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1 INTRODUCTION 

1.1 Purpose and Scope 
The purpose of this document is to describe and propose an improved carbon monoxide (CO) 
retrieval based on artificial neural networks (ANN) for implementation in the operational 
IASI Level 2 (L2) Product Processing Facility (PPF).  

1.2 Document Structure 
Section 1 is this introduction. 
Section 2 gives a historical overview of the scheme being currently operated and the reasons 
which motivated the recent investigations for improving on this basis. 
Section 3 describes the nature of the changes and summarises their theoretical performances. 
Section 4 presents some first validation results. 
Section 5 extends the validation with satellite data, and examines the interpixel differences 
discovered during the investigations. 
Section 6 is a conclusion giving recommendation for implementation, and lists the items (e.g. 
documents, code and data) which would be affected. 
Finally, a more exhaustive set of results is given in an annex, Appendix A, in the form of 
graphs and maps. 

1.3 Reference Documents 
RD 1   Watts, P.D., M.R. Allen, T.J. Nightingale, 1996, “Wind speed effects on sea surface 

emission and reflection for the Along Track Scanning Radiometer”, Journal of 
Atmospheric and Oceanic Technology, 13, 126-141 

RD 2  Masuda, K., T. Takashima, Y. Takayama, 1988, “Emissivity of pure water and sea 
waters for the sea surface in the infrared window regions”, Remote Sensing of 
Environment, 24, 313-329 

RD 3   Clerbaux, C., J. Hadji-Lazaro, S. Turquety, G. Mégie, C. Camy-Peyret, S. Payan, 
“IASI Trace gases retrieval algorithm”, Technical Document, 2002 

RD 4   Clerbaux, C., J. Hadji-Lazaro, S. Turquety, G. Mégie, “Algorithme d’inversion gaz 
traces pour IASI”, Technical Document, Oct. 2000 

RD 5   Flemming, J., A. Dethof, M. Suttie, “Test of IASI CO total column retrievals for 
assimilation in the GEMS NRT suite”, 28 October 2008 

RD 6   Hultberg, T., T. August, “CO and O3 total column retrieval comparison”, 
EUM/OPS-EPS/TEN/08/0700 

RD 7   LeCun, Y., L. Bottou, G.B. Orr and K.-R. Müller, “Efficient backprop” in “Neural 
Networks: tricks of the trade”, Springer, 1998 

RD 8   Schlüssel, P., “EPS Ground Segment IASI Level 2 Product Generation 
Specification”, EPS.SYS.SPE.990013 
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RD 9   Brasseur, G.P., D.A. Hauglustaine, S. Walters, P.J. Rasch, J.-F.Müller, C. Granier 
and X.X. Tie, “MOZART: A global chemical transport model for ozone and related 
chemical tracers, Part 1. Model Description”, Journal of Geophysical Research, 103, 
28,265-28,289, 1998 

RD 10 Emmons, L.K., D.P. Edwards, M.N. Deeter, J.C. Gille, T. Campos, P. Nédélec, P. 
Novelli and G. Sachse, “Measurements of Pollution In The Troposphere (MOPITT) 
validation through 2006”, Atmos. Chem. Phys. Discuss., 8, 18091–18109, 2008 

RD 11 Hadji-Lazaro, J., C. Clerbaux and S.Thiria, “An inversion algorithm using neural 
networks to retrieve atmospheric CO total columns from high-resolution nadir 
radiances”, JGR, 104, D19, pp.23841-23854, 1999 

RD 12 Turquety, S., J. Hadji-Lazaro and C. Clerbaux, “First satellite ozone distributions 
retrieved from nadir high-resolution infrared spectra”, GRL, vol.29, n°24, 2198, 
pp.51-1 – 51-4, 2002 

RD 13 de Laat, A.T.J., J. Lelieveld, G.J. Roelofs, R.R. Dickerson and J.M. Lobert (2001), 
“Source analysis of carbon monoxide pollution during INDOEX 1999”, J. Geophys. 
Res., 106(D22), 28, 481–28, 495 

RD 14 Pochanart, P., O. Wild and H. Akimoto, “Air Pollution Import to and Export from 
East Asia” in “Handbook of Environmental Chemistry”, Springer Berlin / 
Heidelberg, Volume 4G/2004, pp.99-130 

RD 15 “IASI L0/L1 NRT monitoring”, 
http://oiswww.eumetsat.org/epsreports/html/index.php?instrument=IASI&year=2010 

1.4 Acronyms 

ANN Artificial Neural Network 
ECMWF European Centre for Medium-Range Weather Forecasts 
EFOV Elementary Field Of View
EPS EUMETSAT Polar System 
EOF Empirical Orthogonal Function 
EURD End User Requirements Document 
IASI Infrared Atmospheric Sounding Interferometer 
IFOV Instantaneous Field Of View 
LST Land Surface Temperature 
L2 Level 2 
MLP Multi-Layer Perceptron 
MODIS Moderate Resolution Imaging Spectroradiometer 
MOPITT Measurements of Pollution In The Troposphere 
OEM Optimal Estimation Method 
PGS Product Generation Specification 
PPF Product Processing Facility 
SA Service d’Aéronomie 
SST Sea Surface Temperature 
TOA Top of the atmosphere 
WV Water Vapour 

http://oiswww.eumetsat.org/epsreports/html/index.php?instrument=IASI&year=2010
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2 BACKGROUND 

2.1 Initial Configuration 
Such ANN retrievals are basically statistical non-linear regressions between a targeted output, 
here the CO total column, and a collection of inputs meant to capture all the required physics 
it relates to. The regression is performed with a set of coefficients triggering the connections 
between the inputs and outputs, namely the weights and biases. The inputs and outputs 
usually consist of normalised parameters in the scope of the neural network itself. The 
weights and biases governing the retrievals are adjusted in a so-called training phase, where 
teaching pairs of input and output are iteratively presented to the network. 
 
The initial configuration implemented in the PPF was defined after the specifications 
delivered by “Service d’Aéronomie” (SA) [RD 3, RD 4], which form part of the IASI L2 
Product Generation Specification (PGS). Beyond the CO itself, the ANN approach is used to 
retrieve other trace gases: O3, CO2, CH4 and N2O. The first SA delivery covered networks 
and their associated coefficients aiming at the total columns of CO, CH4 and O3 as well as the 
partial O3 column below 12 km. Dedicated nets were then built and trained in-house on the 
same basis to complete the chemistry products: the two remaining partial O3 columns (ground 
to 6 km and ground to 16 km) as well as the CO2 and N2O total columns which are planned in 
the IASI L2 data. 
 
A late delivery addressing the O3 partial columns < 6 and < 16 km came after the first 
International IASI Conference. The work performed and shared by SA in the area of ANN 
retrievals was actually dedicated to the nadir views [RD 11, RD 12]. It was therefore 
eventually decided to re-train at EUMETSAT also the CO and O3 networks to allow for 
retrievals at all scan angles as strong dependences on the geometry were foreseen otherwise, 
which were confirmed recently (see Figure 1). The architecture of the nets and the nature of 
inputs were kept identical to the original specifications provided by the experts. The first re-
training was done with help of a database describing a wide variety of atmospheres and their 
associated simulated IASI spectra. Those were computed for various geographical and 
geometrical configurations with the forward model RTIASI-5.3. 
 
These settings went into a pre-operational mode and the first chemistry products were 
released in Spring 2008 to let external partners support their validation. 

