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Evolution of IR sounders
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Evolution of IR sounders

HIRS

NASA
TIROS-N
191IR + 1 Visch

Instrument  Year  Sat. Channels  Spec. resolution
HIRS 1978 TIROS-N 19 + 1 3to40cm~T
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Evolution of IR sounders

2002

#--»

HIRS _ ARS

NASA NASA
TIROS-N AQUA
19IR + 1 Visch

Instrument  Year  Sat. Channels  Spec. resolution
HIRS 1978 TIROS-N 19 + 1 3to40cm~T
AIRS 2002 Aqua 2,378 0.25t0 1 cm~!
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Evolution of IR sounders

2002 2006

HIRS ~ ARS
NASA =" NASA
TIROS-N AQUA
19I1R + 1 Visch
IASI
EUM + CNES
MetOP
Instrument  Year  Sat. Channels  Spec. resolution
HIRS 1978 TIROS-N 19 + 1 3to40cm~T
AIRS 2002 Aqua 2,378 0.25t0 1 cm~!
IASI 2006 Metop 8,461 0.25 cm~!
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Evolution of IR sounders

2002 2006 2011

HIRS ~ ARS Crls
NASA =" NASA NOAA
TIROS-N AQUA NPP Suomi
191R + 1 Visch
IASI
EUM + CNES
MetOP
Instrument  Year  Sat. Channels  Spec. resolution
HIRS 1978 TIROS-N 19 + 1 3to40cm~T
AIRS 2002 Aqua 2,378 0.25t0 1 cm~!
IASI 2006 Metop 8,461 0.25 cm~!
CRIS 2011 JPSS 1,305 0.625 cm~—!
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Evolution of IR sounders

2002 2006 2011 2021

-
HIRS ~ ARS Crls IASI-NG
NASA = NASA NOAA EUM + CNES
TIROS-N AQUA NPP Suomi MetOP-SG
191R + 1 Visch
IASI MTG-IRS
EUM + CNES EUMETSAT
MetOP Meteosat:
Third Generation
Instrument  Year  Sat. Channels  Spec. resolution
HIRS 1978 TIROS-N 19 +1 3to40cm~T
AIRS 2002 Aqua 2,378 0.25t0 1 cm~!
IASI 2006 Metop 8,461 0.25 cm~!
CRIS 2011 JPSS 1,305 0.625 cm~—!
IASI-NG 2021  Metop-SG 16,921 0.125cm~!
IRS 2021 MTG 1,738 0.625 cm~'
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Use of IR data in NWP models

Data from IR sounders are the most used by NWP models in terms of numberJ

1le8 analyses cut-off long ARPEGE métropole - observations conventionnelles et satellites

7

Cumul mensuel du nombre d'observations

ln déc fn ok n dec kn déc fn dic hn déc hn dic hn i hn déc ko Gk hn dic n dec ko déc fn déc
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
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Use of IR data in NWP models

Data from IR sounders are the most used by NWP models in terms of numberJ

1le8 analyses cut-off long ARPEGE métropole - observations conventionnelles et satellites

7

Cumul mensuel du nombre d'observations

ln déc n déc mn o déc pn déc b déc n o dic b okc hn o déc bn o déc o déc

n déc hn dic i dec kn o déc
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

This tendency will continue with the arrival of new hyperspectral IR sounders,
above everything IRS J

[ METEO FRANCE

passer b ol

Assimilation of RRs — J. Andrey-Andrés 2



Use of IR data in NWP models

Data from IR sounders are the most used by NWP models in terms of numberJ

,1e8 analyses cut-off long ARPEGE métropole - observations conventionnelles et satellites

I du nombre d'observations
-

cumul mensuel

% o e e o

n déc hn dic n dec ko déc fn dic a
2002 2003 2004 2005 2006 2007

IASI MTG-IRS
Spectral sampling 0.25cm~T  0.625cm~T
Samples per spectrum 8,461 1,808
Spatial sampling at nadir 12 km 4 km
Samples per hour 54,000 8.0 108
Estimation of data volume 0.92 GB/h 28 GB/h

(Atkinson, 2013)
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Consequences of the huge data volumes

Atmospheric profiling errors are improved
More chemical compounds can be profiled

W

» Data dissemination becomes impossible (costs) and data storage
needs explose

» Inter-channel redundancy becomes more and more important.
NWP center keep just 500 IASI channels from the 8461

IASI spectrum
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There is a need to reduce the data volume. ..

