Joint MTG LI Mission Advisory Group & GOES-R GLM Science Team Workshop 27-29 May, 2015

Update on the U.S. NLDN and GLD360

Amitabh Nag Vaisala Inc., Louisville, Colorado, USA

Update on the U.S. NLDN and GLD360

- U.S. National Lightning Detection Network
 - Performance Improvements
 - Validation Studies
- GLD360
 - Performance Characteristics
 - Validation Studies
 - Future Improvements

VAISA

U.S. National Lightning Detection Network

Continuous CONUS Data Since 1989

• The U.S. National Lightning Detection Network (NLDN) has been providing real-time, continental-scale lightning data since 1989.

Continuous and Quantified Improvement

• Upgrades in 1995, 2003-4, and 2010-12 were coupled with detailed performance analyses.

2013 Upgrade to LS7002 Sensors

- The LS7002 uses a combination of Magnetic Direction Finding and Time of Arrival techniques to geolocate lightning discharges with as low as two sensors.
- Advanced Total Lightning dataset containing cloud and cloud-to-ground lightning events now available from the NLDN.
- Cloud lightning detection efficiency was validated to be 50-60% (Murphy and Nag, 2015, AMS Annual Meeting, Phoenix, AZ).

Focus on Calibration and Validation

- Performance validation studies are being conducted using a variety of techniques throughout the network to understand network performance and calibrate models that provide expected performance characteristics.
- Parameters being examined include:
 - Detection Efficiencies
 - Location Accuracy
 - o Classification Accuracy
 - Peak Current Estimation Accuracy

Performance Validation Techniques

- LLS Self-Reference
- Rocket-Triggered Lightning and Lightning Strikes to Tall Objects

VA SA

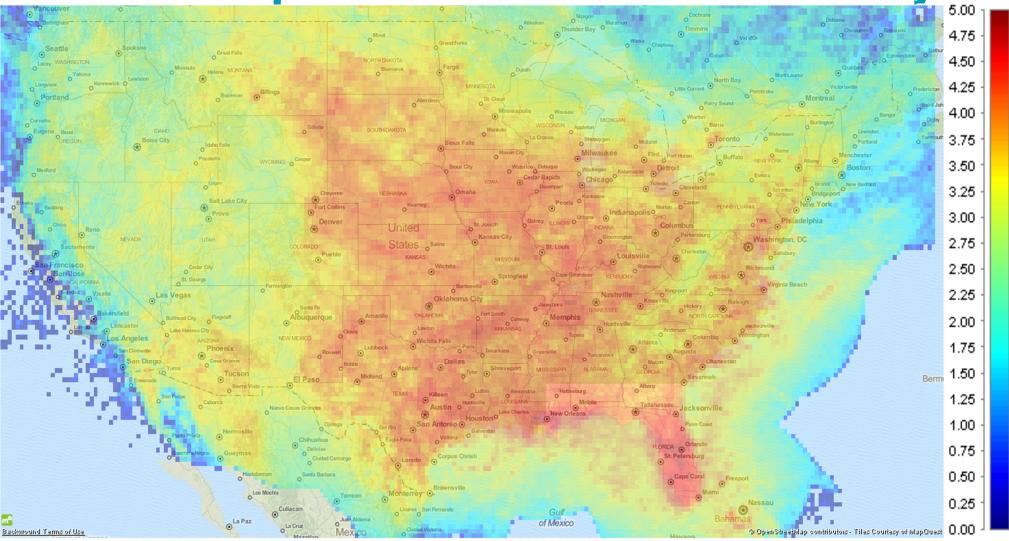
- Video Camera Measurements
- Inter-Comparison among LLSs

Performance Validation Studies

Cloud-to-Ground Lightning

- Tower studies Cramer and Cummins (2014) to validate location accuracy.
- Rocket triggered lighting studies Mallick et al. (2014) to validate flash and stroke detection efficiency, location accuracy, classification accuracy, and peak current estimation accuracy.

Cloud Lightning


- Video camera studies Cummins et al. (2014) and Zhang et al.
 (2015) to validate detection efficiency and classification accuracy.
- Comparison against the LMA (Lightning Mapping Array) Murphy and Nag (2015) to validate cloud lightning detection efficiency.

