Remote Sensing & Understanding or Cloud and Aerosol Parameters and Their Interactions

Zhanqing Li Center for Climate System Studies University of Tokyo (Dept of Atmos & Oceanic Sci. & ESSIC University of Maryland)

Outline

Retrieval of Cloud Cover and Cloud Height
 Conventional approach
 Our approach
 Comparisons of cloud products (MODIS, MODIS-CL, ISCCP, CloudSat/Calipso)
 Validation of NOAA models against satellite

Differentiating aerosol's real effect and artifacts on clouds
 Conventional approach
 Global perspective
 Real and artifacts

Ground-based Remote Sensing in China
 EAST-AIRE and AMF deployment

Key Questions

- □ What is the global cloud 3-dimensional structure?
- How do cirrus and low-level water clouds overlap on global scale and what are their seasonal variations?
- Do the existing satellite-based cloud products, like the MODIS and ISCCP, provide sound global climatology of cloud vertical structure and optical properties?
- How well are passive sensor based cloud products compared with active sensor based cloud products?
- How well do current weather and climate models treat clouds ?

Data Sources

Three sources of cloud information used in this study:

MODIS-NASA product

MODIS-CL Product (Chang and Li 2005a,b)

Simulated ISCCP product (ISCCP-Like)

CloudSat/CALIPSO cloud products

NOAA Global Forecast System model output

Years/Dates chosen for study: January, April, July, October 2001, 2006 and 2007

Comparisons of High, Mid, Low Cloud Amounts

Zhang et al. 2006

The ISCCP-like Bispectral Visible/Infrared Method

- ✓ Cloud top pressure is retrieved from the infrared (~11 µm) channel and
- ✓ Cloud column optical depth is retrieved from the visible (~0.6 µm) channel (ISCCP, Rossow and Schiffer 1999)
- Single layer cloud is assumed in retrievals.

MODIS Cloud Top Pressure and Optical Depth Products

 ✓ Cloud top pressure:
 < 700 mb is retrieved from the CO₂-slicing channels (Menzel et al. 2002) and
 > 700 mb is from the

> 700 mb is from the
11-µm channel
(Platnick et al. 2003).

- Cloud column optical depth is from the visible channel.
- Single layer cloud is assumed in retrievals.

The Overlapped Retrieval Scheme (Chang and Li, 2005a)

- Two or multi-layer clouds can be detected by using CO2 slicing channel and IR channels.
- Retrieve high-cloud optical depth from infrared radiative transfer model
- Retrieve low-cloud optical depth from visible radiative transfer model
- Iterate between steps 1 and 2 to fit best high and low cloud optical depths to the observed radiances at both visible and infrared channels.

Fig. 6 a) Probabilities of cloud occurrence and b) joined-probabilities of Pc and τ_{VIS} derived from three different satellite inversion algorithms applied to the MODIS pixel data.

High (< 440mb), Mid (440-680mb), Low (> 680mb) Cloud Amounts

High (< 440mb), Mid (440-680 mb), Low (> 680mb) Cloud Amounts from the Chang and Li (left) and the MODIS Product (right)

A Bimodal Frequency Distribution of Cloud Top Height

Apr.-Nov. 2001 at SGP

Apr.-Nov. 1999 at NAU

GLOBAL CLOUD COVER

Global Frequency of Cloud Layering from GLAS

From GLAS :

70 % Global Cloud Cover45 % Single Layer Cloud25 % Multiple Layer Cloud

From MODIS

71 % Global Cloud Cover44 % Single Layer Cloud27 % Multiple Layer

Cloud ice/water	CloudSat	Aerosol optics	CALIPSO
mass	MLS		MODIS
	AMSR		PARASOL
Cloud microphysics	MODIS		OMI
	CloudSat	Cloud optics	CALIPSO,
	PARASOL		MODIS, and ₄
Precipitation	CloudSat		PARASOL

NCEP Global Forecast System (grid 003)

- Global Latitude/Longitude 1 deg Resolution
- Control time chosen: 00Z Forecast times chosen: 03, 06, 09, 12, 15, 18, 21, 24Z
- Variables extracted: high, middle, and low cloud cover cloud-top and cloud-base pressures

 - converted to km using relation: 44307.693 [1-(pressure/1013.25)^{0.190284}]/1000

Data availability (daily): off-line Feb. 15, 2005 to May 31, 2007 on-line June 1, 2007 to current date

http://nomads.ncdc.noaa.gov/cgi-bin/ncdc-ui/define-collection.pl?model_sys=gfs-hi&model_name=gfs&grid_name=3

