

ATDnet – current status and future development

Sven-Erik Enno, Graeme Anderson, Jacqueline Sugier

www.metoffice.gov.uk

Table of contents

- Network status
 - Valentia
 - Azores
- Research and development
 - Validation of ATDnet during HyMeX SOP1
 - Wave propagation model
- Conclusion

Network status

www.metoffice.gov.uk

Network Status

Crown Copyright 2015. Source: Met Office

Fig. 1. Locations of sensors in the current operational ATDnet.

Valentia back in operational

Crown Copyright 2015. Source: Met Office

Fig. 2. Location of Valentia.

Fig. 3. Valentia impact on the ATDnet performance: ratio of good fix numbers with and without Valentia in the operational network.

Fig. 4. Minimum theoretical location uncertainty difference between operational networks with and without Azores.

Research and development

www.metoffice.gov.uk

Validation of ATDnet during HyMeX SOP1

ATDnet/Lightning Mapping Array (LMA) analysis of cloud flashes.

IC classification is attributed to ATDnet fixes co-located with HyLMA sources associated with high altitude level developing channels.

Anderson *et al, 2015:* Analysis of ATDnet intracloud lightning characteristics. *Manuscript in preparation.*

Fig. 5. An example of a CG flash located by both, the LMA and ATDnet 05/09/2012.

Wave propagation model

Met Office

• To develop a VLF sferic propagation model, in order to gain a better understanding of the physics constraining the ATDnet network

To investigate certain sensitivities of ATDnet

Fig. 6. Plot of average Absolute Signal to Noise Ratio (ASN) with latitude and longitude (in bins of size 0.1x0.1 deg) over Europe, from 01/06/2013-31/08/2013, for ATDnet detector located at Payerne, Switzerland. Low ASN zones are in blue.

Wave propagation model

Fig. 7. Model prediction (solid line) and ASN ratio for three outstations (summer 2013 10:00 to 16:00 UTC).

Wave propagation model

Met Office

Hudson *et al* 2015: Diurnal, Seasonal and 11 yr Solar Cycle Variation Effects on the Virtual Ionosphere Reflection Height and Implications for the Met Office's Lightning Detection System, ATDnet. *Manuscript in preparation.*

Fig. 8. Plot of the first two night-time interference minima locations predicted by the model for 00:00 UTC, June to August 2013.

The future

www.metoffice.gov.uk

- Development of a new central processing software.
- Move to perform the lightning signal detection to central processor in Exeter.
- Currently, system senses at 13.7kHz. Plan to move to 9.7kHz where ITU will offer radio frequency protection.
- More R&D to estimate and monitor detection efficiency over various parts of the network coverage.
- Continue R&D on modal interference and wave propagation issues.

Conclusion

www.metoffice.gov.uk

Questions and answers

www.metoffice.gov.uk