Norwegian Meteorological Institute

# The use of ASCAT winds in NWP model systems at MET Norway

Teresa Valkonen

7/3/2016

#### Outline

- Model systems at MET Norway
- Learned from impact experiments
- Choice of ASCAT settings in the model systems
- Data monitoring of operational systems
- Impact on forecasts

### Model systems at MET Norway

AROME-MetCoOp - Main forecasting system, operational since 2014



- 2.5 km grid spacing
- 61 vertical levels
- 3D-Var assimilation with 3-hourly cycling
- 66-h forecasts four times a day

#### Observations to assimilate

- Conventional
- AMSU
- GPS
- Radar
- OSI-SAF ASCAT Coastal A & B (pre-operational)





### Model systems at MET Norway

**AROME-Arctic - Operational since November 2015** 

- Same domain size and grid spacing
- Same model physics and dynamics
- Same assimilation strategy

#### Observations to assimilate

- Conventional
- AMSU
- OSI-SAF ASCAT Coastal A & B



### **ASCAT** in the model systems

Settings inherited from the model systems of Meteo-France and ECMWF

- Data thinning:
  - Every 4th WVC selected across the satellite track
  - Thinning distance of 100 km
- ASCAT-A & ASCAT-B handeled together.
- All ambigious wind solutions are considered
- Wind direction closest to the background is chosen
- Observation errors 1.39 m/s and 1.54 m/s



#### Learned from impact experiments

ASCAT has the largest impact over the ocean and near the Norwegian coast





#### Learned from impact experiments

ASCAT has the largest impact over the ocean and near the Norwegian coast





ASCAT has slightly positive impact on mslp and wind speed

MSLP - coastal stations



ASCAT has slightly positive impact on mslp and wind speed

10-m wind speed - coastal stations



ASCAT has slightly positive impact on mslp and wind speed

10-m wind speed - coastal stations



No spatial-error correlations on 50 km distance



#### Choice of ASCAT settings in the model systems

- every 4th wvc selected and then 50 km thinning
- obs errors 1.39 m/s & 1.54 m/s
- assimilation window of 3 hours

#### ASCAT data in the operational model systems

- operational in AROME-Arctic since Nov 2015
- pre-operational in AROME-MetCoop since Dec 2015
  - going operational March 2016







17 7/3/2016 Fellow Day 2016







Norwegi









#### **Departure statistics**



#### **Departure statistics**



#### **Departure statistics**



#### **Departure statistics**



#### MetCoOp January 2016



The relationships by Desroziers *el al.* (2005):

$$oldsymbol{\mathsf{R}} = E[oldsymbol{\mathsf{d}}_a oldsymbol{\mathsf{d}}_b^{ op}] \ oldsymbol{\mathsf{HBH}}^{ op} = E[oldsymbol{\mathsf{d}}_b oldsymbol{\mathsf{d}}_b^{ op}] - E[oldsymbol{\mathsf{d}}_a oldsymbol{\mathsf{d}}_b^{ op}] \ oldsymbol{\mathsf{d}}$$

- R is the diagnosed observation-error covariance matrix,
- B is the diagnosed background-error covariance matrix,
- H is the linearised observation operator,
- E[] is the expectation operator,
- **d**<sub>b</sub> is background deparature, and
- d<sub>a</sub> is analysis departure from observations.

MetCoop - January 2016

| Estimated error           | U [m/s] | V [m/s] |
|---------------------------|---------|---------|
| Assumed observation error | 1.39    | 1.54    |
| Std(BG departures)        | 1.89    | 1.82    |
| Hollingsworth/Lönnberg    | 1.32    | 1.26    |
| Desroziers                | 1.41    | 1.31    |

#### Arctic January 2016



The relationships by Desroziers *el al.* (2005):

$$oldsymbol{\mathsf{R}} = E[oldsymbol{\mathsf{d}}_a oldsymbol{\mathsf{d}}_b^{ op}] \ oldsymbol{\mathsf{HBH}}^{ op} = E[oldsymbol{\mathsf{d}}_b oldsymbol{\mathsf{d}}_b^{ op}] - E[oldsymbol{\mathsf{d}}_a oldsymbol{\mathsf{d}}_b^{ op}] \ oldsymbol{\mathsf{d}}$$

- R is the diagnosed observation-error covariance matrix,
- B is the diagnosed background-error covariance matrix,
- H is the linearised observation operator,
- E[] is the expectation operator,
- **\mathbf{d}\_b** is background deparature, and
- d<sub>a</sub> is analysis departure from observations.

Arctic - January 2016

| Estimated error           | U [m/s] | V [m/s] |
|---------------------------|---------|---------|
| Assumed observation error | 1.39    | 1.54    |
| Std(BG departures)        | 1.95    | 1.91    |
| Hollingsworth/Lönnberg    | 1.37    | 1.29    |
| Desroziers                | 1.18    | 1.08    |

#### Impact on forecasts

#### Verification MetCoop vs. MetCoop-preop

MSLP - coastal stations



#### Impact on forecasts

#### Verification MetCoop vs. MetCoop-preop

10-m wind speed - coastal stations



#### Impact on forecasts

#### Verification MetCoop vs. MetCoop-preop

10-m wind speed - coastal stations



### Summary

- Impact experimentation showed largest impact of ASCAT over ocean in MSLP and wind speed
- Thinning distance of 50 km for ASCAT improves MSLP forecasts. No spatial error correlations were found on these distances.
- ASCAT 12.5 km Coastal winds assimilated in AROME-MetCoop pre-operationally since Dec 2015 and AROME-Arctic operationally since Nov 2015.
- No problems with the ASCAT data streams and assimilation in the operational environment.
- (Marginal) positive impact on MSLP and wind speed with ASCAT assimilation compared to the operational forecast without ASCAT.

### Thank you EUMETSAT!