Cloud Flash DE Validation

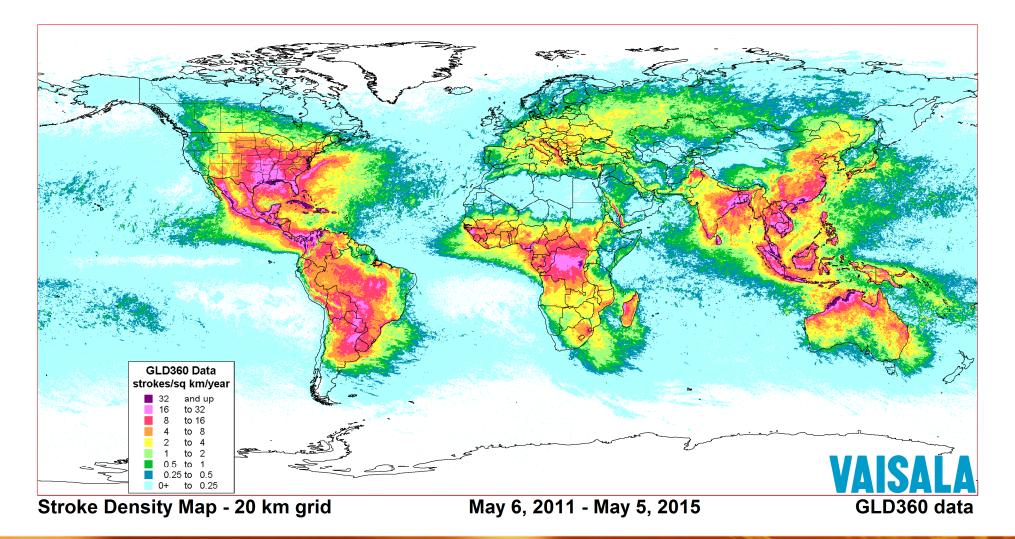
Comparison against the LMA

LMA	Date	Time (UTC)	CG flashes	IC DE, CG flashes (%)	Pure IC flashes	IC DE, pure IC flashes (%)	IC DE, all flashes	Total Itng. DE (%)
Oklahoma	2 Sept.	05:25-05:45	45	60.0	302	50.3	51.6	56.8
Oklahoma	22-23 May	23:40-00:27	143	76.2	669	53.5	57.5	61.7
Oklahoma	23 May	19:00-19:20	12	58.3	47	57.4	57.6	66.1
Oklahoma	26 May	15:27-16:06	49	83.7	177	46.3	54.4	58.0
Oklahoma	27 May	03:59-04:35	90	86.7	163	71.2	76.7	81.4
Oklahoma	consolidated		339	77.3	1358	54.1	58.8	63.3
Colorado	10 Aug.	18:00-19:00	42	59.5	77	51.9	54.6	68.9
Colorado	15 Aug.	01:15-03:15	28	82.1	134	61.9	65.4	68.5
Colorado	20 Sept.	00:46-02:00	44	68.2	109	47.7	53.6	62.7
Colorado	29 Sept.	18:00-19:15	26	69.2	59	37.3	47.1	56.5
Colorado	1 Oct.	19:00-20:30	40	80.0	201	42.3	48.5	51.9
Colorado	9 Oct.	18:00-24:00	25	80.0	83	18.1	32.4	37.0
Colorado	consolidated		205	72.2	663	44.8	51.3	57.8

NLDN Reported Cloud Flash Density

One-year (2014) density of cloud flashes in grid boxes of 0.25° latitude by 0.25° longitude.

Page 8 © Vaisala Joint MTG LI Mission Advisory Group & GOES R GLM Science Team Workshop


Summary of NLDN Performance Characteristics

CG Flash detection efficiency	>95%
CG Stroke detection efficiency	~80%
Median stroke location accuracy	~200 m
Cloud Flash detection efficiency	50-60%
Cloud versus cloud-to-ground classification accuracy	~90%
Peak current estimation error	~15%

