

DTU Space National Space Institute

- ASIM Science
- ASIM Mission
- ASIM Context

• ASIM Science

- ASIM Mission
- ASIM Context

- ASIM is the Atmosphere-Space Interactions Monitor
- The payload will be on an external platform on the International Space Station
- The mission includes coordinated ground observations, laboratory studies, model simulations, and other missions
- ASIM will study the new phenomena of thunderstorms:
 - What is the physics of gigantic electric discharges reaching the ionosphere?
 - How are X- and gamma-ray photons created that reach many tens of mega-electron volt?

The new phenomena

The Sprite in 1989

Courtesy of NHK

5

The Blue Jet in 1994

Wescott et al., JGR, 2001

Terrestrial Gamma-ray Flashes in 1994

DTU Space, Technical University of Denmark

The Gigantic Jet in 2001

Su et al., Nature, 2003

Giants – discovered in 2005

Other Objectives: Atmospheric Science

- We will learn new physics of lightning and thunderstorm processes and their effects on the atmosphere and ionosphere
 - How do thunderstorms affect the stratosphere and thereby the climate?
 - an we predict severe storm intensification from lightning? what extent is thunderstorm electrical activity affected by dust articles?

Other Objectives: Atmosphere-Space Interactions

- Aurora
- Meteors
- Ionosphere modification
- Earth observation

DTU

===

- ASIM Science
- ASIM Mission
- ASIM Context

The global lightning distribution

- Total lightning flash density (per square kilometer per year)
- Lightning is primarily at lower latitudes and over land

From two satellite detectors, Optical Transient Detector (5 years) and Lightning Imaging Sensor (5 years). Courtesy of H.J. Christian, NASA /Marshall Space Flight Center and Ulrich Finke, University of Bremen.

The Payload

- MMIA (The Modular Multispectral Imaging Array):
 - three photometers
 - two cameras
- MXGS (The Modular X- and Gamma-ray Sensor):
 - low-energy detector (LED)
 - high-energy detector (HED)

The MMIA

- Three photometers:
 - 180-250 nm
 - 337.0 nm/5 nm band
 - 777.4 nm/5 nm band
 - 100 kHz sampling
 - photon counting
- Two cameras
 - 337.0 nm/5 nm band
 - 777.4 nm/5 nm band
 - 1 M-pixel
 - 400 m resolution
 - 12 frames/sec
 - e2v CCD with on-chip amplification
- Event detection
- Cross-trigger to/from MXGS

• m

The ASIM Consortium

• Terma

- DTU Space; Denmark
- University of Bergen, Norway
- Space Research Institute, Poland
- University of Valencia, Spain
- Carlo Gavvazzi, Italy
- Facility Science Team
 - Torsten Neubert, Chair (DTU Space)
 - Elisabeth Blanc (CEA)
 - Victor Reglero (University of Valencia)
 - Nikolai Østgaard (University of Norway)
- ASIM International Science Team of ~80 groups internationally

- ASIM Science
- ASIM Mission
- ASIM Context

The opportunities: the other space missions

• Next years will see significant space infrastructure for studies of electric storm processes

• ASIM will be on the ISS with iLIS

ASIM and LIS on the ISS

The ASIM Context – summary

- ASIM will be launched in a very strong context:
 - Other complementary missions
 - New sensors for on-ground measurements
 - New generation of simulation codes and models
- Many international collaborators are preparing for the mission
- ASIM of use for GLM and LI?
 - iLIS and ASIM complementary w. one band in common (777.4nm)
 - Cross-correlate ASIM/MMIA and iLIS

FIN

- Low-Energy Detector (LED)
 - 15-400 keV
 - CZT
 - Detector area: 1024 cm²
 - Energy resolution < 10% at 60 keV
 - Angular resolution:
 - Point source < 0.7°
 - Diffuse source < 2°
- High-Energy Detector (HED)
 - 0.2-200 MeV
 - BGO
 - Energy resolution < 15% at 662 keV
- Event detection
- Cross-trigger to/from MMIA

