate IR hyperspectral PCA compress data: RR and PCs
- Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is reduced interchannel correlation is increased
- Preliminary results present almost non differences between two assimilations (Using a diagonal R-matrix RAD bias correction from ARPEGE, and same channel selection!!!)
- To assimilate PCs requires an adapted RT model
 ⇒ Last version of RTTOV RT model and ECMWF eigenvectorsfor PCs are selected
- New assimilation and forecast experiments will be run using PCs from ECMWF and original RAD

- Different studies are being carried out at MF to work in the assimilation of IR hyperspectral PCA compress data in a low-top non-hydrostatic mesoscale model
- Impact of having lowered the AROME model top has been also investigated
- There are two different possibilities to assimilate IR hyperspectral PCA compress data: RR and PCs
- Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is reduced interchannel correlation is increased
- Preliminary results present almost non differences between two assimilations (Using a diagonal R-matrix RAD bias correction from ARPEGE, and same channel selection!!!)
- To assimilate PCs requires an adapted RT model
 ⇒ Last version of RTTOV RT model and ECMWF eigenvectorsfor PCs are selected
- New assimilation and forecast experiments will be run using PCs from ECMWF and original RAD

- Different studies are being carried out at MF to work in the assimilation of IR hyperspectral PCA compress data in a low-top non-hydrostatic mesoscale model
- Impact of having lowered the AROME model top has been also investigated
- There are two different possibilities to assimilate IR hyperspectral PCA compress data: RR and PCs
- Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is reduced interchannel correlation is increased
- Preliminary results present almost non differences between two assimilations (Using a diagonal R-matrix RAD bias correction from ARPEGE, and same channel selection!!!)
- To assimilate PCs requires an adapted RT model
 ⇒ Last version of RTTOV RT model and ECMWF eigenvectorsfor PCs are selected
- New assimilation and forecast experiments will be run using PCs from ECMWF and original RAD

- Different studies are being carried out at MF to work in the assimilation of IR hyperspectral PCA compress data in a low-top non-hydrostatic mesoscale model
- Impact of having lowered the AROME model top has been also investigated
- There are two different possibilities to assimilate IR hyperspectral PCA compress data: RR and PCs
- Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is reduced interchannel correlation is increased
- Preliminary results present almost non differences between two assimilations (Using a diagonal R-matrix RAD bias correction from ARPEGE, and same channel selection!!!)
- To assimilate PCs requires an adapted RT model
 ⇒ Last version of RTTOV RT model and ECMWF eigenvectorsfor PCs are selected
- New assimilation and forecast experiments will be run using PCs from ECMWF and original RAD

- Different studies are being carried out at MF to work in the assimilation of IR hyperspectral PCA compress data in a low-top non-hydrostatic mesoscale model
- Impact of having lowered the AROME model top has been also investigated
- There are two different possibilities to assimilate IR hyperspectral PCA compress data: RR and PCs
- Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is reduced interchannel correlation is increased
- Preliminary results present almost non differences between two assimilations (Using a diagonal R-matrix RAD bias correction from ARPEGE, and same channel selection!!!)
- ► To assimilate PCs requires an adapted RT model ⇒ Last version of RTTOV RT model and ECMWF eigenvectorsfor PCs are selected
- New assimilation and forecast experiments will be run using PCs from ECMWF and original RAD

- Different studies are being carried out at MF to work in the assimilation of IR hyperspectral PCA compress data in a low-top non-hydrostatic mesoscale model
- Impact of having lowered the AROME model top has been also investigated
- There are two different possibilities to assimilate IR hyperspectral PCA compress data: RR and PCs
- Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is reduced interchannel correlation is increased
- Preliminary results present almost non differences between two assimilations (Using a diagonal R-matrix RAD bias correction from ARPEGE, and same channel selection!!!)
- ► To assimilate PCs requires an adapted RT model ⇒ Last version of RTTOV RT model and ECMWF eigenvectorsfor PCs are selected
- New assimilation and forecast experiments will be run using PCs from ECMWF and original RAD

Thank you for your attention

Main « IASI » updates in Météo-France global model

5