2.2 First Upgrade after External Validation Feed-back 
In a memo issued in Autumn 2008 [RD 5] closing an intercomparison exercise between 
EUMETSAT, SA, MOPITT CO products and CO models, ECMWF commented on the poor 
quality of the CO information provided in EUMETSAT IASI L2 packets. After a 
mishandling of the cloud information had been clarified, the exercise was repeated again and 
useful statistics derived. Although the large-scale patterns were correctly captured, a strong 
positive bias could be characterised in the CO columnar amounts. 
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The reasons for this were investigated and essentially found in inappropriate radiance 
corrections. Before entering any retrieval functions of the IASI L2 processing chain, the 
measured radiances are indeed tuned to account for the biases introduced by the forward 
model with respect to the measurements in the iterative retrieval and in the theoretically 
derived coefficients configuring the PPF. Those tuning parameters are obtained from a set of 
pairs of spectra: the true measurements on the one hand and synthetic spectra on the other. 
The latter are computed with a forward model – here, RTIASI – and some representation of 
the true atmospheric state mainly based on ECMWF analyses data. In the absence of accurate 
sources for the trace gas profiles, the radiance tuning derived for the corresponding spectral 
channels proved to be irrelevant and to be causing the strong bias reported above. 
 
A second main issue dealt with the elevated regions. Further to some chosen radiances, the 
networks are fed with auxiliary inputs: the surface temperature and a coarse temperature 
profile at some fixed levels, some of which fall into the subsurface in the context of an 
elevated terrain. The initial specifications did not cover this aspect and therefore only ocean 
and low-land cases were retained in the first artificial network trainings. A post-processing 
correction accounting for the shortened atmospheres was patched and tested after the 
reception of ECMWF’s memo. Together with the removal of the radiance tuning and a 
clarification by SA of what the input surface temperature was meant to be, it formed the 
essence of the IASI L2 PPF upgrade that became operational by the end of January 2009. 
 
The release followed the conclusion of an intercomparison exercise with internal and external 
products, documented in [RD 6], which confirmed sensible improvements. Various retrievals 
from SA and EUMETSAT based on neural networks and optimal estimation methods 
(OEM), covering the last ten days of August 2008, were compared to MOPITT CO L3 daily 
products. Despite some remaining issues such as an angular dependence (see Figure 2), a 
smaller but persistent positive bias or occasional unrealistic columns over deserts or ice 
covers, the neural network retrieval was found to be more than a complement and actually a 
potentially good alternative to the OEM – at least in its current status – in terms of 
computation time, range of total columns covered and even accuracy in the case of ozone. 
This motivated the subsequent investigations and developments, allowing for possible 
changes to the initial specifications, to improve more on this ANN scheme. 
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3 DAY-2 MODIFICATIONS AND IMPROVEMENTS 

3.1 Input/Output Normalisation 
As often advised in the literature [RD 7], artificial nets are advantageously taught with pairs 
of inputs and outputs centred and normalised between -1 and 1. Such an individual 
preparation enables the maximum benefit to be obtained from each input element’s dynamic 
and allows faster as well as more accurate learning. Normalised inputs (Ei), for instance, are 
ypically computed as follows: t

 

 Ei = 0.9 x 
Input(i) - C1

C2
  ( ) 1

 
Associating a dedicated pair of normalisation coefficients (C1 ; C2) to each input element then 
constituted the first modification to the original settings (whereby a unique pair was 
originally applied to the entire vector). Figure 3 illustrates how the respective ranges of the 
various inputs can be significantly different from each other. Furthermore, each Ei 
statistically now scales from -1 to 1, while it initially lay between 0 and 1. (C1 ; C2) have been 
redefined as follows: 
 C1(i) = ( percentile(element(i),97.5%) + percentile(element(i),2.5%) ) / 2  ( ) 
 

2
C2(i) = ( percentile(element(i),97.5%) - percentile(element(i),2.5%) ) / 2   ( ) 3

 
Similarly, the outputs are prepared and normalised for training in the same way, such that the 
raw output of the neural net has to be rescaled to the expected units before entering the final 
product. In the initial scheme, outputs were simply normalised by dividing the columns by 
their order of magnitude, e.g. 1018 molecules/cm2 in the case of CO. 

3.2 Geometry 
In this area, the SA approach to account for the scanning angle consists of some post-
processing corrections applied to net outputs. A brief description and some empirical 
coefficients were communicated in an email to EUMETSAT towards the end of 2008, 
without further references. They mostly cover CO but do not appear to have entirely solved 
the undesirable effect, as can be seen in Figure 1 and Figure 2. The angular dependence in 
SA-NN is of the same order as observed in the current (not corrected for) EUMETSAT CO 
products. 
 
The problem was solved recently by adding an extra predictor to the input vector, namely the 
satellite zenith angle in the form of its secant. New trainings of a single net on teaching 
patterns including all viewing angles with this additional input proved very successful. This is 
well illustrated in Figure 4 where mean retrieved CO total columns computed for each scan 
step, from about 100 orbits covering the last week of August 2008, show a rather flat profile. 
A positive side effect of this was also a more efficient teaching process, with a significant 
decrease of the training error. 
 
The solar zenith angle was tested as well but did not appear to be triggering the final network 
output. This is well illustrated in Figure 7 which displays the weights of the connections 
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linking the various inputs to the inner part – the first hidden layer – of a neural network after 
training. The coefficients weighting the contribution of the solar zenith angle oscillate closely 
around zero and are two to three orders of magnitude smaller than the weights applied to the 
other inputs: radiance, temperature and satellite zenith angle. This is also reflected in the 
Jacobians of the system, of which an example is given in Figure 8, where the same 
considerations apply: derivatives of the output with respect to the solar zenith angle are close 
to zero and are two to three orders smaller than the derivatives to the other inputs. 

3.3 Surface Elevation 
As recalled in the first section, the net currently running operationally has not been 
specifically trained with elevated cases, with the result that the shortened columns are 
currently handled with an empirical work-around, which qualitatively has proved suitable in a 
first instance. 
 
Training and retrieving the total column when the surface pressure falls below 980 hPa 
requires handling properly the portion of the input temperature profile which lies below the 
surface. In the absence of particular guidance from the originators in this area, two 
approaches were tested. In the first solution, the input temperature profiles were defined on a 
variable grid whose levels were dynamically defined according to the surface pressure, such 
that no levels ended up in the subsurface. The other alternative, which was eventually 
retained, is based on a fixed grid – as initially specified – where any subsurface component 
extends an isothermal profile from the first level above the surface to the lowest pressure 
level foreseen. Strictly, this extension should be done with the brightness temperature of the 
surface. In such a configuration, if it was real, the radiative transfer equation would impose 
the restriction that the contributions from the lowest part could not be distinguished and 
would then be masked. This is what the neural network is expected to capture and reproduce. 
It however requires an accurate knowledge of the surface temperature together with the 
surface emissivity, whose retrieval has not been validated over land yet. As a work-around, 
the first atmospheric temperature is then used here as proxy information in the proposed 
implementation. The selected pressure levels are listed in Table 1. 
 
