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AIRS 2002 Aqua 2,378 0.25 to 1 cm−1

IASI 2006 Metop 8,461 0.25 cm−1

CRIS 2011 JPSS 1,305 0.625 cm−1

IASI-NG 2021 Metop-SG 16,921 0.125 cm−1

IRS 2021 MTG 1,738 0.625 cm−1
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Use of IR data in NWP models

Data from IR sounders are the most used by NWP models in terms of number

Assimilation of RRs — J. Andrey-Andrés 2



Use of IR data in NWP models

Data from IR sounders are the most used by NWP models in terms of number

This tendency will continue with the arrival of new hyperspectral IR sounders,
above everything IRS
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Use of IR data in NWP models

Data from IR sounders are the most used by NWP models in terms of number

IASI MTG-IRS
Spectral sampling 0.25 cm−1 0.625 cm−1

Samples per spectrum 8,461 1,808
Spatial sampling at nadir 12 km 4 km
Samples per hour 54,000 8.0 106

Estimation of data volume 0.92 GB/h 28 GB/h
(Atkinson, 2013)
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Consequences of the huge data volumes

I Atmospheric profiling errors are improved
I More chemical compounds can be profiled

I Data dissemination becomes impossible (costs) and data storage
needs explose

I Inter-channel redundancy becomes more and more important.
NWP center keep just 500 IASI channels from the 8461
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There is a need to reduce the data volume. . .

Why not to compress the data?

Compression types definitions (from Atkinson, 2013):
I Lossless

I Exact reconstruction of the input (with machine precision)
I Near-lossless

I Input reconstruction with a maximum defined error
I Error typically a defined (small) fraction of instrument noise
I Example: digitisation error (or quantisation error)

I Lossy
I e.g. compression algorithms for images (jpeg, etcetera)
I e.g. Principal Components Analysis technique for hyperspectral sounders
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There is a need to reduce the data volume. . .

Why not to compress the data?

Compression types definitions (from Atkinson, 2013):
I Lossless

I Exact reconstruction of the input (with machine precision)
I Near-lossless

I Input reconstruction with a maximum defined error
I Error typically a defined (small) fraction of instrument noise
I Example: digitisation error (or quantisation error)

I Lossy
I e.g. compression algorithms for images (jpeg, etcetera)
I e.g. Principal Components Analysis technique for hyperspectral sounders

For IASI, the best performances were obtained using PCA plus residuals
quantisation
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The PCA compression technique

PCA definition
PCA allows the reduction of the dimensionality of a problem by

examining the linear relationship between all the variables contained
in a multivariate dataset

I The original set of correlated variables, yobs , is replaced by a smaller number of
uncorrelated variables called principal component scores (PCS, xpcs). A
corresponds with the eigenvectors matrix:

xpcs = A ∗ yobs

I To return to the original space it is only need to make the following multiplication:

ypcs = AT ∗ xpcs

I These new variables retain most of the information contained in the original
dataset (most of the gaussian noise is filtered):
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The PCA compression technique

PCA definition
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PC scores and quantised residuals
proposed by Tony Lee and Steve Bedford (2004), slide from Atkinson (2013)

It is a lossy compression, but most of the “loss” is noise

1. Noise-normalised radiance: y =
r−y0

n

y Normalised radiance
r Observed spectrum
n Noise

y0 Mean

2. PC Score (integer): s = NINT ( ET y
fs

)

s PC score
ET Eigenvectors matrix transposed

fs Quantisation factor, typically 0.5

3. Residual (integer): ∆y = NINT ( y−fs E s
fr

)

fr Noise quantisation factor, typically 0.5. Gives 1% noise increase
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An example of PCA compression for a single channel. . .

IASI channel 1191, @942.5 cm−1

⇒ Surface channel
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An example of PCA compression for a single channel. . .

IASI channel 1191, @942.5 cm−1

⇒ Surface channel

Afternoon IASI overpass the 20130806

IASI raw radiances (RAD) IASI reconstructed radiances (RR)
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An example of PCA compression for a single channel. . .

IASI channel 1191, @942.5 cm−1

⇒ Surface channel

Afternoon IASI overpass the 20130806

IASI raw radiances (RAD) Differences in BT,
Not in radiances!!!
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How can we assimilate PCA compressed data

1. We can use reconstructed radiances from PCs. . .

+ No much work to adapt current assimilation systems
+ Channel noises are filtered by PCA
- Interchannel correlations are heavily increased (and we use a

diagonal R matrix. . . )

2. We can assimilate PCs directly
+ We can use all the information registered in the observation
- More difficult to understand. PCs are a mathematical

representation
- Some PCs Jacobians present structures peaking low and high in

the atmosphere⇒What happen for low-top models?