GLD360

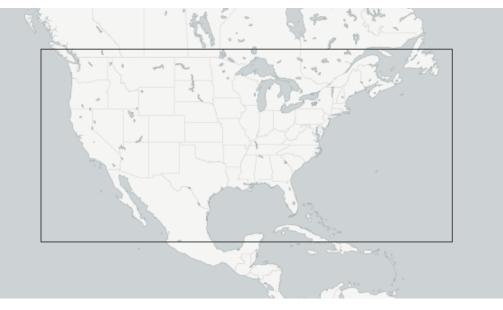
- Global, Real-time Lightning Locating System:
 - Sensitive Very Low Frequency (VLF; <50 kHz) sensors measure lightning discharges out to ~6000 km
 - Long baselines give relatively uniform coverage across landocean boundaries
 - Combined Time of Arrival (TOA) and Magnetic Direction Finding (MDF) technology help achieve industry-leading long-range lightning detection efficiency
 - Patented waveform recognition technology employed to improve location accuracy
 - Performance characteristics quantified using validation studies

GLD360 Global lightning climatology: Stroke Density (4-year average)

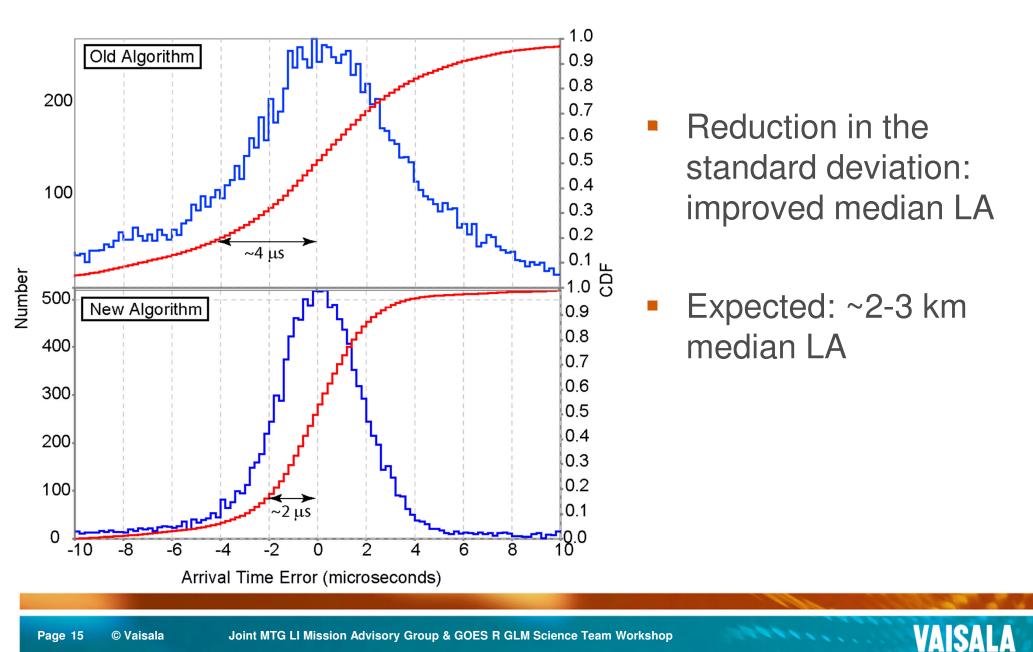
Page 11 © Vaisala Joint MTG LI Mission Advisory Group & GOES R GLM Science Team Workshop

Validation Results

Region	Median LA (km)	CG Flash DE	Peak Current Error	Reference
Florida: Rocket- triggered comparison	2.0	67%	27%	<i>Mallick et al</i> <i>(</i> 2014)
Belgium: video reference	0.9	96%	NA	<i>Poelman et al (</i> 2013)
U.S .: comparison with NLDN	2.5	57% (67% for <i>l</i> /p > 15 kA)	21%	<i>Said et al</i> <i>(</i> 2013)
Europe: comparison with EUCLID	1.5	>60% for <i>1</i> /p>10	R=0.72	<i>Pohjola and Makela (</i> 2012)

