Improved use of microwave imager data in all-sky data assimilation at ECMWF

Katrin Lonitz, Alan Geer and many other colleagues

CECMWF

EUMETSAT Fellow Day 9 March 2015

Microwave spectrum

www.dianneemf.com/resources/EMF_Sources

Use of MWI data in all-sky DA

3

(日) (同) (三) (三)

Katrin Lonitz (CECMWF)

Microwave instruments

- Special Sensor Microwave Imager and Sounder (SSMIS)
- dual polarized, conical scanning passive microwave radiometer
- 24 channels: 19 GHz 183 GHz
- 37 GHz sensitive to clouds and light precip

Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager **(TMI)**

- dual polarized, conical scanning passive microwave radiometer
- 5 channels: 10 GHz 85.5 GHz
- 10GHz sensitive to precip

www.eorc.jaxa.jp/TRMM/about/purpose/concept_j.htm

nsidc.org/data/docs/daac/ssmis_instrument

Topics

Clouds over ocean in high latitudes - SSMIS

- $1\ {\rm screening}\ {\rm in}\ {\rm cold-air}\ {\rm outbreak}\ {\rm regions}$
- 2 permittivity model and super-cooled liquid water
- 3 regions with low water vapour

Precipitation over ocean in the tropics - TMI 4 usage of low frequency channels

1 Cold-air outbreak (CAO) areas

- cold air is advected over relatively warm surface
- unstable conditions
- broken cloud fields with (super)-cooled liquid water
- occurrence: high latitudes

Composite MODIS image on 24 August 2013 at 08 Z.The whole area shown spans from $180\,^\circ W$ to $60\,^\circ W$ and from the equator to $60\,^\circ S.$

www.calipso.larc.nasa.gov/products/lidar/browse_images/show_dat 30&browse_date=2013-08-24

Model fields in areas of CAO

- around 0.1 kg m⁻² total column ice water
- hardly any liquid water clouds
- observed brightness temperatures > modeled brightness temperatures (positive FG departures)
- sytematic bias in these CAO regions

Model fields from cycle 40r2 on 24 August 2013 at 12Z. Top panel: modeled total column ice water [kg m⁻²]. Bottom panel: modeled total column liquid water [kg m⁻²].

FG departures

Old Screening

Predictors:

 $\frac{\mathrm{CWP}}{\mathrm{CWP+IWP}} < 0.5$

 $\rm TotalWater > 0.01 kg\,m^{-2}$

 $\rm TCWV < 15\,kg\,m^{-2}$

▶ ∢ ∃

Lower tropospheric stability (LTS)

9 / 35

New Screening

Predictors:

 $\frac{\mathrm{CWP}}{\mathrm{CWP+IWP}} < 0.5$

 $\rm LTS < 12 K$ with $\rm LTS = \Theta_{700\,\rm hPa} - \Theta_{\rm sfc}$

3

A D A D A D A

Screening

Normalised difference in RMSE error: relative humidity

Katrin Lonitz (CECMWF)

Use of MWI data in all-sky DA

9 March 2015 12 / 35

1 Screening in cold-air outbreak (CAO) areas

Std. dev. in FG/AN dep. and number of SSMIS data

3

<ロ> (日) (日) (日) (日) (日)

Summary

1 CAO screening

- New filter uses stability information to identify CAO areas.
- Neutral impact on forecast scores.
- 1.5% more SSMIS data in winter hemisphere.

2 Permittivity

Absolute permittivity ϵ :

is the measure of the resistance that is encountered when forming an electric field in a medium.

 $\epsilon = \epsilon_r \epsilon_0$

 ϵ_r ... relative permittivity (dielectric constant) ϵ_0 ... vacuum permittivity

· · · · · · · · ·

2 Permittivity

Absolute permittivity ϵ :

is the measure of the resistance that is encountered when forming an electric field in a medium.

 $\epsilon = \epsilon_r \epsilon_0$

 ϵ_r ... relative permittivity (dielectric constant) ϵ_0 ... vacuum permittivity

Absorption (and hence extinction) of clouds depends on volume fraction of cloud liquid water, speed of light and **relative permittivity of liquid water**.

Relative permittivity of water depends on frequency and temperature.