Why not to compress the data? J

Compression types definitions (from Atkinson, 2013):
> Lossless
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Compression types definitions (from Atkinson, 2013):
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There is a need to reduce the data volume. ..

Why not to compress the data? J

Compression types definitions (from Atkinson, 2013):
> Lossless
> Exact reconstruction of the input (with machine precision)
> Near-lossless

> Input reconstruction with a maximum defined error
> Error typically a defined (small) fraction of instrument noise
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Why not to compress the data? J
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> Exact reconstruction of the input (with machine precision)
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> Input reconstruction with a maximum defined error
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There is a need to reduce the data volume. ..

Why not to compress the data? J

Compression types definitions (from Atkinson, 2013):
> Lossless
> Exact reconstruction of the input (with machine precision)
> Near-lossless
> Input reconstruction with a maximum defined error
> Error typically a defined (small) fraction of instrument noise
> Example: digitisation error (or quantisation error)
> Lossy

> e.g. compression algorithms for images (jpeg, etcetera)
> e.g. Principal Components Analysis technique for hyperspectral sounders

For IASI, the best performances were obtained using PCA plus residuals
quantisation J
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The PCA compression technique

PCA definition

PCA allows the reduction of the dimensionality of a problem by
examining the linear relationship between all the variables contained
in a multivariate dataset
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The PCA compression technique

PCA definition

PCA allows the reduction of the dimensionality of a problem by
examining the linear relationship between all the variables contained
in a multivariate dataset

» The original set of correlated variables, y°Ps, is replaced by a smaller number of
uncorrelated variables called principal component scores (PCS, xP°). A
corresponds with the eigenvectors matrix:

XPCS — A x yobs
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The PCA compression technique

PCA definition

PCA allows the reduction of the dimensionality of a problem by
examining the linear relationship between all the variables contained
in a multivariate dataset

» The original set of correlated variables, y°Ps, is replaced by a smaller number of
uncorrelated variables called principal component scores (PCS, xP¢S). A
corresponds with the eigenvectors matrix:

XPCS — A x yobs
» To return to the original space it is only need to make the following multiplication:
ypcs — AT % xPcs

» These new variables retain most of the information contained in the original
dataset (most of the gaussian noise is filtered):

yobS = A x xPCS 1 residuals = yP° + residuals
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The PCA compression technique

PCA definition

PCA allows the reduction of the dimensionality of a problem by
examining the linear relationship between all the variables contained
in a multivariate dataset

» The original set of correlated variables, y°Ps, is replaced by a smaller number of
uncorrelated variables called principal component scores (PCS, xP¢S). A
corresponds with the eigenvectors matrix:

XPCS — A x yobs
» To return to the original space it is only need to make the following multiplication:
ypcs AT % xPcs

» These new variables retain most of the information contained in the original
dataset (most of the gaussian noise is filtered):
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PC scores and quantised residuals
proposed by Tony Lee and Steve Bedford (2004), slide from Atkinson (2013)

It is a lossy compression, but most of the “loss” is noise

1. Noise-normalised radiance: y=":R

y Normalised radiance
r Observed spectrum
n Noise
Yo Mean
2. PC Score (integer): s = NINT(Ef—:y)

s PC score
ET Eigenvectors matrix transposed
fs Quantisation factor, typically 0.5

3. Residual (integer): Ay = NINT(Y=£2)

fr Noise quantisation factor, typically 0.5. Gives 1% noise increase

E FRANCE
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An example of PCA compression for a single channel. ..

Channel 1191
o T T T

IASI channel 1191, @942.5 cm—' L o
= Surface channel § o
o 800
1000

0.00 0.05 0.10 0.15

Weighting function
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An example of PCA compression for a single channel. ..

Channel 1191
o T T T

IASI channel 1191, @942.5 cm—1
= Surface channel

Pressure [hPa]

0.00 0.05 0.10 0.15
Weighting function

Afternoon IASI overpass the 2013080

IAS| raw radiances (RAD) IASI reconstructed radiances (RR)
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An example of PCA compression for a single channel. ..

Channel 1191
o T T T

IASI channel 1191, @942.5 cm—1
= Surface channel

Pressure [hPa]

0.00 0.05 0.10 0.15
Weighting function

Afternoon IASI overpass the 2013080

Differences in BT,
i i "
Not in radiances!!! NCE

IASI raw radiances (RAD)

A\
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How can we assimilate PCA compressed data

1. We can use reconstructed radiances from PCs. ..

+ No much work to adapt current assimilation systems
+ Channel noises are filtered by PCA

- Interchannel correlations are heavily increased (and we use a
diagonal R matrix. . .)

