Norwegian Meteorological Institute

Scatterometer winds in rapidly developing storms (SCARASTO) – First experiments on data assimilation of scatterometer winds

Teresa Valkonen

Norwegian Meteorological Institute

17/03/2014

Outline

- Introduction: SCARASTO project
- Scatterometer winds
- · HARMONIE model
- Results: Experiments on data assimilation of scatterometer winds
 - Data usage
 - Observation departure statistics
 - Verification
- · Summary
- · Outlook

17/03/2014 EUMETSAT Fellow Day 2014

SCARASTO – Scatterometer winds in rapidly developing storms

- EUMETSAT fellowship project started May 2013
- The project aims to take better benefit of scatterometer winds in the numerical weather prediction
- The goal of the project is to improve extreme weather forecasting by data assimilation of scatterometer winds

Rapidly developing storms

1. Extreme weather events

- National extreme weather warnings are sent when human life and property are in danger
- Typically a strong mid-latitude cyclone from the Northern Atlantic

2. Polar lows

- Small but intense short-living meso-scale cyclones
- Forms when cold polar air is advected over relatively warm water
- On average 12 per winter in Norwegian area
- Operational detecting and archiving system at MET Norway

3. Other high impact weather events

- Cases pointed out by forecasters

- Polar low

Midlatitude cyclone

Scatterometer winds

- Advanced Scatterometer (ASCAT) is an active microwave instrument on-board satellites MetOp-A and MetOp-B.
 - MetOp-A, launched in October 2006
 - MetOp-B, launched in September 2012
- The ASCAT instrument was designed to measure wind speed and wind direction over the oceans
- The ASCAT system covers two 550 km-wide swaths, which are separated by 670 km.
- The satellites orbit at 837 km altitude. The nominal MetOp orbit repeat cycle is 29 days. The orbit period is approximately 100 minutes.

Scatterometer winds

- Advanced Scatterometer (ASCAT) is an active microwave instrument on-board satellites MetOp-A and MetOp-B.
 - MetOp-A, launched in October 2006
 - MetOp-B, launched in September 2012
- The ASCAT instrument was designed to measure wind speed and wind direction over the oceans
- The ASCAT system covers two 550 km-wide swaths, which are separated by 670 km.
- The satellites orbit at 837 km altitude. The nominal MetOp orbit repeat cycle is 29 days. The orbit period is approximately 100 minutes.

http://www.youtube.com/watch?v=kdwWdLE-2eI

Scatterometer wind retrieval

- ASCAT operates at a frequency of 5.255 GHz (C-band). Quite insensitive to rain.
- ASCAT makes 3 independent backscatter measurements using the 3 different viewing directions
- The backscatter depends on the sea surface roughness as a function of the wind speed and direction at the ocean surface.
- That makes possible to calculate the surface wind speed and direction using Geophysical Model Function (GMF)
- 4 ambigous wind solutions are retrieved

Scatterometer wind products

 There are 5 different ASCAT scatterometer wind products available

- Global OSI SAF 25-km wind product (contains soil data)
- Global OSI SAF 12.5-km wind product (contains soil data)
- Global OSI SAF coastal wind product
- Regional EARS 25-km wind product
- Regional EARS 12.5-km wind product
- The data are distributed through EUMETCast and archived at EUMETSAT Data Center Archive

Global ASCAT data coverage

OSI SAF ASCAT-A 25-km product

Scatterometer wind quality

- ASCAT data well calibrated versus the ECMWF forecasts and buoy measurements
- · ASCAT vs. ECMWF forecasts
 - Wind speed biases are ~0.20 m/s
 - Std 1.44 m/s in u and 1.49 m/s in v directions, both for Metop-A and Metop-B.
- · ASCAT vs. buoy measurements
 - wind speed bias of -0.02 m/s for Metop-A and 0.05 m/s for Metop-B.
 - Standard deviations of u and v wind components are 1.72 m/s and 1.76 m/s for Metop-A and 1.78 m/s and 1.80 m/s for Metop-B, respectively.

25-km ASCAT-A vs. ECMWF forecast

ASCAT Wind Product User Manual

25-km ASCAT-A vs. Buoy

ASCAT Wind Product User Manual

- High-resolution non-hydrostatic convection permitting spectral model
- HIRLAM (High Resolution Limited Area Model) consortium develops the model in a close cooperation with ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) consortium and Météo-France
- The forecast model and analysis system are mainly those of the AROME model from Météo-France
- The default upper air data assimilation scheme in HARMONIE is the 3DVAR scheme developed in ALADIN
- · Exact implementation of the model differs between institutes

Operational setup at MET Norway

- MetCoOp, joint NWP system of Sweden and Norway (From 12 March 2014)
- · Grid size 2.5 km
- · ECMWF as boundaries
- · Data assimilation: 3DVar
- · 3-hour assimilation cycle
- · Cut off time: 1 h 15 min
- · Forecast length
 - +66 h every 6 hours (00, 06, 12, 18 UTC)
 - +03 h (03, 09, 15, 21 UTC)

Data assimilation of scatterometer winds in Harmonie

- Data assimilation in Harmonie assimilates wind components of retrieval product (not raw measurements)
- Data thinning by factor of 4 is performed to avoid correlated errors.
- The observation error for ASCAT winds is set 2.0 m/s
- · Observation operator is model vector wind at 10-m height
- · Two wind ambiguities are used
- The 3D-Var cost function is expressed in such a way that one ambiguity is finally used for minimasation.
- · Not operational setup in Harmonie yet

Experiment: Case Hilde

 Strong low pressure system that hit Norway 16-17/11/2013. Continued over Sweden and Finland (called Eino).

