Assessment of new AMV data in the ECMWF system

Katie Lean, Niels Bormann and Kirsti Salonen EUMETSAT Fellow Day, Darmstadt, 7th March 2016

© ECMWF January 30, 2017

Contents

- Overview of AMVs
- Assessment of Himawari-8
- Meteosat-11 initial investigation
- Metop Triplet product assessment
- Future plans

Atmospheric Motion Vector (AMV) derivation

- 1. Tracking
- 2. Height assignment
- 3. Quality control

Т

T + 15 min

All AMVs monitored – one cycle 12Z 16th Feb

Metop A Metop B Dual Metop A/B GOES-13 GOES-15 MTSAT-2
 Met-7 Met-10 AQUA NOAA-15 NOAA-18 NOAA-19
 FY-2E FY-2G INSAT-3D Himawari-8 COMS-1 SNPP TERRA

AMV processing at ECMWF

- Apply blacklisting
 - QI thresholds (forecast dependent or forecast independent)
 - Channel selection, regional screening etc.
- First guess check
- Thinning
 - 200x200km
 - 50-175hPa boxes (vertical extent varies with height)
 - 30 mins

All AMVs used - one cycle 12Z 16th Feb

Metop A Metop B Dual Metop A/B GOES-13 GOES-15 MTSAT-2
 Met-7 Met-10 AQUA NOAA-15 NOAA-18 NOAA-19

New data

- From new satellites and improved existing products
 - Himawari-8
 - Meteosat-11 (test data)

Himawari-8

- Himawari-8 launched Oct 2014
- AMV data received at ECMWF in June 2015
- MTSAT-2 AMVs only available to end March
- Advanced Himawari Imager (AHI)

Feature	Himawari-8/AHI	MTSAT-2/IMAGER
Location	140E	145E

- Himawari-8 launched Oct 2014
- AMV data received at ECMWF in June 2015
- MTSAT-2 AMVs only available to end March
- Advanced Himawari Imager (AHI)

Feature	Himawari-8/AHI	MTSAT-2/IMAGER	
Location	140E	145E	
Spatial resolution	2km for IR, 0.5-1km for Vis	4km for IR, 1km for Vis	

- Himawari-8 launched Oct 2014
- AMV data received at ECMWF in June 2015
- MTSAT-2 AMVs only available to end March
- Advanced Himawari Imager (AHI)

Feature	Himawari-8/AHI	MTSAT-2/IMAGER
Location	140E	145E
Spatial resolution	2km for IR, 0.5-1km for Vis	4km for IR, 1km for Vis
Full disk image	10 mins	24 mins

- Himawari-8 launched Oct 2014
- AMV data received at ECMWF in June 2015
- MTSAT-2 AMVs only available to end March
- Advanced Himawari Imager (AHI)

Feature	Himawari-8/AHI	MTSAT-2/IMAGER	
Location	140E	145E	
Spatial resolution	2km for IR, 0.5-1km for Vis	4km for IR, 1km for Vis	
Full disk image	10 mins	24 mins	
Total channels	16	5	
Channels for AMVs	5	3	

New tracking and height assignment methods

- Tracking:
 - Small and large target boxes
 - Final vector from average of small and large
 - QC uses small-to-small and large-to-large vectors
- Height assignment
 - Fitting radiances and motion vector
 - Based on carbon dioxide slicing (compares ratio of cloudyclear radiances for CO₂ and window channel in obs and simulated at different pressures)
 - Maximum likelihood estimation

Assessing Himawari-8 AMVs

- Initial comparison of statistics with MTSAT-2
- Generate observation errors
- Determine potential configurations for assimilation
- Run assimilation experiments to test:
 - Impact on forecast
 - Impact on the fit of other observation sources to the model
- Implement in operations 15th March

Number of observations

Initial results: time dependence

17th Nov – 13th Dec

Initial results: Forecast independent QI

Decision to not apply QI threshold to Himawari-8

Zonal statistics:

Distribution of observations

RMSVD

Observation errors

Assimilation experiments: initial configurations

- Consider how much new information we can add
- Range from conservative (close to MTSAT-2 set up) -> relaxed (almost all data)
- Control: No MTSAT-2
- 2 seasons:
 - Summer 19th June 30th Sept 2015
 - Winter 17th Nov 28th Feb 2016

FUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Assimilation experiments: refined configurations

- Big % change in no. of AMVs at higher levels
- Elevated RMSVD at lowest pressure
- Degraded best-fit pressure statistics in IR tropics

'Super conservative' configurations:

1. WV 6.95µm 150 < P < 400hPa

Vis > 700hPa

IR > 150hPa

2. As above but IR screened in tropics > 300hPa

FUROPEAN CENTRE FOR MEDIUM-RANGE WEA

Impact on forecasts: change in error in vector wind

Original Conservative vs. ctrl

T+24; 100hPa

0.10

T+12; 100hPa

Impact on forecasts: change in error in vector wind

ECMWF EUROPEAN CENTRE FOR MEL

28

FUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Fits of other observations to model background

Conclusions

- Initial comparison showed very promising results
- Many AMVs added to system
- Attempts to use more channels/coverage produced some positive, some negative impacts
- Stricter thresholds reduced some negative impacts
- Proposal:

Initially use very conservative set up Explore further options for optimal way to introduce more data Assessment of pre-operational Meteosat-11 data

Timeline

- Launched 15th July 2015
- Geostationary orbit at 3.4°W (Meteosat-10 at 0°)
- High inclination orbit of ~3° -> N-S latitudinal displacement of ~6°
- Storage of test data at ECMWF 25th Sept 24th Nov 2015
- 16th Dec 2015 commissioning phase finished
- Satellite now in in-orbit storage
- Planned restart 2018...
- ...can be quickly reactivated

AMVs from Meteosat-11

- Carries same instruments as Meteosat-10
- AMVs from Spinning Enhanced Visible Infra-Red Imager (SEVIRI)
- Data re-projected onto Met-10 field of view
- Same processing
- Same channels available for AMVs:

Channel type	Wavelength (µm)
Water vapour 1 (clear+cloudy)	6.25
Water vapour 2 (clear+cloudy)	7.35
Infrared	10.8
Visible	0.635
Visible (broad band, high res)	0.6-0.9

Good agreement

Vector difference, IR pressure < 400hPa

- Common large scale features
- Dependence on QI similar
 -> use same threshold at Met-10
- QI (forecast independent)
 > 85 applied before calculating statistics

Time dependence

- Similar broad behaviour...
- ...But more spread

Number of observations per hour

Difference in assigned pressure

Sinusoidal variation

EUROPEAN CENT MEDIUM-RANGE WEATHER FORECASTS

Summary

- Large scale characteristics similar to Met-10
- Overall data shows no major problems...
- ... but good to understand differences
 - Variation in orbit introducing sinusoidal patterns?
 - Could re-projection be causing any effects?
 - Change in AMV numbers
- Re-evaluation when instrument reactivated

Metop triplet product

The Metop AMV products

- **Single**: 2 images of consecutive orbits from same satellite. Time apart ~ 100 mins. Polar only.
- Dual: 2 images from closest orbits of different satellites. Time apart ~ 50 mins. Global.
- Triplet: 2 images from closest orbits of different satellites. Third image used in temporal consistency check. Time apart ~ 50 mins. Polar only.
 - -> more effective screening
- Common processing applied
- Dual product latitude restricted to > 35° for comparison

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Triplet vs. Single vs. Dual

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

46

Changing QI thresholds

- Find QI value where no. of dual winds closest to no. of triplet winds QI ≥ 60.
- Compare:
 - − Dual winds: $QI \ge 85$
 - Triplet winds: $QI \ge 60$

Changing QI thresholds

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P < 400hPa

48

Changing QI thresholds

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P < 400hPa

Summary

- Assessment revealed issue with low QI Metop B in NH (now fixed)
- Triplet winds look sensible
- Performance similar to single winds for QI ≥ 60 and improved over dual winds
- Potential to raise QI threshold of dual winds to achieve similar quality in polar regions

Future plans

- Continue refining Himawari-8 configuration
- Complete assessment VIIRS in preparation for operational use
- Assessment of new Optimal Cloud Analysis product for height assignment (Meteosat satellites)
- Continue research into single layer height assignment

Thank you for listening! Any questions?