イロト 不得下 イヨト イヨト 二日

Permittivity - Supercooled liquid water

- supercooled liquid water = water below $0^{\circ}C$
- liquid water absorption below 0°C not well known due to missing laboratory experiments
- $\Rightarrow\,$ absorption models differ quite a lot, especially for frequencies between 10 1000 GHz

Mean FG dep. - SSMIS 37vGHz

different permittivity models

- Liebe (1989)
- Stogryn (1995)
- Ellison (2007)
- Rosenkranz (2014) new MW measurements [e.g. Cadeddu and Turner (2011), Kneiffel et al. (2014)]

(日) (同) (三) (三)

normalised std. dev. FG dep. - SSMIS

Summary

2 Permittivity model

- Permittivity models disagree for supercooled liquid water
- Small impact on mean FG dep. small variations in the spread of FG dep.

• • = • •

3 Regions with low water vapour

Motivation

- Degraded temperature scores in SH winter were caused by negative temperature increments of 5 10 K in cycle 37r3 (2011)
- Analysis increments occurred over ocean in regions with low water vapour and low wind speed [RD Memo by Geer (2011)].
- Increments come from all-sky assimialtion of MWI when departures are negative (model has too much liquid water).

Methodology

- 1 Select region over ocean with large negative FG departures under conditions with low water vapour in SH.
- 2 Assimilate these MWI observations only (only SSMIS-F17, no sounding channels, no land).
- 3 Investigate how temperature and TCWV field change at the beginning of the assimiation window.

Region of interest

Model - Observations

observed liquid water

9 March 2015

23 / 35

Temperature increment

Humidity increment

25 / 35

Departures

Katrin Lonitz (ECMWF)

Use of MWI data in all-sky DA

9 March 2015 26 / 35

문 > 문

3 Regions with low water vapour

- Brightness temperatures are adjusted through reductions in temperature instead of TCWV.
- Further investigation necessary.

4 Low frequency channels

Current use of precipitation influenced MW obs:

All-sky microwave humidity radiances

- 183 GHz channels on SSMIS and MHS
- since 2012 [Geer et al. 2014, ECMWF Newsletter 140]

All-sky microwave imager radiances

- 19 90 GHz channels from SSMIS and TMI
- since 2009 [Bauer et al. 2010, QJRMS]

Possible future use of precipitation influenced MW obs:

• 10 GHz channels on (TMI) GMI

Location of tropical precipitation

model resolution: 40 km × 40 km (T511) 4 August 2013

3

()

Sensitivity studies on intensity of tropical precipitation

model resolution: $40 \text{ km} \times 40 \text{ km}$ (T511) data between 30S and 30N, August 2013

- What is the impact of model resolution?
- What is the influence of modifications in the observation operator?
- How crucial is superobbing and data filtering?

Impact of model resolution

model resolution: 40 km \times 40 km (T511) and 16 km \times 16 km (T1279) data between 30S and 30N, August 2013

- What is the impact of model resolution?
 - \Rightarrow Number of high brightness temperatures increases.
- spatial resolution in 10 GHz: 72 km × 43 km

Impact modification to fall speed parameterization

model resolution: $40\ km \times 40\ km$ (T511) data between 30S and 30N, August 2013

- What is the influence of modifications in the observation operator?
 - ⇒ Assuming lower fall velocities of drops increases number of high brightness temperatures.

Data filtering

model resolution: $40 \text{ km} \times 40 \text{ km}$ (T511) data between 30S and 30N, 1 - 4 August 2013

• How crucial is filtering?

⇒ Careful data filtering of land-contaminated observations is important!

4 Usage of low frequency channels

- Filtering of land-contaminated observations is most crucial.
- Need for better land-sea mask.

3

Summary

1 CAO screening

- New filter uses stability information to identify CAO areas.
- Neutral impact on forecast scores
- 1.5% more SSMIS data in winter hemisphere.

2 Permittivity model

- Permittivity models disagree for supercooled liquid water
- Small impact on mean FG dep. small variations in the spread of FG dep.

3 Regions with low water vapour

- Brightness temperatures are adjusted through reductions in temperature instead of TCWV.
- Further investigation necessary.

4 Usage of low frequency channels

- Filtering of land-contaminated observations is most crucial.
- Need for better land-sea mask.

Katrin Lonitz (CECMWF)

- 4 同 6 4 日 6 4 日 6