

IRS L1 Status and open points

Dorothee Coppens, Bertrand Theodore

Outline

1) MTG IRS L1 scheme based on the ATBD

- \checkmark On-board processing overview and open points
- ✓ On-ground processing overview and open points

2) Main open points and improvements:

- 2a) Uniformisation
- 2b) Apodisation
- 2c) IRS spectral grid: different possibilities
- 2d) Information of the scene heterogeneity
- 2e) Meta data needed by the users community

3) Feedbacks needed from the MAG members

1) MTG IRS L1 scheme – On-Board processing

1) MTG IRS L1 scheme – On-Ground processing

Open points / current investigations

✓ Pre-processing: none

- Radiometric calibration: reduction of calibration target noise
- Spectral calibration: validation of the proposed methodology + investigation around the final spectral grid
- Straylight correction: waiting for simulations by industry
- Cloud scene analysis: giving flag yes/no. Looking at completing with a heterogeneity information

✓ SRF ?

✓ Any SRF complete model ?

USERS

✓ Any uniformisation ?

2) IRS L1 processing: open points and improvements

Following five points will be addressed today:

2a) Uniformisation, currently a place holder in the IDPF-S

- \checkmark The proposed methodology has been finalized and is fully validated
- \checkmark Some improvement is terms of timeliness is on-going

2b) Apodisation

- \checkmark Impact on the spectral resolution, specified better than 0.754 cm⁻¹
- 2c) Spectral grid is currently 0.625 cm⁻¹
 - \checkmark The instrument has better performances than the specification
- 2d) Cloud/heterogeneity analysis
 - ✓ Current algorithm proposed provide a cloud flag yes/no
 - \checkmark It is possible the get more information about the scene heterogeneity

2e) Meta data needed by the users community

2a) Principle of the uniformisation

<u>Objectives</u>: To uniformise the Spectral Response Function across the detector array, in the spectral range and in time \leftrightarrow To remove the SRF from the measurements.

Measured spectrum:

$$S_{mes} = (S.R) \otimes ILS$$

S: Infinite spectrum R: is the Radiometric response ILS: Instrument Line Shape (including the apodisation function)

Methodology:

$$I_{1B}(x) = FT[S_{mes}(v)]$$
$$S_{1C}(v) = FT^{-1}\left[\frac{I_{1B}(x)}{I_{1B}(x)}\right]$$

with
$$SAF_{1B_est}(v,x) = FT \begin{bmatrix} SAF_{1B_est}(v,x) \end{bmatrix}$$

 SRF

2a) Spectral Response Function variability

Missing information in the band edge is a problem

SRF more spectrally dependent

Radiometric Response is pixel dependent (25600 pixels for a dwell)

2a) Spectral Response Function variability

10 Update of 1800 x 25600 SRF, every year, month or day

2a) Uniformisation of the ILS

ô.ô4

10-02-17

Difference between Corner and Center pixels

MTG-IRS

=

2200

2400

Pixel 00001 Real Part Pixel 00001 Imag Part 0.03 Radiometric Error (Kelvin) in Nedt at 280 K No 0.02 Uniformisation 0.01 With Uniformisation 0 -0.01 -0.02 -0.03 -0.04600 800 1000 1200 1400 1600 1800 2000 Wave Numbers (cm-1)

2a) Uniformisation of the Radiometric Response

2a) Uniformisation of the full SRF

2a) Impact on the noise correlation

Uniformisation = No impact on the noise correlation

2) IRS L1 processing: open points and improvements

Following five points will be addressed today:

2a) Uniformisation, currently a place holder in the IDPF-S

- ✓ The proposed methodology has been finalized and is fully validated
- \checkmark Some improvement is terms of timeliness is on-going

2b) Apodisation

 \checkmark Impact on the spectral resolution, specified better than 0.754 cm⁻¹

2c) Spectral grid is currently 0.625 cm⁻¹

 \checkmark The instrument has better performances than the specification

2d) Cloud/heterogeneity analysis

- ✓ Current algorithm proposed provide a cloud flag yes/no
- \checkmark It is possible the get more information about the scene heterogeneity

2e) Meta data needed by the users community

2b) IRS Instrument Line Shape

It is possible to improve the situation regarding the ILS with an apodisation (which respects the mission requirement)

Measured ILS:

 ✓ It respects the spectral resolution of 0.754 cm⁻¹ (mission requirement)
 ✓ Defined on a larger spectral area, each wavenumber represents the information coming from a spectra covering (at least) 60 cm⁻¹ → kind of "polluted" by different atmospheric component (spectral cross-talk) Gaussian apodisation (IASI type)

✓ It degrades the spectral resolution by 0.1 cm^{-1} (TBC)

 ✓ Each wavenumber are independent in terms of integrated information (no spectral cross-talk)

2b) Other apodisations – "Stronger ones"

Advantages:

- ✓ Reduced the spectral cross-talk covering ~10 cm⁻¹ → ~1cm⁻¹
- $\checkmark\,$ Does not remove information from the original signal
- $\checkmark\,$ Is reversible always possible to go back to the original SRF
- \checkmark Doesn't put any constrain on the choice of the RT Models

Drawbacks:

- $\checkmark\,$ Enlarge the central pick, linked to the definition of the Spectral resolution
- Does not respect the mission requirement written ONLY in the System Requirement Document (SRD)

Proposition to:

→ To change in the SRD (in blue):

[SRD] IRS-10540 - Level 1b pre *spectral resampling* The full width half maximum (FWHM) of the IRS *spectral sample spectral response function* (SRF) shall be less than or equal to 0.754 cm⁻¹ for unapodised spectra. In case of apodisation, the apodisation should be reversible.

→ To add the same information in the EURD

2) IRS L1 processing: open points and improvements

Following five points will be addressed today:

2a) Uniformisation, currently a place holder in the IDPF-S

- ✓ The proposed methodology has been finalized and is fully validated
- \checkmark Some improvement is terms of timeliness is on-going

2b) Apodisation

 \checkmark Impact on the spectral resolution, specified better than 0.754 cm⁻¹

2c) Spectral grid is currently 0.625 cm⁻¹

 \checkmark The instrument has better performances than the specification

2d) Cloud/heterogeneity analysis

- ✓ Current algorithm proposed provide a cloud flag yes/no
- \checkmark It is possible the get more information about the scene heterogeneity

2e) Meta data needed by the users community

Mission specification: L1b sampling \leq 0.625 cm⁻¹

Communication to users: L1b sampling of 0.625 cm⁻¹

Current situation:

- ✓ The mission specification is with a maximum OPD (Optical Path Difference) of 0.8 cm → Spectral sampling of 0.625 cm⁻¹
- ✓ The interferograms received from the instrument are with a max OPD of 0.828 cm → Spectral sampling of 0.6038... cm⁻¹

Impacts:

✓ Keeping 0.6038... is not a round number → acceptable?

2c) IRS L1b spectral sampling

Three options:

- ✓ Under-sampling to 0.625 cm⁻¹
 - ✓ Information loss:
 - ✓ Sampling of 0.625 cm⁻¹ → 816 channels in B1, 920 channels in B2
 - ✓ Sampling of 0.6038 cm⁻¹ → 844 channels in B1, 951 channels in B2
 - → Loss of 28 channels in band 1, 31 in band 2
 - \checkmark Introduction of artefacts
- ✓ Keep the L0 sampling of 0.6038... cm⁻¹
 - $\checkmark\,$ Artefact minimization if L0 and L1B grids are identical
 - \checkmark sampling step is an irrational number (\rightarrow acceptable?)
- \checkmark Oversampling of the L0 grid (eg. 0.6 cm⁻¹)
 - \checkmark Increase of channel number in the useful bands (\rightarrow acceptable?)
 - $\checkmark\,$ No artefact introduced

2) IRS L1 processing: open points and improvements

Following five points will be addressed today:

2a) Uniformisation, currently a place holder in the IDPF-S

- ✓ The proposed methodology has been finalized and is fully validated
- \checkmark Some improvement is terms of timeliness is on-going

2b) Apodisation

 \checkmark Impact on the spectral resolution, specified better than 0.754 cm⁻¹

2c) Spectral grid is currently 0.625 cm⁻¹

 \checkmark The instrument has better performances than the specification

2d) Cloud/heterogeneity analysis

- ✓ Current algorithm proposed provide a cloud flag yes/no
- \checkmark It is possible the get more information about the scene heterogeneity