Avg Box : 2.0 degrees Latitude, 2007 July

Our_retrieval

Calipso

GFS_Model

2007 Jul Our retrieval Zonal Cloud Fraction Frequency

2007 Jul Calipso Zonal Cloud Fraction Frequency

2007 Jul GFS Zonal Cloud Fraction Frequency

Calipso

Our_retrieval

17

CALIPSO, single-layer low cloud: 27.5%

ISCCP: 25.2%

Our retrieval, single-layer low cloud: 27.13%

Comparison of high cloud fraction in Jan 2007

Comparison of mid cloud fraction in Jan 2007

Ours

20

Major findings

- Cloud products from three satellites sensors (MODIS-CL, CALIPSO and CLOUDSAT) bear great resemblance
- MODIS-CL is most compatible with CALIPSO
 - In general, the GFS produce sound total cloud patterns on the global scale.
- The GFS model tends to generate less high clouds, more middle clouds and less low clouds than C-C clouds
- > The GFS produces far less cirrus cloud in the tropics
 - The GFS clouds are generally too thin by about 50%
 - Many regional features are yet to be explored, e.g. too much clouds over deserts, too little over cold oceans, ...

Separating Aerosol Effects from Artifacts Using Space-borne, Air-borne and Ground Measurements

Conventional Approach for Studying Aerosol Indirect Effects

 $IE = -\Delta \ln r_e / \Delta \ln \tau_a \qquad (1)$ $IE = -\Delta \ln r_e / \Delta \ln N_a \qquad (2)$

Values of IE reported in the past:
AVHRR (Nakajima et al. 2001) IE = 0.17 (Oceans)
POLDER (Breon et al. 2002) IE=0.085 (oceans) 0.04 (land)
Surface Observation (Feingold et al. 2003) IE=0.02~0.82

Relationship between cloud droplet size and aerosol extinct

Feingold et al. (2004)

A framework for studying aerosolcloud interaction

Methods

• Analyses of satellite data to examine the issues in perspective: scene-by-scene selection, automated ensemble analysis

Analysis of in-situ/ground data to evaluate various effects

 Use of cloud resolving model to understand the physical processes

Cumulus clouds and aerosols: the most challenging problem, but essential for AIE studies

Nearby Aerosols'

Cloud properties

<figure>

DER-AOD relationship

Yuan et al. 2008²⁸

AIE efficiency distribution

AIE efficiency determining factor

Global analysis

Region	Latitude range	Longitud e range	Dominant Aerosol/Cloud Types	Period	AIE efficiency	Sample size
North Atlantic	10-20N	20-40 W	Dust, Stratocumulus	June-August, 2002	Negative	99,978
South Atlantic	5-208	5E-20W	Smoke, Stratocumulus	June-August,2002	Negative	100,377
Southern Pacific	5-258	75-105W	Sea salt, sulfate and pollution, Stratocumulus	August-October, 2002	Negative	74,216
Indian Ocean	12-20N	60-70E	Dust with pollution, Trade cumulus	June-August, 2002	Negative	94,023
India	13-24N	70-85E	Mixture of sulfate, dust, sea salt and smoke, cumulus	June-August,2002	Neutral	53,888
Amazonia	8S-12N	44-76W	Mainly smoke	August-October, 2002	Negative	672,421
Southeastern China	23-43N	100-120E	Mixture, cumulus	June-August,2002	Positive	179,533

Student-t test indicates except India the difference among different loading of aerosols are statistically significant at least at the 95% level 31

Yuan et al. 2008

Factors Causing the Correlation between the AOT and Cloud Parameters

Physical Effects

- Aerosol humidification effect
- Convergence of aerosols

 Aerosol production (Cloud-processed particles/New particle genesis) associated with cloud

<u>Artifacts</u>

- Cloud contamination
- Erroneous cloud cover estimation associated with aerosol
- Enhanced diffuse radiation due to clouds (twilight)

Analysis of four factors

Partially cloudy pixels
Aerosol hygroscopic growth
Cloud 3-D effect
Cloud dynamics effect (vertical profile)

The Effect of Cloud Fraction

TSI Cloud cover was acquired for circumsolar areas with increasin g angular distance from the sun (w/ 10-deg. increment). Then, it was examined if there is any correlation between the AOT and cloud cover.

O: clear sky; 1: thin cloud; 2: opaque cloud; 3: location of the sun

AERONET AOT v.s. Cloud Cover for Various Circum-Solar Areas

AOT v.s. TSI Cloud Cover

A flow schematic for the IAP

←♪
Nephelometer for the In-Situ
Aerosol Profiling
(IAP) flights

Size cut-off for IAP/Neph \rightarrow 1um

0

Humidity system

Column Aerosol Humidification Factor at the SGP Site (Apr. 2003-Jun. 2004)

After the AHE is taken out, there remain a correlation.

SZA~20° VZA~13° Θ_{sca}~150°

3-D Effects ?