To support these particular retrievals, an additional predictor was introduced to the input 
vector: the surface pressure. Further trainings were repeated and included a collection of 
various continental elevated cases. Verifications with real data show a good correlation 
between lower surface pressure and reduced CO columns: the amounts are consistently 
smaller over mountains than in the surrounding low lands. In Figure 16, the biggest 
formations like the Himalayas and Andes are qualitatively well captured, as are the Alps, 
despite their smaller scale. As with the satellite zenith angle, Figure 7 and Figure 8 illustrate 
the importance of this predictor for the final retrieval. 
 
id level hPa
0 87 978.982 
1 85 899.686 
2 83 826.576 
3 82 792.184 
4 80 727.436 
5 78 667.708 

id level hPa
6 76 610.600
7 75 587.638
8 73 543.053
9 70 478.540
10 68 436.950
11 62 321.500

id level hPa
12 56 222.940
13 51 155.428
14 45 93.2342
15 28 10.3700
16 18 1.36116
17 10 0.222228

Table 1: Level selection on RTIASI grid for the input temperature profile to the ANN CO 
retrieval 
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3.4 Spectral Information 
This is the key information driving the retrievals and the channels involved split into two 
categories: a selection in the various CO absorption lines and a smaller set of so-called 
baseline channels where less absorption occurs and from which the background radiance is 
inferred. This concept was introduced to isolate the contribution of the CO to the extinction 
of the upwelling radiation. As detailed in equations 254 to 256 of the IASI L2 PGS [RD 8], 
radiances in the trace gas lines are basically subtracted from the baseline to form the spectral 
component of the input vector and enter the neural network. This was the unique explicit 
spectral information specified originally [RD 1, RD 2]. 
 
The basic transfer equation for radiation traversing a thin layer of a gas can be basically 
written as: 

 
dIν
dS = Jν - KνIν  ( ) 4

 
where Iν is the radiance at the wavelength ν, S is the path through the layer, Jν expresses the 
source function and Kν the absorption coefficient of the gas at that particular wavelength ν. 
From Equation 4 it follows that the sought column cannot be retrieved only from the radiance 
extinction (dIν) at the top of the atmosphere (TOA) and requires additional information about 
the upwelling radiance below the absorbing layer. 
 
In the original specifications, the only proxy information for this was carried by a pseudo-
surface temperature parsed as an auxiliary input to the net. It was computed with the inverse 
Planck function of the radiances measured at the so-called baseline channels and a surface 
emissivity artificially fixed to 0.975. However, a few absorptions, mostly due to water vapour 
but also to N2O, affect these channels and decouple the resulting radiation from the pure 
surface emission (see Figure 9). The CO retrieval in its original form proved to suffer from 
these approximations over many surfaces, especially over some barren land and ice covers. 
 
To circumvent this, we propose to replace this pseudo-surface temperature with the raw 
radiances picked at some so-called baseline channels, which describe the background 
radiance before it is attenuated by CO. The surface temperature is also kept as an explicit 
parameter such that the emissivity and potential interference from other gases are assumed 
now to be implicitly covered by the combination of the inputs and expected to be statistically 
captured during the network learning phase. Some tests however showed that the surface 
emissivity further helps the CO retrieval if explicitly added to the input vector. When this 
IASI product has been fully validated, this parameter could become a valuable additional 
descriptor of the physics fed into the neural net. Eventually, the collection of temperatures 
sampling the vertical profile completes this information by describing the source function in 
Equation 4. 
 
The channels originally proposed by SA are listed in Table 2 and are represented in their 
spectral context in Figure 5. Some of them are strongly affected by the water vapour (WV) as 
can be seen in Figure 10 which plots the correlations between the intensity of a line and CO 
and WV concentrations at different levels. The updated networks were able to recognise this 
and gave less weight to those channels, which is well illustrated by channels 3 and 4 in Figure 
7 and their corresponding Jacobians in Figure 8 for instance. 
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id chan cm-1

0 5866 2111.25 
1 5867 2111.50 
2 5868 2111.75 
3 5869 2112.00 
4 6022 2150.25 
5 6023 2150.50 
6 6024 2150.75 
7 6037 2154.00 
8 6038 2154.25 
9 6039 2154.50 

id chan cm-1

10 6052 2157.75 
11 6053 2158.00 
12 6054 2158.25 
13 6055 2158.50 
14 6056 2158.75 
15 6081 2165.00 
16 6082 2165.25 
17 6083 2165.50 
18 6084 2165.75 
19 6085 2166.00 

id chan cm-1

20 6096 2168.75 
21 6097 2169.00 
22 6098 2169.25 
23 6099 2169.50 
24 6111 2172.50 
25 6112 2172.75 
26 6113 2173.00 
27 6114 2173.25 
28 6126 2176.25 
29 6127 2176.50 

Table 2: Initial channel selection. Absorption lines are listed above and baseline channels 
below. 

0 5955 2133.50 1 5993 2143.00 2 6021 2150.00 

 
This selection was eventually modified in a final step (see Table 4 and Figure 6) to provide to 
the network some explicit information about the interfering species, namely water vapour and 
N2O here, and thus support the discrimination of the CO contribution. It comes as a selection 
of extra baseline channels free of CO features with independent or combined H2O and N2O 
lines. Further CO channels could also be added with benefit, and the respective 
improvements in terms of learning error are summarised in the following table. 
 

 

              Config. 
 

Gas 
Original SA 

settings 
Day-2 improvements + 
initial channel selection 

Day-2 improvements + 
modified channel selection 

CO [e18 molec/cm2] 0.3701 0.2702 0.2352 
1 ground elevations excluded (Ps < 980hPa)  2 all elevations are included in the training sets 

Table 3 : Evolution of the ANN CO training error on TCE with the successive algorithmic 
and configuration improvements 

 
id chan cm-1

0 5865 2111.00 
1 5866 2111.25 
2 5867 2111.50 
3 5868 2111.75 
4 5869 2112.00 
5 5870 2112.25 
6 6022 2150.25 
7 6023 2150.50 
8 6024 2150.75 
9 6025 2151.00 
10 6026 2151.25 
11 6037 2154.00 
12 6038 2154.25 
13 6039 2154.50 
14 6040 2154.75 
15 6041 2155.00 
16 6052 2157.75 
17 6053 2158.00 

id chan cm-1

18 6054 2158.25 
19 6055 2158.50 
20 6056 2158.75 
21 6081 2165.00 
22 6082 2165.25 
23 6083 2165.50 
24 6084 2165.75 
25 6085 2166.00 
26 6095 2168.50 
27 6096 2168.75 
28 6097 2169.00 
29 6098 2169.25 
30 6099 2169.50 
31 6100 2169.75 
32 6101 2170.00 
33 6109 2172.00 
34 6110 2172.25 
35 6111 2172.50 

id chan cm-1

36 6112 2172.75 
37 6113 2173.00 
38 6114 2173.25 
39 6123 2175.50 
40 6124 2175.75 
41 6125 2176.00 
42 6126 2176.25 
43 6127 2176.50 
44 6128 2176.75 
45 6129 2177.00 
46 6138 2179.25 
47 6139 2179.50 
48 6140 2179.75 
49 6141 2180.00 
50 6142 2180.25 
51 6143 2180.50 

Table 4: Upgraded channels selection. CO absorption lines are listed above and baseline 
channels below. 
id chan cm-1

0 5985 2141.00 
1 5986 2141.25 
2 5987 2141.50 

3 5988 2141.75 
4 5989 2142.00 
5 5990 2142.25 
6 5991 2142.50 

7 5992 2142.75 
8 5993 2143. 0 0
id chan cm-1

9 5994 2143.25 
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10 5995 2143.50 
11 5996 2143.75 
12 5997 2144.00 
13 5998 2144.25 
14 5999 2144.50 
15 6000 2144.75 

16 6116 2173.75 
17 6117 2174. 0 0
id chan cm-1

18 6118 2174.25 
19 6119 2174.50 
20 6120 2174.75 

21 6131 2177.50 
22 6132 2177.75 
23 6133 2178.00 
24 6134 2178.25 
25 6135 2178.50 

3.5 Teaching Database 
The training database approximately contains 200,000 patterns made up of atmospheric state 
vectors and their associated synthetic IASI spectra computed with RTIASI-5.3. The 
atmospheric temperature, humidity surface pressure and wind components are based on the 
Le Chevallier climatological database. Neither clouds nor aerosols were included such that 
the networks learnt pure clear cases only, which are also subsequently their only domain of 
validity. 
 
