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Variation in net charge structures
reflect storm structure and organization

Multicellular storms: 1D (up / down)

negative screening layer




Variation in net charge structures
reflect storm structure and organization

Multicellular storms: 1D (up / down)

Squall line / MCSs: 2D

Stolzenburg et al. (1998a)
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Variation in net charge structures
reflect storm structure and organization

Multicellular storms: 1D (up / down)

Squall line / MCSs: 2D (u
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How are net charge regions formed and organized, beyono
sedimentation of hydrometeors and storm-average flow?

Convective motions are a key source of electrical energy
(Williams 1985; Weinheimer 1987).

Hypothesize that turbulent eddy-scale motions are the source of
the electrical potential differences that lead to flash initiation and

control the flash size distribution

Charge structure for a
generalized mesoscale
convective system
(Stolzenburg et al. 1998a)

Turbulent folding in an eddy-resolving
simulation of the same type of storm.
(Bryan et al. 2003)
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Flash size

{, =1038 km?

e |n this talk, flash
size refers to the
sguare root of the
area of the
convex hull of the
olan projection of
the VHF sources
comprising the

“Convex hull” ﬂaSh.
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The flash size distribution

and a simple model of tlash energy

= Flashes sizes are
distributed In a
predictable way. Scaled

energetically, the 10 |

distribution looks like a
thunderstorm’s
turbulent kinetic energy
spectrum. (Bruning and
MacGorman, 2013)
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Fewer, larger flashes in

less-turbulent regions
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Spatial grids of flash size

07/16/2009 Supercell, OKLMA
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All flash color scales are log1o Analysis: P. Ware
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Vertical distribution of flash size

07/16/2009 Supercell
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Summary of spatial
distribution of flash sizes

Top of updraft is smallest sizes.

Average flash size increases in
sedimentation- or advection-
dominated regions with less
turbulence

» At lower altitudes near the
updraft
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 Toward forward anvil
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« Toward stratiform region

 Gradient in flash size is directed
along the storm-relative 0-8 km
bulk shear vector

Vertical wind shear and
sedimentation trajectories link
meteorology to spatial distribution of
flash size:

Analysis: P. Ware



22 June 2012 - DC3 |IOP 21a - isolated cell in Colorado

Meteorological lifecycle and tlash trends
from moments of the flash size distribution
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Real-time flash area products in AWIPS-II at NWS
Lubbock — prototype with NSSL/OU (Calhoun, Kingfield)
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Cell-litecycle and turbulence thinking works in volcanoes

(Behnke & Bruning 2015, GRL: 10.1002/2015GL064199)

Infrasound indicates
active eruption (gas-
thrust phase) along with
buoyant convection.

Initial turbulent
convection and small
flashes transitioned to
less-turbulent flow and
large sizes at anvil level.

Anticorrelation of size,
rate was obvious due to

impulsive nature of event.

Shift to peak of energy
distribution due to
superposition of two
forcing modes (gas-
thrust, buoyant) for
turbulent convection

Event 3, March 23 2009
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Statistics of flash size in LMA data (suggested by energetics) have
meteorological applications. Size data can be presented in grid and
time series form and calculated simply from the flash metadata.

A longer time series and/or large ensemble of flashes seems to help
with clustering uncertainty — while the details of the lightning physics
are highly interesting, it's the trends that matter for meteorological
applications.

GLM and MTG LI have obvious group and flash metadata analogues
to LMA flash size and energy: footprint and radiance.

GLM and MTG LI will be the first long time series observations of
optical pulses over large areas. Might we find similar signals that
complement (add value to) flash counts” LMA data suggest that’s the
case.



