

Scientific Roadmap for the Development of Hyperspectral Infrared (HSIR) Products: White Paper status update

Dorothée Coppens

White paper: content

- 1) Main users
- 2) Relevant mission
- 3) Hyperspectral level 1
 - ✓ Operations: Consolidation of the IASI products
 - ✓ Getting ready for EPS-SG (IASI-NG) and facing the MTG-IRS challenges
- 4) Hyperspectral level 1 Principal Components
- 5) Hyperspectral level 2
 - ✓ Operational baseline and activities for EPS
 - ✓ Specificities to face EPS-SG and MTG-IRS challenges
- **6) Support elements**
- **7) Timelines**

1) Main users

- 1. Numerical Weather Prediction (NWP)
 - Global NWP
 - Regional NWP
- 2. Nowcasting
- 3. Atmospheric Composition and Chemistry, Air quality forecasting
- 4. Intercalibration and reprocessing

2) Relevant missions

EUMETSAT missions

- ✓ Polar Orbiting Satellites (EPS, EPS-SG)
- ✓ Geostationary Satellites (MTG)

Partner/ third party missions

- ✓ NOAA and NASA (Suomi-NPP, NOAA-19, NOAA-20, ...)
- ✓ China Meteorological Administration (FY-3D, FY-4, ...)
- ✓ RosHydroMet (Meteor)

3) Hyperspectral level 1: polar missions

IASI L1 products: Two processing chains to maintain (On-board with the radiometric calibration, and on-ground with the spectral calibration) which require:

- ✓ Daily monitoring to assess the IASI L0 and L1 products quality
- ✓ Support to operations:
 - ✓ Regular instrument operations support (Instrument + on-board processing)
 - ✓ Metop-C commissioning
 - ✓ Metop-A end-of-life activities
- ✓ Preparation of the possibility to loose some instrument performances
 - → Study on having the cloud information without AVHRR

IASI-NG activities: To take into account the new technology (Mertz interferometer and new on-board processing) and the stringent requirements of having half radiometric noise compared to IASI, twice better spectral resolution than IASI.

EUMETSAT responsibility:

- ✓ Take the ownership of the IASI-NG processing
- ✓ Develop a daily monitoring tool
- ✓ Support the ground segment activities whenever it is necessary

3) Hyperspectral level 1: MTG

Main challenges:

✓ New mission (new technology, huge amount of data...), new user community

(stringent timeliness for different applications)

✓ Different instrument → different calibration processing sequence (Radiometric calibration, Spectral calibration)

✓ Different calibration measurement pattern (Spectral calibration every 30 min, radiometric calibration target every 15 min, stray light, ...)

		•
IASI	IASI-NG	IRS
<u>Instrument</u> Single laser	<u>Instrument</u> Multiple lasers	<u>Instrument</u> Multiple lasers
On-board processing Non-Linearity correction Spike detection Radiometric calibration	Field compensation (hardware)	On-board processing Non-Linearity correction
	On-board processing Non-Linearity correction Spike correction	Spike correction Filed compensation (software)
L1 processing	<u>L1 processing</u>	L1 processing
Spectral calibration	Spectral calibration and shape removal	Apodisation
Spectral Resampling	Apodisation	Radiometric Calibration
Spectral shape removal and apodisation	Resampling	Spectral calibration
	Radiometric Calibration	Resampling
		Spectral shape removal

EUMETSAT responsibilities:

- ✓ Generation of the required documentation (ATBD, Level 1 Processing Specification, PFS)
- ✓ Development of IRS performance tool IRASS (IRS Radiometric And Spectral Simulator)
- ✓ Development of IRS L1 reference processor (L1RP)
- ✓ Test data generation
- ✓ Follow up and testing of the operational IRS L1 processing Facility called: IDPF-S

4) Hyperspectral level 1: Principal Components

IASI L1 Principal Components are available to users since February 2011

IRS L1 products will be disseminated as Principal Components

Main activities:

- Monitor and maintain PC scores service with global eigenvectors
- Implement full noise normalisation matrix to enhance the signal / noise separation
- Interactions and collaboration with the users to increase awareness and preparation for the use of PC scores (external studies identified in PDIP)
- Study practicalities of hybrid approach, where the global eigenvectors are supplemented with a few local eigenvectors of the residuals

5) Hyperspectral level 2: operational baselines

Generation of the required geophysical products from EUMETSAT current and future hyperspectral missions, at the required accuracy.