Some missing information, e.g. the trace gas profiles, was forged to cover the whole range of 
expected situations with random variations around standard profiles. In the case of the CO, 
the vertical distributions are based on 43 original profiles sampled from the MOZART 3D 
chemical transport model calculations [RD 9], obtained from D. Cunnold’s runs in 2001. 
These include temperature profiles, so that for each of the synthetic cases the CO profile was 
chosen which had the closest surface air temperature. To generate a realistic and continuous 
set of scenarios for CO, this selected profile was subsequently randomly either left unchanged 
or varied by adding up to half of the variability (max - min) of the mixing ratio in the basic 43 
modelled vertical distributions. 
 
Figure 29 to Figure 32 present the statistics and distribution of the resulting CO profiles and 
how they compare with MOPITT daytime retrievals during the whole year 2008. It can be 
seen that the range of teaching CO abundances generally cover the real situations well, with 
the exception of a few extreme events of very high concentration which the training set does 
not include yet. When compared to MOPITT ones, the synthetic profiles are also possibly too 
skewed, showing a slight relative excess towards the surface. However, MOPITT information 
was used here without accounting for its vertical sensitivity, which falls at the lower levels 
and could explain the more vertical shape of the satellite products. The correlation between 
lower and upper layers is higher in the training base than in the MOPITT data, respectively 
amounting to 0.7 and 0.4 approximately, whereas the correlations between adjacent layers are 
similarly high in both data sets. 
 
Figure 30 shows the geographical distribution of the teaching cases, which cover sea as well 
as land situations. Different scan angles were randomly assigned to those cases in order to 
equally cover all of the instrument viewing geometries. The synthetic IASI spectra at the top 
of the atmosphere were successively computed with and without solar contributions to 
simulate day and night situations. In the case of daytime, the solar angles were randomly 
defined to equally represent the Sun elevations. 
 
Elevated areas are by essence included in the training set which also comprises a wide range 
of surface types. Over water, the surface emissivity was computed after Masuda’s model (RD 
2) and its extension by Watts (RD 1). Ground emissivities were derived from the MODIS 
UCSB emissivity library, which was downloaded from 
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www.icess.ucsb.edu/modis/EMIS/html/em.html. Based on the spectra of pure surfaces, 
composite surfaces have been generated with random contributions from up to three different 
types, excluding however some combinations like snow/ice at tropical temperatures. The 
emissivities have been further varied by random numbers, reducing the spectral emissivities 
by 10% on average (total range 0 to 20%). The pure sand ground type, with unique features 
around 8-9 µm, was not retained for this initial simulation and will be included in coming 
upgrades of the neural network configuration coefficients. 

3.6 Network Structure, Dimension and Training 
The ANN used here are multi-layer perceptrons (MLP) made of an input and an output layer 
connected through two hidden layers. This follows the initial design and so do the activation 
functions retained for the hidden (tanh) and output (identity) layers. It was however found 
appropriate to increase the size of the hidden layers from 8 to 48 neurons. Adding even 
further neurons helped the training but made the network too specific to the learning sets. The 
collection of inputs after the new design is summarised hereafter and the unique output is the 
total column of CO. The channel and pressure level selections are configurable and can be 
modified without changing the implementation. 
 

Absorption lines 
(52 channels) 

Baseline 
radiances 

(26 channels) 

Surface 
temperature 

Temperature 
profile 

(18 levels) 

Satellite 
zenith angle 

(secant) 

Surface 
pressure 

Table 5: Input vector to the ANN CO retrieval 

The teaching database is split into a training and a control set. To avoid overtraining, i.e. the 
net becoming too specific to the teaching patterns and losing its generalisation ability, one 
monitors the retrieval error of the control set and stops the learning when it starts diverging 
from the training error. This is typically achieved within approximately a couple of days with 
a full CPU on a machine such as TCProtos. 
 
The teaching patterns are randomly selected to get a distribution of target CO columns as flat 
as possible (see Figure 11) in order to give all potential abundances the same chance to be 
correctly trained for and therefore retrieved later on. No restrictions apply to the elevation or 
the geographical location (polar situations are included) and it was ensured that no artificial 
correlations between the various input elements were introduced. 
 
In order to prepare the nets for real conditions in operations, some noise is added to the input 
radiances, based on the instrument noise characteristics. Similarly, the auxiliary temperature 
inputs are degraded with some Gaussian errors amounting to 1.25 K in the case of the 
teaching vertical profiles, and respectively 0.4 and 2 K for sea and land surface temperature 
(SST and LST). Noise- and error-free trainings were also tested with the sole goal of 
verifying the overall approach. They obviously gave much better theoretical results with the 
training base (see Figure 26 to Figure 28) and lead to unstable retrievals if applied to real 
measurements, as expected. 

3.7 Performances 
The theoretical performance of such artificial neural networks can be characterised with the 
synthetic data set that served in the training process by comparing the retrieved columns to 
the targets. Results for the proposed network are detailed in Figure 12 to Figure 14. The 

http://www.icess.ucsb.edu/modis/EMIS/html/em.html
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correlation between retrieved and target columns is 0.99 and the linear relation is very close 
to unity. Due to the non-linear nature of the MLP, the errors are not statistically Gaussian-
like, as can be seen in Figure 14. The rms of the absolute errors typically ranges between 0.2 
and 0.24 x 1018 molec/cm2 and appear to be quite independent of the column density itself. 
As a result, the relative errors are strengthened for the thinnest columns. They however 
generally remain well below the thresholds specified in the EPS End User Requirements 
Document (EURD), set to 20%. Excluding the 7% faintest columns (< 0.7 x 1018 molec/cm2) 
from the error characterisation does not change the absolute error numbers and gives an 
estimation of the relative error between 7 and 11%. 
 
The distribution of the errors is also non-symmetrical such that, although the overall average 
is close to the origin, the main mode presents a small positive bias of approximately 1 to 3%. 
This is well visible in Figure 14. After investigations, this was attributed to the non-linear 
response to the inputs with respect to the target columns and in particular to the noise 
perturbing the radiances. Indeed, noise- and error-free trainings induced a rather more centred 
and symmetrical error distribution (see Figure 27 and Figure 28). These are pure theoretical 
figures though, which were only computed to assess the impact of the noise. They are not 
applicable to operations as in practice measurements and auxiliary temperatures are always 
affected by some errors. 
 
In practice, some coefficients can be manually adjusted to account for this asymmetry with 
the proposed network and to remove the bias for the most commonly-occurring CO columns 
(1 to 4 x 1018 molec/cm2). 
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4 INITIAL VALIDATION WITH SATELLITE DATA 

4.1 Data Description 

4.1.1 IASI Retrievals 
The trained network was applied to series of IASI measurements covering the last week of 
August 2008, and only clear IASI IFOVs as identified by the IASI L2 PPF “Cloud test A” 
were processed. The same network was applied twice, first with input temperatures coming 
from an empirical orthogonal function (EOF) stand-alone retrieval and then from ECMWF 
analyses products. They are respectively labelled 066 and 067 in the figures documented in 
Appendix A. In both cases, the surface temperature came from the IASI L2 EOF regression 
retrieval, which is believed to be generally the most accurate option. Ingesting ECMWF 
temperatures, especially the analyses, is excluded in the operational framework which 
currently foresees EOF in that respect. As described in §3.6, some error characteristics of the 
input temperatures retrieved with the EOF method were represented during the training. The 
retrieval 067 was then solely run here to distinguish the errors in the CO retrieval that would 
be caused by not treating these profiles and surface temperature properties exhaustively, e.g. 
ignoring potential systematic biases or a possible small angular dependence. The IASI CO 
retrievals were not tuned to remove the little positive bias described in §3.7. 