Observational sorting of aerosol indirect effect

Retrieval of the DER Profile and the Conventional Cloudtop DER

Chang and Li (2002,2003)

Retrieval of vertical profile of cloud droplet size from MODIS

Chang and Li (2003)

44

Use of DER profile for Drizzle Detecting

Chen et al. (2008) 45

Features to notice

- Correspondence between areas with large AI value and desert distribution
- In Northwestern China and southern Mongolia there is a band of area with large ice particle sizes
- There's an established land-sea contrast in terms of DER size

Persistent Elevated dust layers over Taklamakan desert

CALIPSO, July 30, 2006

CALIPSO, Aug 6, 2006

24.79

14.75

Summary (2)

- Care must be exercised in using satellite data to study AIE
- Real effects and artifacts may be separated by combined use of satellite, in-situ and ground observations.
- For fair-weather Cu AIE efficiency may be either positive or negative based on the satellite analysis
- Different environmental factors like aerosol type and air humidity may affect AIE
- A lot more in-depth studies are required to further sort of various issues

East Asian Study Cover of JGR special section 2007 Cover of JGR special section 2007 An International Regional Experiment (EAST-AIRE)

Zhangye Desert - AAF

Deployment: Apr 7 – June 23, 2008 Location: 39°06'N, 100°16'E, Elevation: 1456 m Cities nearby: Zhangye (26 km) Annual Rainfall: 87.7 mm Annual Cloud Amount: 45%

Xianghe Farmland-AAF

Deployment: July 10 – Oct 31. 2008 Location: 39°45'14"N, 116°57'43"E Elevation: 36 m Cities Nearby: Beijing and Tianjin Annual Rainfall: 571.9 Annual Cloud Amount: 45% Mean aerosol optical depth: 0.82

Shouxian – AMF site Location: 116°47' E, 32°33' N Deployment: May-December Cities nearby: Hefei, Bengbo Annual rainfall: 886 mm Mean cloud cover: 59 Mean aerosol optical depth: 0.55

July-Oct Beijing (75 km) • Viandlar Tianiin (130 km)

Taihu Lake – Ancillary

Deployment: March – December 2008 Location: 31.702°N, 120.358°E Elevation: 10 m Cities nearby: Wuxi, Suzhou, Shanghai, Hangzhu, Nanjing Annual Rainfall: 1184.4 mm Annual Cloud Amount: 62% Mean aerosol optical depth: 0.78

March-December

Shouxian Climate Observatory: AMF

is the state of the second state of the second

AMF Baseline Measurements

<u>Measurement</u>	Instrument
Surface Radiation Balance	 Up- and down-looking pyranometers and pyrgeometers Sun-shaded pyranometer and pyrgeometer using solar tracker Normal incidence pyrheliometer Up- and down-looking 9-11µm narrow- field-of-view radiometers
Surface Meteorology	 Temperature and relative humidity sensor Barometer Optical rain gauge Propeller vane anemometer Present weather detector
Cloud Properties	 Micropulse lidar (523 nm) Ceilometer (7.5 km maximum range) W-band cloud radar Total Sky Imager
Aerosol Optical Depth	 Multi-filter rotating shadow band radiometer (total, direct, and diffuse irradiance in six 10-nm channels)
Column Water	• Dual channel (23.8 and 31.4 GHz) microwave radiometer
Atmospheric profiling	 Balloon Borne Sounding System (BBSS) Microwave radiometer profiler (MWRP)

- Surface radiation balance
- Surface meteorology
- Cloud properties
- Column water
- Atmospheric profiling
- Aerosol properties and optical depth

Taihu Observatory (2005-Now) NUIST Joined in 2008

Zhangye Climate Observatory

at pression in succession

AAF Instruments

Downwelling Radiation (SKYRAD)

- Precision Spectral Pyranometer (PSP)
- Precision Infrared Radiometer (PIR)
- Shaded Black & White Pyranometer (B/W)
- Shaded Precision Infrared Pyrgeometer (PIR)
- Normal Incidence Pyrhiliometer (NIP)
- Infrared Thermometer (IRT)

Surface Meteorological Tower (SMET) Instruments

- Optical Rain Gauge (ORG)
- Anemometers (WND)
- Temperature/Relative Humidity Sensor (T/RH)
- Barometer (BAR)
- Present Weather Detector (PWD)

Upwelling Radiation (GNDRAD)

- Precision Spectral Pyranometer (PSP)
- Precision Infrared Radiometer (PIR)
- Infrared Thermometer (IRT)

Stand-Alone Instruments

- Microwave Radiometer (MWR)
- Micropulse Lidar (MPL)
- Tethered Balloon
- Atmospheric Emitted Radiance Interferometer (AERI)
- Total Sky Imager (TSI)
- Standard lamp Li-Cor

Aerosol Observation System (AOS)

- Aethalometer
- SMPS
- APS
- Nephelometer x 4
- TEOM aerosol chemistry
- TEOM-ACCU
- Trace Gas sampling
- Particle Photometer

Xianghe Obervatory

TAT

Routine observation: Sep 2004 to present IOP observation: Feb 27 – March 27