Same type of measurements:

→ Common algorithms and S/W functions where applicable and feasible

But also

→ Targeted studies and developments for IASI, IASI-NG, MTG-IRS

Critical:

→ Geophysical validation and monitoring capabilities for L2 products

5) Hyperspectral level 2: EPS

General IASI L2 products status and activities:

- ✓ To maintain and monitor the <u>operational</u> T, q, Ts, CO, clouds
- ✓ To validate the <u>pre-operational</u> emissivity, O_3 , SO_2
- ✓ To raise the maturity of the <u>demonstrational</u> green-house gases, incl. ext. studies
- ✓ Integrate EUMETSAT AC SAF products (upcoming O₃, HNO₃, Ash , NH₃)
- ✓ Evolve products upon user feed-back

Upcoming specific programme activities:

- ✓ Metop-C commissioning
- ✓ Instrument aging, especially the companion microwave
- ✓ Metop-A end-of-life activities
- → Streamlined monitoring and algorithm reconfiguration is key

Product	2018	Production status	2021	Purpose	
Atmospheric Temperature				Thermodynamic, Regional service,	
Atmospheric Humidity				Input to AC and AMV processors	
Sea Surf. Temperature				GHRSST, climate, input further L2	
Land Surf. Temperature,				Key for accurate sounding, e.g. humidity in low troposphere, ${\sf O}_3$	
Land surface emissivity					
Cloud detection,				Integral to L2 processing and L1 assimilation Input to wind products, Climate	
Cloud top height, fraction					
O ₃ *				AC monitoring, input to AMV	
CO*				AQ monitoring	
SO ₂ *				AQ monitoring, Air traffic	
HNO ₃ *				AQ monitoring	
CO ₂				GHG monitoring, input to Temp. retrieval	
CH ₄				GHG monitoring	
N ₂ O				GHG monitoring	
Ash *				AQ monitoring, air traffic	
NH ₃ *				AQ monitoring	
* EUM AC SAF products	Demonstratio	nal Pre-operational	Operational		

5) Hyperspectral level 2: EPS-SG

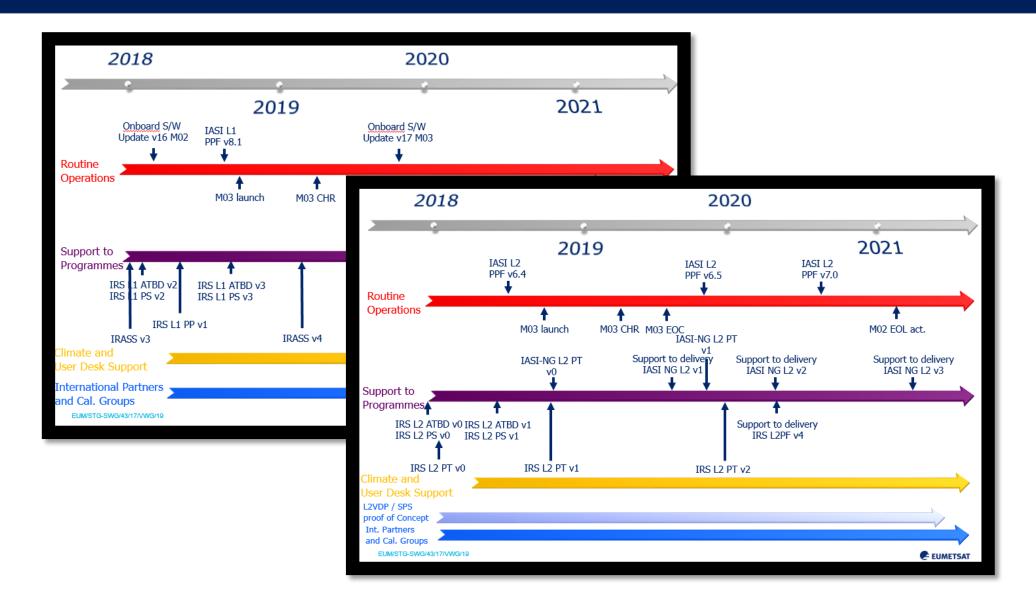
Most of the EPS/IASI processing algorithms are directly transposed into the EPS-SG context but:

- ✓ There are opportunity to optimize the processing with common functions, i.e. work towards a common HSIR L2 approach for all missions
- ✓ Some "new" products are to be development (e.g. cloud microphysics)
- ✓ There are more challenging product requirements (precision)
 then for IASI

5) Hyperspectral level 2: MTG-IRS

Need dedicated attention to exploit the mission to its full extent:

- ✓ The viewing geometry introduces more slanted views:
 - Products performance and applications at high angles?
 - Ensure fast radiative transfer at those angles, including surface emissivity modelling
- ✓ Parallax effects need to be treated to provide vertical profiles to Users
- ✓ Coarser spectral coverage and resolution
 - Study effect on expected sounding performance
 - What operational Atmospheric Composition products can be envisaged?
- ✓ Opportunities vs LEO mission:
 - Higher spatial resolution
 - Higher temporal sampling
- → Many elements already identified as external studies in the PDIP


6) Support elements

√ Radiative Transfer (R/T) Models

- **✓ Fiducial Reference Data**
 - ✓ Spectroscopy
 - ✓ Ground based Observations
 - ✓ Dedicated in situ observations
 - ✓ Airborne Campaigns of opportunity

7) Timelines

Summary

The white paper of the Scientific Roadmap for the Development of Hyperspectral Infrared Products addresses:

- ✓ Operational hyperspectral level 1, level 2 activities
- ✓ Future mission challenges, exploiting the commonalities when possible
- ✓ User needs

The white paper will be distributed shortly to the IRS-MAG and the ISSWG

SWG will receive the white paper in July 2018