4.1.2 MOPITT Products 
The retrievals were compared over that period on an IFOV basis to MOPITT L3 Daily 
gridded (1°x1°) CO products (v3) downloaded from the NOAA WIST server 
(https://wist.echo.nasa.gov/). They result from an optimal estimation method and were 
handled here without their averaging kernels. Such products contain both the vertical profile 
and its integration into the total column, and also detail on a level basis how much the final 
retrieval (CO profile) is constrained by the a priori information.  
 
In order not to be biased by the background used in the MOPITT product generation, an 
additional filter was applied to reject all retrievals constrained by more than 50% on average. 
This mainly concerns the elevated polar regions as can be seen in Figure 20. These maps also 
illustrate some regional and diurnal variations of such retrievals. Over oceans, the a priori 
information seems to be increasingly contributing to the product with latitude, while 
continental columns are more constrained by the background during night-time (~40-45%) 
than they are when the sun shines (~20-25%). This implies that the optimal estimation 
method has more degrees of freedom when the ground thermal contrast is high, which is 
mainly achieved over warm continental places under sunlight. On the other hand, as the 
surface temperature decreases, the system loses its sensitivity to the lower atmospheric layers 
(see Figure 21) and the blind portion of the profile is mostly inferred from the background 
information. 
 
The detailed results of the intercomparison and statistics of the departures are displayed from 
Figure 15 to Figure 25. 

https://wist.echo.nasa.gov/
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4.2 Sensitivity to the Scanning Geometry 
Statistics were computed separately for each viewing position (EFOVs) during that period 
and for day and night-time respectively. Averaged over the approximately 100 orbits, the 
mean CO column is expected to be approximately constant with scan angle. Furthermore, 
densities retrieved during daytime are also expected to match those retrieved at night time. 
The short period addressed here does not offer daylight sensing over Antarctica and 
conversely, no night counterparts are available for North Pole measurements. Therefore the 
polar caps were excluded from this particular angular analysis. 
 
As can be seen in Figure 18, the implementation in PPF v4.3.2 (013b) shows a significant 
angular dependence, with increasing columns towards the nadir. The amplitude of the 
variations is as high as 0.3 x 1018 molec/cm2 during daytime and even up to 
0.4 x 1018 molec/cm2 for night cases. The proposed implementation (066) shows a much 
flatter profile in general, with a small decrease less than 0.1 x 1018 molec/cm2 at the swath 
edges for both day and night retrievals. These features however do not show with ECMWF 
analyses temperatures (retrieval 067), whose production is essentially independent of the 
IASI viewing geometry. 

4.3 Sensitivity to the Surface Temperature 
Because it determines the upwelling radiance transferred through the atmosphere, the surface 
temperature parameter is potentially a strong support for the ANN CO retrieval, as recalled in 
§3.4. A sensitivity study was therefore conducted where the skin surface temperature was 
artificially varied by ±1 to 5 K around the EOF retrieved values before entering the ANN CO 
retrievals for the last seven days of August 2008. Results are presented in Figure 19 and 
illustrate the importance of the channel selection and of modelling the input temperature 
errors. With the initial channel selection and with the assumption at training of error-free 
input temperatures (052’s network), the final CO columns responded to a 5 K change of the 
surface temperature by about 0.25 x 1018 molecules/cm2 (~15%) on average and showed a 
sensitive dependence on the scan angle, which also applies to a lesser extent to their standard 
deviations. The proposed network (used in retrieval 067) is configured with the upgraded 
spectral information described in Table 4 and the teaching input temperatures used for its 
training were degraded with some errors. It proves much more robust with a variation of only 
0.075 x 1018 molecules/cm2 for the average CO columns in response to a surface temperature 
modification of 5 K. This good consistency as well as the stability with the scanning 
geometry described in §4.2 also applies to the standard deviations of the CO columns 
accumulated during the studied period. 

4.4 Spatial and Diurnal Coherence 
With an atmospheric lifetime of about two months, day and night-time CO retrievals are 
expected to generally match each other. With the exception of some desert sub-regions in 
Australia, Mongolia or Sahara, the day/night contrast is globally relatively small on the 
averaged maps (Figure 15 and Figure 16) and fluctuates around 0.05 x 1018 molec/cm2 
(Figure 18). This number is essentially indicative because clear land cases are less 
represented at night and because the exact same Earth points were not necessarily associated 
with retrievals from the day and night overpasses. In particular, the two main sources in 
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South America and Central Africa are mostly retrieved at daytime and were more discarded 
at night-time by the cloud detection for instance. 
 
In the same way, low land and sea retrievals should present smooth transitions in coastal 
areas. This is in general achieved with only a few exceptions, for instance off the coasts of 
Morocco and Mauritania. In that particular case however, MOPITT reported the area as 
cloudy and consequently did not provide any CO measurements. 
 
While sources and atmospheric transport will cause natural CO variations with time at a 
given location, certain regions of the globe, like the Central Pacific, appear to be constant on 
large scales, with lower amounts on average in this particular case. The spatial coherence of 
the ANN CO retrievals was studied over this area, whose standard deviation (mapped in 
Figure 17) may be interpreted as an approximate measure of the actual retrieval error. For the 
studied period, this ranges between 0.18 and 0.24 x 1018 molec/cm2 on average, which is 
close to but slightly higher than the theoretical figures detailed in §3.7. On the other hand, the 
retrievals over Antarctica show much bigger and unlikely standard deviations of about 0.5 
and up to 0.8 x 1018 molec/cm2 in the operational configuration (066). The neural network fed 
with ECMWF temperature profiles (067) has a slightly lower variability at the South Pole. It 
amounts to approximately 0.25 over the elevated part but still remains as high as 
0.5 x 1018 molec/cm2 along the coasts. The low temperatures, the icy cover as well as thinner 
CO columns degrade the signal-to-noise ratio and would partly explain the instability of these 
retrievals together with potential cloud contamination, whose detection is less accurate at 
night under such polar conditions. 
 
The known CO sources [RD 13] are qualitatively well retrieved. They essentially split into 
two main classes: the biomass burning below the Equator in Africa and South America on the 
one hand, and the agricultural fires and industrial emissions over Northern India and China 
on the other. The latter plumes are transported out over the Pacific Ocean beyond Japan [RD 
14]. 

4.5 Comparison with MOPITT 

The intercomparison with MOPITT products summarised hereafter is more exhaustively 
displayed in Figure 22 to Figure 25. It was broken down into day/night and geographical 
classes covering the Poles (|lat.| > 60°), mid-latitudes (30° < |lat.| < 60°) and a wide tropical-
equatorial band from 30°S to 30°N. Visually, MOPITT products present noticeable day/night 
contrasts over central Africa, Greenland and Asia for instance, and there appear to be fewer 
continental night measurements in general available from both instruments. 
 