2e) Meta data needed by the users community

2d) Cloud Information

Goal of the study:

- \checkmark To review the current cloud flag retrieval specification
- $\checkmark\,$ To recommend approaches to potential improvements

To do so:

- ✓ Use of IRS imager mode data
 - IRS detector arrays have 480x480 elements
 - For each 4km-pixel resolution, 9 pixels of 1.3 km resolution
- $\checkmark\,$ Study the potential synergy with FCI
 - Use of 4 pixels of 2 km-resolution in the infrared domain, 8 bands from 3.8 to 13.3 microns
 - Use of 16 pixels of 1 km-resolution, 8 bands from 0.4 to 2.2 microns
 - Depends on co-registration and possible synchronization in time

2d) Cloud mask

<u>Current baseline of the Cloud mask scheme mainly is based on:</u>

- Comparison of radiances in a transparent spectral channel with NWP short term forecast
- Test based on the auto-correlation functions in the region of 800-950 cm⁻¹
- Spatial correlation test to detect cloud edges

Saudia AVHRR [3 4 5] 2016111717357 IASI 1.2 PPF & IRS L2VDP cloud masks :: 201611171735xx7 :: AVHRR chan 8 4 ; ✓ AVHRR cloud mask **Partly cloudy** Clear Cloud ✓ IASI L2 PPF cloud mask ✓ IRS L2VDP cloud mask Clear **Fully** Clear **Partly** enough cloudy cloudy

Comparison with AVHRR:

IRS L2VDP systematically cloudy, regardless of actual cloudiness

2d) Use of the IRS imager mode

Cloud/Heterogeneity analysis:

- \checkmark To take advantage on the IRS imager mode (9 sub-pixels of 1.3 km)
- $\checkmark\,$ Later to exploit the synergy between IRS and FCI

2d) Simulated IRS band 1&2 radiances vs. AVHRR

IRS MAG meeting – 18/19th of October 2017

2d) Correlation IRS band radiance vs. cloud & land

Cloud Fraction Land Fraction Band 1 Band 1 100 100 80 Radiance 60 60 4020 20 0 20 40 60 80 100 0 20 40 60 80 100 Land Fraction Cloud Fraction Band 2 Band 2 4.0 4.0 3.5 3. Radiance 2. 1.5 1.0 1.0 0.5 0.5 0 20 40 60 80 100 0 20 40 60 80 100 **Cloud Fraction** Land Fraction

- Only a slight correlation between radiance in band 1 and cloud fraction
- ✓ No correlation in band 2

No clear correlation in both band

Radiance

Radiance

2) IRS L1 processing: open points and improvements

Following five points will be addressed today:

2a) Uniformisation, currently a place holder in the IDPF-S

- ✓ The proposed methodology has been finalized and is fully validated
- \checkmark Some improvement is terms of timeliness is on-going

2b) Apodisation

- \checkmark Impact on the spectral resolution, specified better than 0.754 cm⁻¹
- 2c) Spectral grid is currently 0.625 cm⁻¹
 - \checkmark The instrument has better performances than the specification
- 2d) Cloud/heterogeneity analysis
 - ✓ Current algorithm proposed provide a cloud flag yes/no
 - \checkmark It is possible the get more information about the scene heterogeneity

2e) Meta data needed by the users community

2e) IRS Meta data

From IRS level 1 format specification:

- ✓ Information on the state of the satellite (e.g. attitude, orbit, OBT to UTC correlation, etc.)
- ✓ Instrument (e.g. instrument mode and operations, etc.)
- ✓ Geolocation of spatial sample (lat, lon) and Subsatellite (lat, lon)
- ✓ Satellite and solar azimuth/zenith angles
- ✓ Scene type (clear/cloudy, sea/land/mixed)
- ✓ Eclipse information: Sun eclipse by Earth, Sun eclipse by Moon,...
- ✓ Spatial sampling distance (default 4km)
- ✓ Limb view information

→ Any specific need ?

3) Feedbacks needed from the MAG members

5 main points have been presented:

- ✓ Uniformisation → MAG to give a recommendation
- ✓ Spectral grid → MAG to give a recommendation
- ✓ Apodisation → MAG to test and give feedback by next MAG
- ✓ Cloud mask → MAG members to comment on their needs
- ✓ Meta data → MAG to give a feedback by next MAG