(Figure from McNally (2013))
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Météo France AROME NWP model

AROME is the operational convective scale non-hydrostatic limited area Numerical
Weather Prediction (NWP) model used at Météo France

AROME-OPER AROME-EXP
Mesh grid 1.3 km 1.3 km
Assim. cycle 1h 3h
Levels 90 60/90L
Model top 10 hPa 1/10 hPa
IASI px assim 1/8 all
IASI ch assim 44 up to 123? / 44
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And what have we done...

I Impact on a low-top model:
Old and New AROME vertical
resolutions have been chosen
to test

I Assimilation of both RAD and
RR IASI EUMETSAT data

Lvls. / Obs. RR RAD
90L B5MJ B5ML
60L B5MK B5J3

I Period of study: 20141108 to 20141208
I Preliminary analysis of this experiments (last results obtained last Thursday).

Final results will be preented in the next IASI conference (Antibes, April 2016)
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Can we use IASI PCs product?

EUMETSAT IASI PCs product was generated using a global domain. Is this product
valid for a regional model?
⇒ RR-RAD Differences for 1191 channel (942.5 cm-1)

-1.5 -1 -0.5  0  0.5  1  1.5

(RR - RAD) differences

Global domain

-1.5 -1 -0.5  0  0.5  1  1.5

(RR - RAD) differences

AROME domain

Domain Number Average [K] Std.Dev. [K] Min. [K] Max. [K]
Global 91631 -0.001396 0.1959 -1.5433 1.5420
AROME 2665 -0.001701 0.1965 -1.2299 0.9513
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NWP models assimilate IR clear channels...

And what is a clear channel. . .
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McNally & Watts, Band 1
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Used IASI observations

Impact of lowering the model top
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Used IASI observations

Impact of assimilate RR instead of RAD
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Temporal evolution of assimilation statistics - ch 327

Weighting function peaking at 825 hPa

Channel 327
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Temporal evolution of assimilation statistics - ch 1191

Surface channel

Channel 1191
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Temporal evolution of assimilation statistics - ch 2701

Weighting function peaking at 440 hPa

Channel 2701
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Impact in other satellite observations (I)

AMSU-A
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Impact in other satellite observations (II)
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Scores: low-top impact (RR90 vs RR60), 3h terms

RMS of forecasted vertical profiles against a reference (PAROME) at
different forecast terms
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Scores: low-top impact (RR90 vs RR60), 12h terms

RMS of forecasted vertical profiles against a reference (PAROME) at
different forecast terms
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Scores: low-top impact (RR90 vs RR60), 24h terms

RMS of forecasted vertical profiles against a reference (PAROME) at
different forecast terms
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Scores: RR impact (RR90 vs RAD90), 3h terms

RMS of forecasted vertical profiles against a reference (PAROME) at
different forecast terms
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Scores: RR impact (RR90 vs RAD90), 12h terms

RMS of forecasted vertical profiles against a reference (PAROME) at
different forecast terms
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Scores: RR impact (RR90 vs RAD90), 24h terms

RMS of forecasted vertical profiles against a reference (PAROME) at
different forecast terms
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Direct assimilation of PCs

I A new dataset of full IASI spectra is being grabbed at MF

I A PCs dataset will be generated using RTTOV eigenvectors (need of an
adapted-to-PCs RT model)

I Preliminary 1D-VAR experiments will be carried out to asses the impact of having
a low-top model
⇒ A few days at MetOffice (wih P. Weston) for NWPSAF 1D-Var software
modification

I Modification of AROME bias correction, screening and minimization steps to work
with PCs instead of RAD
⇒ A few days at ECMWF (wih M. Matricardi) are programmed to integrate PCs
assimilation scheme in AROME
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Conclusions

I Different studies are being carried out at MF to work in the assimilation of IR
hyperspectral PCA compress data in a low-top non-hydrostatic mesoscale model

I Impact of having lowered the AROME model top has been also investigated

I There are two different possibilities to assimilate IR hyperspectral PCA compress
data: RR and PCs

I Assimilating RR is as simple as assimilating RAD but meanwhile channel noise is
reduced interchannel correlation is increased

I Preliminary results present almost non differences between two assimilations
(Using a diagonal R-matrix RAD bias correction from ARPEGE, and same
channel selection!!!)

I To assimilate PCs requires an adapted RT model
⇒ Last version of RTTOV RT model and ECMWF eigenvectorsfor PCs are
selected

I New assimilation and forecast experiments will be run using PCs from ECMWF
and original RAD
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Thank you for your attention
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IASI revex 7 – 16 April 2015, CNES, Toulouse
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