2. We can assimilate PCs directly

+ We can use all the information registered in the observation

- More difficult to understand. PCs are a mathematical
representation

- Some PCs Jacobians present structures peaking low and high in
the atmosphere = What happen for low-top models?

(Figure from McNally (2013))
@ [ METEO FRANCE
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Outline

Methodology

@ [® METEO FRANCE

passer b ol

Assimilation of RRs — J. Andrey-Andrés 8



Météo France AROME NWP model

Weather Prediction (NWP) model used at Météo France

AROME is the operational convective scale non-hydrostatic limited area Numerical J

Assimilation of RRs — J. Andrey-Andrés
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Mesh grid
Assim. cycle
Levels

Model top
IASI px assim
IASI ch assim
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90 60/90L
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Météo France AROME NWP model

Weather Prediction (NWP) model used at Météo France

AROME is the operational convective scale non-hydrostatic limited area Numerical J
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Météo France AROME NWP model

AROME is the operational convective scale non-hydrostatic limited area Numerical
Weather Prediction (NWP) model used at Météo France J

AROME-OPER AROME-EXP

Mesh grid 1.3 km 1.3 km
Assim. cycle 1h 3h
Levels 90 60/90L
Model top 10 hPa 1/10 hPa
IASI px assim 1/8 all
IASI ch assim 44 upto 123? /44

IASI spectrum
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And what have we done...

logarithmic pressures logarithmic pressures
> Impact on a low-top model: o1 o1y
Old and New AROME vertical ] ]
resolutions have been chosen A ER E
to test 1
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And what have we done...

Togarithmic pressures logarithmic pressures

» Impact on a low-top model: oip oup
Old and New AROME vertical ]
resolutions have been chosen
to test

» Assimilation of both RAD and
RR IASI EUMETSAT data

Lvls. / Obs. RR RAD
90L B5MJ  BS5ML
60L B5MK  B5J3
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And what have we done...

Togarithmic pressures logarithmic pressures

> Impact on a low-top model: o1 o1y
Old and New AROME vertical
resolutions have been chosen I T E
to test 1 1
» Assimilation of both RAD and o EIN

RR IAS| EUMETSAT data

Lvls. / Obs. RR RAD
90L B5MJ  BS5ML
60L B5MK  B5J3

» Period of study: 20141108 to 20141208

» Preliminary analysis of this experiments (last results obtained last Thursday).
Final results will be preented in the next IASI conference (Antibes, April 2016)
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Can we use IASI PCs product?

EUMETSAT IASI PCs product was generated using a global domain. Is this product
valid for a regional model?

=- RR-RAD Differences for 1191 channel (942.5 cm-1)

Global domain AROME domain

-1.5 -1 -0.5 0 0.5 1

16 -15 <Al -0.5 0 0.5 1
(RR - RAD) differences

(RR - RAD) differences

1.5

Domain  Number Average [K] Std.Dev. [K] Min. [K]

Max. [K]
Global 91631 -0.001396 0.1959 -1.5433 1.5420
AROME 2665 -0.001701 0.1965 -1.2299  0.9513

Assimilation of RRs — J. Andrey-Andrés
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NWP models assimilate IR clear channels...

And what is a clear channel. .. J
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NWP models assimilate IR clear channels...

And what is a clear channel. ..

3002 channel

200

400

600

Pressure [hPa]

Weighting function
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NWP models assimilate IR clear channels...

And what is a clear channel. .. J

3002 channel
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NWP models assimilate IR clear channels...

And what is a clear channel. .. J

3002 channel

400
B Weighting function The algorithm to detect cloudy channels
comes from McNally&Watts (2003)

Pressure [hPa]

5483 channel

Pressure [hPa]
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NWP models assimilate IR clear channels...

And what is a clear channel. .. j

3002 channel

The algorithm to detect cloudy channels
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Outline

Results
m Used observations

m Forecast scores
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Temporal evolution of assimilation statistics - ch 327

Weighting function peaking at 825 hPa
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Temporal evolution of assimilation statistics - ch 1191

Surface channel

Channel 1191
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Temporal evolution of assimilation statistics - ch 2701

Weighting function peaking at 440 hPa

Channel 2701
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RMS of forecasted vertical profiles against a reference (PAROME) at

different forecast terms

Scores: low-top impact (RR90 vs RR60), 3h terms
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different forecast terms

Scores: low-top impact (RR90 vs RR60), 12h terms

RMS of forecasted vertical profiles against a reference (PAROME) at J
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Scores: low-top impact (RR90 vs RR60), 24h terms