The proposed implementation (066) departures from MOPITT products are slightly higher 
than the theoretical errors, with standard deviations varying between 0.25 and 
0.32 x 1018 molec/cm2 in general, and up to 0.39 in the Northern Hemisphere at night. This 
translates into approximately 15 to 22% in relative terms, with the exception of Antarctica. 
Their distributions are usually not symmetrical and small tails are visible where IASI ANN 
CO is in excess, whose root cause was mainly found in the interpixel dependency discussed 
in Section 5. Although the standard deviation of the intercomparison only varies by a few 
percent in the various geographical and illumination classes, the bias can be very different 
from one class to another. It reaches 25% in Antarctica while amounting to 13% in the 
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Southern Hemisphere, 7% at the North Pole and almost vanishes between 30°S and 60°N. In 
terms of correlations, the best results are obtained during daytime.  
 
Although giving good indications, no definitive conclusions can be drawn from this exercise 
in terms of absolute calibration. Indeed, as described in §4.1.2, the MOPITT retrievals are 
progressively constrained by the background information as the surface temperature drops. 
Further to this, recent studies showed that the MOPITT CO is overestimated [RD 9], which 
would imply that the proposed implementation could statistically also have a positive bias.  
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5 IASI INTERPIXEL DIFFERENCES AND EXTENDED VALIDATION WITH 
SATELLITE DATA 

Systematic differences have been found between the four pixels, which will be presented and 
discussed in this section. The IASI L1C products indeed exhibit some interpixel differences 
around 2100 cm-1 which impact the IASI L2 carbon monoxide (CO) retrievals. The validation 
study presented in Section 4 was then repeated for pixels 3 and 4 only and extended to the 
full months of August and November 2008 and February 2009. 

5.1 The Interpixel Differences in the L2 CO and L1C Products 
Figure 33 shows a close-up view of the CO total column product over Madagascar on 
21 September 2007 around 18:00 UTC. IASI acquires four spectra simultaneously, which are 
associated with individual fields of view (IFOVs, also called pixels in this section) forming 
an elementary field of view (EFOV). Some EFOVs are highlighted with black ellipses to ease 
the identification of the respective pixels. Pixel 2 is located to the upper right of an EFOV in 
this scene and appears to be strongly biased in comparison to the others. 
 
The CO total column means and standard deviations were computed for each IFOV 
separately in the entire orbit from which Figure 33 was extracted and are displayed on that 
same figure. It turns out that the retrievals with pixel 2 are about 20% higher than for pixels 3 
and 4, with a significantly higher standard deviation. Given the number of pixels involved 
(approximately 15,000 in total) and their global distribution in latitudes, we can expect that 
the atmospheric situations sensed by each IFOV were statistically comparable. Also 
considering that the very same algorithm was applied to all IFOVs, such a pixel dependency 
was attributed to differences in the L1C data. 
 
This assumption was confirmed by inspection of the L1C radiances and is illustrated by 
Figure 34 and Figure 35. The first plot shows the mean radiance departures for the scene 
presented in Figure 33 between pixels (1,2,4) and pixel 3 at channels involved in the CO 
retrieval. Whilst the radiances of pixels 3 and 4 are in good agreement, with no bias and a 
dispersion smaller than 5 x 10-8 W/m2/sr/m-1, the radiances of pixels 1 and 2 present a 
dispersion about twice as high as well as some large biases from pixel 3 (up to 10-7 
W/m2/sr/m-1). Figure 35 shows similar statistics computed at all IASI channels with 
approximately 700,000 clear sky measurements over oceans at night, accumulated during 
more than 2.5 years of IASI L0/L1 NRT monitoring [RD 15]. Pixels 1 (black), 3 (red) and 4 
(green) are compared to pixel 2 in brightness temperature, the difference being computed for 
a reference temperature of 280 K. Some interpixel differences can be as high as 0.35 K 
between 2000 and 2250 cm-1 where the CO retrieval is sensitive. Here again, pixels 3 and 4 
present similar behaviours which motivated the validation of the CO total columns for those 
IFOVs separately. 
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5.2 Validation with Satellite Data 

5.2.1 Self-consistency Checks on IASI Products 
As can be seen in the monthly means and standard deviations presented in Figure 39 and 
Figure 40, the conclusions drawn in §4.4 with respect to the day/night and land/sea continuity 
basically are still valid when only the pixels 3 and 4 are retained. The main patterns are still 
well captured: tropical biomass burning and pollution in the Northern Hemisphere. It is also 
interesting to note that the CO produced in the wild bush fires that raged in early February 
2009 on the south-eastern coasts of Australia and which was transported out over the 
southern Pacific is well visible in the monthly maps (see Figure 39 and Figure 40, bottom 
line). 
 
Given the lifetime of this gas, the spatial variance of the CO retrieved amounts over a week 
or a month can be used as a proxy measure of the retrieval error where no particular 
transports modified the background load. The standard deviations computed over the central 
Pacific in August 2008 dropped down to 0.13 to 0.20 x 1018 molec/cm2 when restricted to 
IFOVs 3 and 4, which is lower than in the statistics applying to all four IFOVs (cf. §4.4 and 
see Figure 40 and Figure 36 vs. Figure 17). This is also consistent with the theoretical errors 
obtained with the training set (§3.7). 

5.2.2 Comparison with MOPITT CO Products 
The statistics for all four pixels for the last week of August 2008, discussed in §4.5, were 
computed again for just pixels 3 and 4. They are shown in Figure 37 (relative departures) and 
Figure 38 (absolute departures) which can be directly compared to Figure 24 and Figure 25 
respectively. In relative (absolute) terms, the standard deviations decreased by 3% (0.05 
x 1018 molec/cm2) if the IFOVs 1 and 2 are filtered out. 
 
The intercomparison with MOPITT, performed on a pixel basis with the IASI products, has 
been extended to the entire months of August and November 2008. The results are 
summarised in Figure 41 to Figure 44. The global correlation is 0.82 for August 2008 with 
pixels 3 and 4 only, which is higher than the 0.75 reported with all pixels in §4.5. The 
departures between IASI and MOPITT CO products have also significantly decreased, with 
standard deviations ranging between 10 and 15% (0.22 and 0.28 x 1018 molec/cm2), whereas 
they varied between 15 and 22% (0.25 and 0.32 x 1018 molec/cm2) when all four IFOVs were 
considered. The bias between the two products is still variable with latitude, showing larger 
values in the Southern Hemisphere in general. 
 
Taking into account an average error of about 10% in MOPITT products, these results 
indicate that such artificial neural network retrievals mostly match the accuracy defined in the 
EPS mission requirements. 
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6 CONCLUSIONS 

6.1 Summary and Recommendation 
The initial specifications for a neural network retrieval ran in a pre-operational mode for 
several months and showed some limitations, which were characterised. The main issues 
dealt with a strong scan angle dependency, a positive bias and failure over elevated areas as 
well as some specific surfaces (ice and deserts). Investigations were conducted, from which a 
collection of modifications were elaborated with a single architecture and were discussed in 
this document. 
 
Interpixel differences in the IASI CO products were analysed and traced back to the L1c 
measurements. As a conclusion, the pixels 3 and 4 were retained and further validated 
together. Verification with training data and preliminary validation with real IASI 
measurements and external satellite products were performed which confirmed the 
improvements and the level of maturity in comparison to the current operational processing 
chain. In terms of timeliness, this technique is compatible with operational processing on the 
EPS ground segment. The validation errors with the pixels 3 and 4 match the required 
accuracy, such that it is recommended to implement these changes into the IASI L2 PPF for 
the revision v5.0. 