Pictures:NRK

Experimental setup

- 1-week period 11/11/2013 18/11/2013
- · Harmonie Cy37h1.2
- · Domain METCOOP25B
- · Grid size 2.5 km
- · Model runs at ecgate at ECMWF
- ECMWF forecast used as boundary conditions
- · 3-hour assimilation cycle
- · Forecast length 66 hours
- · 2 experiments
 - 3DVar CONV
 - 3DVar CONV + ASCAT

Experimental setup

- 1-week period 11/11/2013 18/11/2013
- · Harmonie Cy37h1.2
- · Domain METCOOP25B
- · Grid size 2.5 km
- · Model runs at ecgate at ECMWF
- ECMWF forecast used as boundary conditions
- · 3-hour assimilation cycle
- · Forecast length 66 hours
- · 2 experiments
 - 3DVar CONV
 - 3DVar CONV + ASCAT

Friday 15/11/2013 12 UTC

ASCAT-A and ASCAT-B winds

HARMONIE 3DVar with ASCAT winds analysis – PMSL & U10

Norwegian Meteorological

Friday 15/11/2013 15UTC

Friday 15/11/2013 18UTC

Friday 15/11/2013 21UTC

Saturday 16/11/2013 00UTC

Saturday 16/11/2013 03UTC

Saturday 16/11/2013 06UTC

Saturday 16/11/2013 09UTC

Saturday 16/11/2013 12UTC

Saturday 16/11/2013 15UTC

Saturday 16/112013 18UTC

Saturday 16/11/2013 21UTC

Number of ASCAT wind data

Average number of ASCAT data used for data assimilation

- Number of ASCAT observations used
 - Cycles 12 and 18UTC: very good coverage
 - Cycles 09, 15 and 21UTC:

some data

- Cycles 00, 03 and 06: none!

ASCAT coverage

- ASCAT-A and ASCAT-B coastal wind products
- · Assimilation window 3 h
- Data points read into the model
- Wind observation used in data assimilation
- Strange data rejection at 09 and 21 UTC

Norwegian Meteorological

Data thinning and ambiguity selection

 Data thinning by factor of 4 is performed to avoid correlated errors.

Data thinning and ambiguity selection

- Individual ambiguity selection problems
- Long observation assimilation window.
- Local misplacements of fronts.

Thinning

- Data thinning by factor of 4 is performed to avoid correlated errors.
 - Footprint of ASCAT measurement is larger than model grid size
- Optimal observation operator (?)

17/03/2014

Statistics of averaged departures

Background departure: Observation – background O-B

•

Analysis departure:
Observation –
analysis O-A

 The analysis has been changed closer to the ASCAT wind retrieval

Statistics of departures

- The standard deviation of the analysis departure is here approximately 30 % smaller than the background departure
- · The analysis has been changed closer to the ASCAT wind retrieval
- The standard deviation of background (2.2 m/s, 2.5 m/s) is higher than the observation error set in the system (2.0 m/s)

41

Strong windspeeds

- Model windspeeds are stronger than ASCAT winds
- ASCAT winds do not have such behaviour against ECMWF winds or buoys
- Overestimation of model wind speeds can be due to physical parametrisation schemes

Norwegian Meteorological Institute

Verification

· Monitor/WebGraf of the HARMONIE system

Norwegian Meteorological Institute

Verification

Forecast length

RMSE of MSLP grows over time

Slight positive bias in wind speed

Assimilation scatterometer winds cannot show an impact here!

Norwegian Meteorological Institute

Verification

Timeseries: Mean sea level pressure

There is a weak improvement in RMSE and bias during the most intense development of the storm.

O Norwegian Meteorological

Vertical profiles

Temperature

Relative humidity

- · Temperature and humidity bias slightly decreased around 700 hPa
- Impacts are directly seen in upper levels because of improved dynamics. Surface variables (T, U, RH) are locally driven and it is difficult to see impact on them.

Summary

- The SCARASTO project aims to improve extreme weather forecasting in Norway by data assimilation of scatterometer winds
- ASCAT scatterometer winds have high data quality and spatial coverage is good during daytime.
- Data assimilation of scatterometer winds runs technically in Harmonie system
- Harmonie model wind speeds are overestimated on strong winds over ocean compared to ASCAT winds.
- Verification results from preliminary model experiments show a weak impact of scatterometer winds

Outlook

- Experiences with data assimilation of scatterometer winds call for comparison and development of further approaches for optimal use of scatterometer winds in high-resolution NWP
- · Future work
 - Optimal thinning, data rejection and observation weighting methods
 - Impact study on Polar lows and other high impact events
 - Longer simulation periods for robust verification results
 - Operational implementation of scatterometer wind assimilation
- · Longer term developments within the NWP consortium
 - Flow dependent methods (4DVar, FGAT, ...)
 - Rapid update cycle

Norwegian Meteorological Institute

Thank you!

Teresa Valkonen teresav@met.no @teresavalkonen