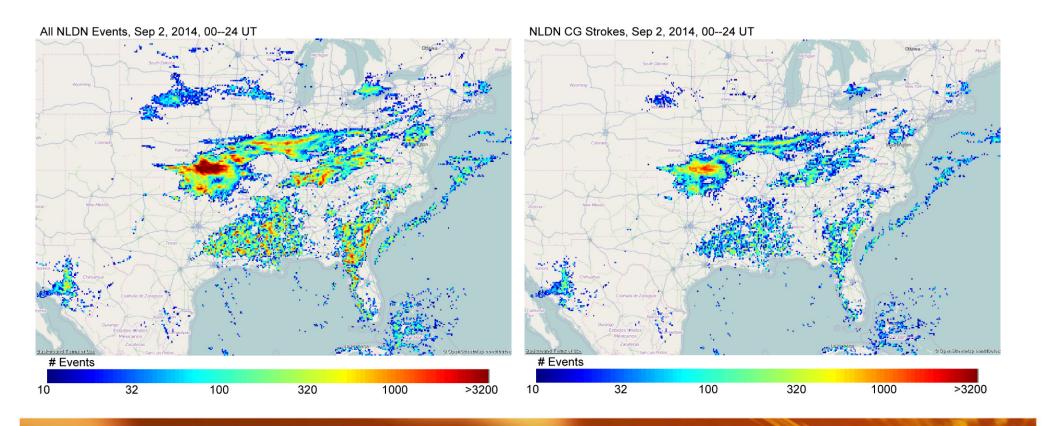


GLD360 Algorithm Update in June, 2015


- New sensor and central processor software.
- More detailed Earth-ionosphere propagation model:
 - Improved peak current magnitude estimates.
 - Well-calibrated DE and LA models.
- Sferic detection and location algorithm enhancements will result in:
 - Increasing detection efficiency by reducing sensor thresholds and introducing improvements to the sensor correlation heuristics.
 - Reducing median location error by introducing a refined arrival time propagation correction scheme.
 - Reducing scatter (tail of the location error distribution) due to improved selection of timing feature on sferics and better timespace filtering.

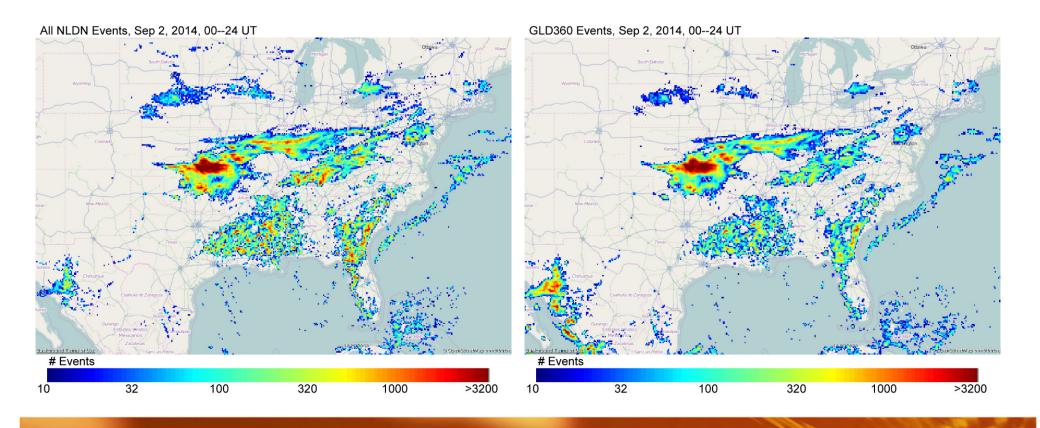
Inter-network Comparison Versus the NLDN

- September 2, 2014
- 20—50 deg N, -130 -50 deg E
- Reference: NLDN data (Post upgrade)
- Compare new GLD360 algorithm to old algorithm



Comparison against the NLDN

Comparison against the NLDN


0.1 x 0.1 deg pixels (pixels with < 10 events omitted)
All NLDN events (left), NLDN CG strokes only (right)

Comparison against the NLDN

- All NLDN events (left), reprocessed GLD360 events (right)
- Closer total count of GLD360 indicates large fraction of cloud pulses in GLD360 data

Page 17 © Vaisala

Joint MTG LI Mission Advisory Group & GOES R GLM Science Team Workshop

Summary

- Improvements were made to the NLDN in 2013.
- Performance validation studies show cloud flash detection efficiency of 50-60% and classification accuracy of ~90%.
- GLD360 has a CG flash detection efficiency of 60-70% and a median location accuracy of 2-5 km.
- Updates will be made to the network in June 2015 leading to improvements in CG detection efficiency (70-80%) and location accuracy (2-3 km).

Thank You

Page 19 © Vaisala

Joint MTG LI Mission Advisory Group & GOES R GLM Science Team Workshop