RMS of forecasted vertical profiles against a reference (PAROME) at
different forecast terms J
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Scores: RR impact (RR90 vs RAD90), 3h terms

RMS of forecasted vertical profiles against a reference (PAROME) at
different forecast terms J
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Scores: RR impact (RR90 vs RAD90), 12h terms

RMS of forecasted vertical profiles against a reference (PAROME) at
different forecast terms J
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Scores: RR impact (RR90 vs RAD90), 24h terms

RMS of forecasted vertical profiles against a reference (PAROME) at
different forecast terms J

Temperature Relative Humidity
100 | T B 100
200 [ g 200
300 B 300
g wop 1 § 4w
e 00 f 1 5 50
2 600 | 4 3 600
8 8
< 700 | 4 & 700
800 [ B 800
900 (-{RADS0 24h B 900
1000 [L;PR%0 24 T 1000 E, o
07 075 08 085 09 095 1 105 11 115 12 4 6 8 10 12 14 16 18 20 22 24
Root Mean Square error [K] Root Mean Square error [%]
Geopotential Wind
100 | T B 100 | '
200 | B 200
300 B 300
g ool 1 § wop
g soor 1 5 sor
2 600 [ 4 3 600
o o
<700 4 & 700f
800 B 800
900 B 900 g
1000 I S B S W P W 1000 I I I I L L
5 55 6 65 7 75 8 85 9 95 10 2 25 3 35 4 5 55 6

"
45
Root Mean Square error [m] Root Mean swmr' M ETEO FRAN CE

Assimilation of RRs — J. Andrey-Andrés 25

passer b ol



Outline

Ongoing works. . .
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Direct assimilation of PCs

» A new dataset of full IASI spectra is being grabbed at MF
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Direct assimilation of PCs

» A new dataset of full IASI spectra is being grabbed at MF

» A PCs dataset will be generated using RTTOV eigenvectors (need of an
adapted-to-PCs RT model)
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Direct assimilation of PCs

» A new dataset of full IASI spectra is being grabbed at MF

» A PCs dataset will be generated using RTTOV eigenvectors (need of an
adapted-to-PCs RT model)

» Preliminary 1D-VAR experiments will be carried out to asses the impact of having
a low-top model
= A few days at MetOffice (wih P. Weston) for NWPSAF 1D-Var software
modification
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Direct assimilation of PCs

» A new dataset of full IASI spectra is being grabbed at MF

» A PCs dataset will be generated using RTTOV eigenvectors (need of an
adapted-to-PCs RT model)

» Preliminary 1D-VAR experiments will be carried out to asses the impact of having
a low-top model
= A few days at MetOffice (wih P. Weston) for NWPSAF 1D-Var software
modification

» Modification of AROME bias correction, screening and minimization steps to work
with PCs instead of RAD
= A few days at ECMWF (wih M. Matricardi) are programmed to integrate PCs
assimilation scheme in AROME
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Conclusions

» Different studies are being carried out at MF to work in the assimilation of IR
hyperspectral PCA compress data in a low-top non-hydrostatic mesoscale model
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» Impact of having lowered the AROME model top has been also investigated

» There are two different possibilities to assimilate IR hyperspectral PCA compress
data: RR and PCs

» Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is
reduced interchannel correlation is increased

» Preliminary results present almost non differences between two assimilations
(Using a diagonal R-matrix RAD bias correction from ARPEGE, and same
channel selection!!!)
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» Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is
reduced interchannel correlation is increased

» Preliminary results present almost non differences between two assimilations
(Using a diagonal R-matrix RAD bias correction from ARPEGE, and same
channel selection!!!)

» To assimilate PCs requires an adapted RT model
= Last version of RTTOV RT model and ECMWF eigenvectorsfor PCs are
selected
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Conclusions

» Different studies are being carried out at MF to work in the assimilation of IR
hyperspectral PCA compress data in a low-top non-hydrostatic mesoscale model

» Impact of having lowered the AROME model top has been also investigated

» There are two different possibilities to assimilate IR hyperspectral PCA compress
data: RR and PCs

» Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is
reduced interchannel correlation is increased

» Preliminary results present almost non differences between two assimilations
(Using a diagonal R-matrix RAD bias correction from ARPEGE, and same
channel selection!!!)

» To assimilate PCs requires an adapted RT model
= Last version of RTTOV RT model and ECMWF eigenvectorsfor PCs are
selected

> New assimilation and forecast experiments will be run using PCs from ECMWF
and original RAD
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Main « IASI » updates in Météo-France global model
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