6.2 Practical Implementation into Operational PPF 
A few elements need to be modified accordingly, which are listed hereafter: 

• The static auxiliary data (SAD) description (document EUM.EPS.SYS.TEN.03.034) 
needs to be updated to reflect the additional inputs and the individual scaling 
coefficients for every input and output element in COF_TRGAS; 

• The COF_TRGAS itself; 
• The “readaux” library; 
• The function ANN_OADFG() within iterativeRetrieval.cc; 
• The IASI L2 PGS, section 5.19. 

6.3 Discussion and Perspectives 
Although this report addresses CO only, it is believed that the modifications which are 
suggested here are applicable to the other gases foreseen in the IASI L2 products and that 
their retrievals should be improved as well. Similarly to the CO, the N2O products should 
also be produced for pixels 3 and 4. 
 
It is acknowledged that the validation exercise with external data covered a limited period. It 
should be extended to other dates and reference products. Further to this, validations with 
ground-based Fourier transform infrared (FTIR) spectrometer measurements of the Network 
for Detection of Atmospheric Component Change (NDACC) will be performed in order to 
complete the quantitative error characterisation on smaller scales. 
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Concerning the training set, the impact on the final retrieval of the correlation between 
bottom and upper levels, as well as the positive skewness of the synthetic profiles towards the 
surface, should be investigated. Indeed, because of the reduced sensitivity to the boundary 
layers in many situations, their contributions are mostly inferred from the upper part of the 
profile and the retrieved total column may be biased if the teaching vertical distribution is 
artificially exaggerated and correlated. Additionally, some extreme CO columns, well above 
7 x 1018 molec/cm2, were reported in recent presentations given by LATMOS-ULB, 
occurring in major events such as the wild fires in Greece, 2007. MOPITT products over the 
year 2008 also contain a minority of high density profiles which are outside the training 
range. Because of its non-linear response, it is expected that the neural network retrieval will 
be degraded under such circumstances. A last aspect to be considered is potential systematic 
biases between the fast radiative transfer model (here, RTIASI) and the actual measurements. 
In contrast to their application in the optimal estimation method set up in the operational IASI 
L2 PPF, the radiances ingested by the artificial neural network are not corrected for. Hence, 
we may expect biased retrievals like those observed and described in Section 5. Their 
characterisation will require extended comparisons with models, external satellite products 
and ground measurements. 
 
Ultimately, current external works based on EOF (Dan Zhou) or OEM (LATMOS-ULB) 
methods actually aim at retrieving the CO profiles from IASI measurements. Although not 
more than 1.7 degrees of freedom were claimed to be present on average for that particular 
gas with this OEM approach, it could be investigated whether the ANN can be used to infer 
the vertical CO distribution at a cheaper computation-time cost. 
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APPENDIX A TRAINING AND VALIDATION RESULTS 

 
Figure 1: Angular variation of the retrieved ozone total column over the Arabian Sea on 25 
August 2008. Ozone abundances are shown as a function of the scan angle (x-axis), the nadir 
being indicated by the dash-dot line. Plain thick and dashed lines respectively represent 
retrievals obtained with neural nets operated at EUMETSAT (EUM-NN) and at former 
“Service d’Aéronomie” (SA-NN) now LATMOS. The off-nadir views were discarded in the 
latter processing chain. 

Nadir 
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Figure 2: Angular variation of the retrieved CO total column over the Pacific Ocean on 25 
August 2008. Abundances are shown as a function of the scan angle (x-axis), the nadir being 
indicated by the dash-dot line. Plain thick and dashed lines respectively represent retrievals obtained with 
neural nets operated at EUMETSAT (EUM-NN) and at Service d’Aéronomie (SA-NN). The swath edges are 
discarded in the latter processing chain. 
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Figure 3: Distribution of some radiance (left) and temperature (right) inputs to the ANN CO 
retrieval. Different colours are associated with individual input parameters (channels or 
levels) while the thick black lines draw the overall statistics for all involved radiances and 
atmospheric temperatures. 

 
Figure 4: Angular variation of the mean CO total column retrieved with IASI acquisitions in 
the last week of August 2008 under various ANN configurations. 013b is similar to the 
current operations while 047, 052 and 053 are candidates for the next PPF upgrade and use 
the satellite zenith angle as an explicit predictor. + and ● symbols correspond to night and 
day times, respectively. 
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Figure 5: Original channel selection. Pink and black vertical dashed lines highlight the CO absorption and baseline channels involved in 
the ANN as originally selected by SA. Transmittances of various atmospheric components in the CO spectral region were computed for a 
tropical case. 
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Figure 6: Modified channel selection. Pink and black vertical dashed lines highlight the CO absorption and baseline channels involved in 
the ANN in the proposed upgrade. Transmittances of various atmospheric components in the CO spectral region were computed for a 
tropical case. 
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Figure 7: Synaptic weights between the input (horizontally) and the first hidden layer 
(vertically) after training for CO total column retrieval (test configuration 0ah). From left to 
right, the inputs are respectively the absorption lines (labels 0 to 29, blue), the baseline 
radiances (0 to 2, red), the surface temperature (Ts), a temperature profile (0 to 17, black), 
the satellite zenith angle (z), the surface pressure (Ps) and the solar zenith angle (S). 
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Figure 8: Jacobians of the ANN CO total column retrieval computed over the Indian Ocean 
on 28 August 2008. The various IFOVs (1000 in total) are stored along the horizontal axis 
while the derivatives to the inputs are ordered on the vertical axis from bottom to top in the 
same way as they are listed in Figure 7. The four last inputs (Aux) are respectively the 
satellite zenith angle (secant and cosine), the surface pressure and the solar zenith angle 
(cosine). 
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Figure 9: CO spectral region measured off the coasts of Gabon on 25 August 2008. Channels 
originally selected by SA are shown in blue (absorption lines) and pink (baseline). The thermal 
background plotted with a thick line is the Planck function computed after the baseline channels while 
the thinner envelope was computed with the surface temperature and the theoretical surface 
emissivity of the scene. 

 
Figure 10: Correlation of line intensities with tropospheric CO (red) and H2O (black) mixing ratio at 
various levels in the spectral CO region. The cyan lines indicate the channels selected by SA and 
involved in the ANN CO retrieval. 53,980 cases from the synthetic data set 539da were used here. 

 
Figure 11: Distribution of the CO total column in the selection of synthetic cases for ANN retrieval 
training 
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Figure 12: Linear fit on the retrieved CO total columns vs. their associated target after 
training with noisy inputs. Dash-dot lines denote the ±20% EURD thresholds. 

