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Why (Total) Lightning Assimilation? 

• Unambiguous indicator of deep electrified storms. GLM will detect total 

lightning over huge region continuously with >70% detection efficiency.  

• Total lightning correlates far better with storm characteristics (e.g., ice 

water path) than cloud-to-ground (CG) only.  

• Intracloud flashes tend to occur 5-30 minutes before CGs & IC:CG is 3 

typically (less lag from convection initiation & more samples) 

Average yearly 

lightning density (from 

TRMM/LIS) for GOES 

fields of view 

 

Far greater coverage 

than radars. 



Three methods of storm-scale lightning data 

assimilation: 

1. “Deterministic”: Nudging water vapor (and/or θe to force 

convection initiation where lightning is observed but convection is 

absent in WRF. Forcing is maintained for 10s of minutes to 

achieve a model response to sustain the storms. 

  (Fierro et al. 2012) Used ENTLN total lightning as national stand-in for GLM. 

2. “Ensemble”: Kalman Filter to modulate convection (e.g., 

strengthen or weaken) in the ensemble members. Ensemble 

covariances provide adjustments to all state variables (e.g., 

temperature, winds, liquid water, & ice particles). Lightning 

observations are assimilated on 1-3 minute intervals.  

(Mansell 2014, Allen 2014) Used regional pseudo Geostationary Lightning 

Mapper (p-GLM) data derived from LMA  

3.  3-D VAR:  Just starting work on this. 



Lightning assimiation nudging function 
Water vapor mixing Qv within the 0°C to -20°C layer was increased as a function 

of 9-km gridded flash rates Nflash (X) and simulated graupel mass mixing ratio Qg 

and saturation vapor mixing ratio Qsat. Increasing Qv at constant temperature T 

increases buoyancy (virtual potential temperature θv) and ultimately generates 

an updraft. 

-Only applied whenever 

simulated RH ≤ A*Qsat and 

simulated Qg < 3 g/kg. 

-A controls minimum RH 

threshold (here 81%).  

-B and C control the slope 

(how fast to saturate) 

-D affects how much water 

vapor (Qv) is added at a 

given value of graupel 

mixing ratio (Qg). 

Qg = 

Fierro et al. (2012) 



Nudging:  29 June 2012 Derecho Event 

Comparison of 6-hr forecasts at 22 UTC (3-km resolution): Observed radar, No 

Assimilation (Control, 14 UTC starting time), 3D-var assim. of radar data (10-minute 

cycling, 14-16UTC), and lightning data (ENTLN) assimilation (14-16 UTC). 

Observation Control Forecast 

3D-VAR Radar 

Assimilation  

Lightning: water 

vapor nudging 

Fierro et al. (2014) 



Real-time implementation into WRF-NSSL 4-km CONUS runs 

A quasi-operational test of  daily 

forecasts parallel to the daily 

NSSL convection-allowing 

forecasts (4-km horizontal grid 

spacing), initialized at 00 UTC. 

Lightning data (ENTLN) were 

assimilated for first two hours 

(0-2 UTC) of forecast to nudge 

deep convection. 
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Ensemble Kalman Filter (EnKF) Assimilation  

Figure: updraft (vectors) and graupel mass (black contours) and radar reflectivity (color-

filled contours) 

Example of suppression using lightning density at 8x8km resolution 

(model at 1km resolution). One cycle (about 10 observations!) achieves 

significant reduction in updraft and hydrometeor mass. 

Mansell (2014) 



Pseudo-GLM EnKF Assimilation 

-> Flash extent density ~ 80 min-1 

-> Flash extent density ~ 1 min-1 
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Example of 8-km pseudo-GLM Flash extent 
density (FED) derived from Oklahoma LMA for 
8 May 2003 tornadic supercell storm from 
Allen (2014). 

P-GLM grid flash counts from LMA data 
(flashes per grid column per time) 

EnKF observation operator:   linear 
relationship between graupel echo 
volume & flash rate: 

       FED = (0.017)*(graupel volume) 

where graupel volume = number of grid 
cells with graupel mixing ratio > 0.5 g/kg 
in a 16-km box centered on p-GLM pixel. 

Radar radial velocity data assimilated  for 
comparison. 

Ensemble:  

40 members, 1-km horizontal resolution. 

Cloud model is COMMAS with NSSL 2-
moment microphysics. 



Low-level analysis of radar reflectivity around the time of the 
first tornado (Moore/Oklahoma City, OK EF4 tornadic storm)  

Observed Reflectivity 

22:09Z 22:10Z 

“Best” member reflectivity 

Some broadening of the storms is expected from the 8-km resolution of the pseudo-GLM 
data. Excessive coverage of high-reflectivity regions is not unexpected, but also is rather 
good for a simple linear lightning observation operator. 

P-GLM EnKF: 8 May 2003 Supercell 

22:09Z 
Mean reflectivity from radar  
Vr assimilation 



Ensemble probability of Vorticity > 
0.01 s-1 at 1.25 km AGL from 2200 
UTC to 2300 UTC, assimilating 1 
minute pGLM data with graupel 
volume observation operator. 
Tornado track is given by thin black 
outline near center of plot. 

WDSS-II 0-2 km rotation track 
derived from KTLX radial velocity 
data from 2200 UTC to 2300 UTC.  
Tornado track given by green 
outline near center of plot. 
(From Yussouf et al. 2013) 



         Summary: 

• Lightning effectively identifies deep convection and is useful for forcing 

convection in the early hours of a forecast.  Sustained nudging of water vapor 

forms updrafts and allows storms to develop in a balanced manner within the 

model. For simple convection initiation, it is more efficient, e.g., than 3D-VAR 

radar analysis. 

• Spring 2013 forecasts using lightning nudging increase the bias-corrected 

precipitation threat scores out to 6-9 hours. 

• The Ensemble Kalman Filter method can modulate convection (e.g., 

strengthen or weaken) and help suppress spurious storms using flash extent 

density 
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Low-level analysis of radar reflectivity around the time of the 
first tornado (Moore/Oklahoma City, OK EF4 tornadic storm)  

Observed Reflectivity 

22:09Z 22:10Z 
“Best” pGLM member  

reflectivity 

Some broadening of the storms is expected from the 8-km resolution of the pseudo-GLM 
data. Excessive coverage of high-reflectivity regions is not unexpected, but also is rather 
good for a simple linear lightning observation operator. 

P-GLM EnKF: 8 May 2003 Supercell 



8 May 2003: 1 minute pGLM data assimilation  
vs. radar radial velocity assimilation 

radial velocity 
assimilation 

pGLM 
assimilation 

No data assimilation 

radial velocity assimilation 

pGLM 
assimilation 

No data assimilation 

Radar reflectivity error statistics 

Innovation = 
Ob - Model Mean 