 
Figure 13: CO training error (left: relative error in %, right: absolute error in 
1018molec/cm2) as a function of the target CO column. Noisy inputs were used for training. 
Dashed lines at ±20% show the thresholds after EURD. 
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Figure 14: CO absolute (left) and relative (right) training errors. The overall statistics are 
displayed in black while the best fitting Gaussian distributions and associated numbers are 
shown in red. Below, the 7% faintest columns (CO < 0.7 molec/cm2) were excluded and 
statistics recomputed. Artificial networks were taught with noisy inputs. 
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Figure 15: Accumulation of IASI ANN CO retrievals for the 25-31 August 2008 period. Day 
and night maps are shown on the left- and right-hand side respectively. In configuration 067 
(second line), the input temperatures were taken from EOF retrieval (Ts) and ECMWF 
analyses (vertical profile), whereas in configuration 066 (first line) they all came from EOF 
retrievals to reproduce what is done in operations. 
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Figure 16: CO L3 weekly products computed after IASI ANN CO retrievals (top and middle) 
and MOPITT CO products (bottom) for the period 25-31 August 2008. Day and night maps 
are shown on the left- and right-hand side respectively. In configuration 067 (middle line), 
the input temperatures were taken from EOF retrieval (Ts) and ECMWF analyses (vertical 
profile), whereas in configuration 066 (top line) they all came from EOF retrievals to 
reproduce what is done in operations. 
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Figure 17: Standard deviation of CO total columns retrieved during the last week of August 
2008 with IASI ANN CO (top and middle) and MOPITT CO products (bottom). Day and 
night maps are shown on the left- and right-hand side respectively. In configuration 067 
(middle line), the input temperatures were taken from EOF retrieval (Ts) and ECMWF 
analyses (vertical profile), whereas in configuration 066 (top line) they all came from EOF 
retrievals to reproduce what is done in operations. 
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Figure 18: Angular variation of the mean CO total column computed with IASI measurements 
between 25 and 31 August 2008 under various ANN configurations. + and ● symbols correspond to 
night and day time, respectively. 013b corresponds to the version in operation since the last PPF 
upgrade in January 2009. 066 and 067 result from the same network, proposed for the next upgrade, 
respectively fed with EOF retrieved and ECMWF analyses temperature profiles. 

 
Figure 19: ANN CO retrieval sensitivity to the skin surface temperature: mean CO columns (top) and 
standard deviations (bottom) were computed for each scan position (EFOV) for a 7-day period in 
August 2008. + and ● symbols correspond to night and day time, respectively. Network 067 (right) 
differs from 052 (left) by the inclusion during its training of some errors modelling the input 
temperature characteristics and an upgraded channel selection. 
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Figure 20: Mean fraction of the a priori information contained in the final MOPITT CO 
profiles on 27 August 2008 for day (left) and night (right) times 

 

 
Figure 21: MOPITT CO averaging kernels (http://mopitt.eos.ucar.edu) 

 

 

066 067 

Figure 22: Global correlation between IASI and MOPITT CO retrievals in the last week of 
August 2008. EOF and ECMWF temperature profiles were used as inputs to the ANN in the 
configurations 066 and 067, respectively. 

http://mopitt.eos.ucar.edu/
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Figure 23: Day/night and geographical breakdown of the correlation between IASI and 
MOPITT CO averages retrieved for the last week of August 2008. ECMWF and EOF 
temperature profiles were used as inputs to the ANN in configurations 067 (above) and 066 
(below), respectively. From left to right the latitudes are grouped in the following bands: SP 
[-90° ;-60°], SH [-60° ;-30°], TropEq [-30° ;30°], NH [30° ; 60°] and NP [60° ; 90°]. 
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Figure 24: Day/night and geographical breakdown of the IASI relative departure from 
MOPITT CO averages retrieved for the last week of August 2008. ECMWF and EOF 
temperature profiles were used as inputs to the ANN in configurations 067 (above) and 066 
(below), respectively. From left to right the latitudes are grouped in the following bands: SP 
[-90° ;-60°], SH [-60° ;-30°], TropEq [-30° ;30°], NH [30° ; 60°] and NP [60° ; 90°]. 
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Figure 25: Day/night and geographical breakdown of the IASI absolute departure from 
MOPITT CO averages retrieved for the last week of August 2008. ECMWF and EOF 
temperature profiles were used as inputs to the ANN in configurations 067 (above) and 066 
(below), respectively. From left to right the latitudes are grouped in the following bands: SP 
[-90° ;-60°], SH [-60° ;-30°], TropEq [-30° ;30°], NH [30° ; 60°] and NP [60° ; 90°]. 
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Figure 26: Linear fit on the retrieved CO total columns vs. their associated target after 
training with noise-free inputs. Dash-dot lines denote the ±20% EURD thresholds. 

 
Figure 27: CO training error (left: relative error in %, right: absolute error in 
1018molec/cm2) as a function of the target CO column. Noise-free inputs were used for 
training. Dashed lines at ±20% show the EURD thresholds. 
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Figure 28: CO absolute (left) and relative (right) training errors. The overall statistics are 
displayed in black while the best fitting Gaussian distributions and associated numbers are 
shown in red. Below, the 7% faintest columns (CO < 0.7 molec/cm2) were excluded and 
statistics recomputed. Artificial networks were taught with noise-free inputs. 
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Figure 29: Statistics of CO profiles in the synthetic data sets (black) and in MOPITT CO 
products for 2008 (red). The central thick plain lines show the mean profile while the dashed, 
dot-dash and dot lines respectively indicate the (mean ± 1σ), the (2.5%-97.5%) and the 
(min ; max) limits of these CO vertical distributions. 

 
Figure 30: CO mixing ratio around 850 hPa in the synthetic training set showing the 
geographical distribution of the samples 
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Figure 31: CO profile correlation as found in MOPITT L3 daily products for the year 2008 
(left) and in the synthetic training set (right). The pressure levels are indicated in hPa. 

 

 
Figure 32: Full CO profile correlation in the synthetic data set represented on the RTIASI 
grid. The bottom of the atmosphere is at the lower left corner and the TOA at the upper right. 
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Figure 33: IASI L2 CO products over Madagascar illustrating the outlying pixel 2. Some 
EFOVs were circled for convenience to identify this pixel (the upper right one). The mean 
and standard deviation of the CO total column were computed with the entire orbit 
20070921171457Z_20070921185657Z (2007 September 21 17:14:57-18:56:57 UTC). 
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IFOV 1 
IFOV 2 
IFOV 3 
IFOV 4 

Figure 34: Mean radiance differences between pixel 3 and pixels 1 (blue), 2 (brown) and 4 
(green) computed for the scene shown in Figure 33 

 

Credit: L. Fiedler 

Figure 35: Radiance biases between pixels (1,3,4) and pixel 2 computed between May 2007 
and December 2009 in the IASI L0/L1 NRT monitoring [RD 15] compared to the requirement 
for interpixel differences (dashed lines) 
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Figure 36: Same as Figure 17 top line but with pixels 3 and 4 only 

 
Figure 37: Same as Figure 24, with pixels 3 and 4 only 

 
Figure 38: Same as Figure 25, with pixels 3 and 4 only 
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Figure 39: Monthly mean CO total columns computed with the IFOVs 3 and 4 for the months 
of August 2008 (top), November 2008 (middle) and February 2009 (bottom) at day (left) and 
night (right) times 



EUM/MET/TEN/09/0232  
v1A, 29 October 2010 

An Improved Artificial Neural Network CO Retrieval for IASI L2 
Processor 

 
 

Page 48 of 52 

 
Figure 40: Standard deviations in gridded monthly CO total columns computed with the 
IFOVs 3 and 4 for the months of August 2008 (top), November 2008 (middle) and February 
2009 (bottom) at day (left) and night (right) times 



EUM/MET/TEN/09/0232  
v1A, 29 October 2010 

An Improved Artificial Neural Network CO Retrieval for IASI L2 
Processor 

 
 

Page 49 of 52 

 
Figure 41: Same as Figure 22-left, with pixels 3 and 4 only and for the months of August 
2008 (above) and November 2008 (below) 
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Figure 42: Same as Figure 23-bottom, with pixels 3 and 4 only and for the months of August 
2008 (above) and November 2008 (below) 
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Figure 43: Same as Figure 24-bottom, with pixels 3 and 4 only and for the months of August 
2008 (above) and November 2008 (below) 
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Figure 44: Same as Figure 25-bottom, with pixels 3 and 4 only and for the months of August 
2008 (above) and November 2008 (below) 
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