

MTG-IRS L2 Baseline for Day-1 operations

Objectives

Specify a viable Day-1 baseline for IRS L2; In time for MTG ground segment procurement; Yielding accurate products with useful coverage.

- ✓ mature algorithms
- ✓ proven products
- √ CPU-affordable
- → re-use and adapt IASI L2 operational concept
- understand limitations and mission specificities
- → define Day-1 & Day-2 scopes; identify studies

IRS processing, specificities and heritage from IASI

- Strong applicable heritage, assuming calibrated and harmonised spectra (L1 processing)
- > Similar types of measurements, from GEO in 160x160 array vs from LEO in 2x2 detectors
- Differences wrt EPS:

!! Limitations / Hurdles

- IR-only, no micro-wave companion
- coarser spectral resolution/coverage
- viewing geometry
- Data volume: ~100x more than IASI

- → more sensitive to clouds
- → sounding precision, AC/AQ detectability
- → high local zenith angles, quasi-limb view
- → CPU-effective processing required

?? Apodisation?? OEM a priori

++ Opportunities

- Spatial resolution
- Temporal repetition
- Complementarity GEO/LEO

Outline

- Overview of L2 operational products
 - Algorithms
 - Performances
- IRS specificities and open questions
- Products processing and dissemination

High-level L2 processing steps

Prepara tion

Statistical retrieval

T, q, T_S
O₃
land emiss.

Cloud retrieval

Detection, % coverage, top height, (phase) Dust index

Optimal estimation

L2

Applicable processing concept from IASI L2 PPF

Statistical first retrieval PWLR³: Piece-Wise Linear Regression

No radiative transfer modelling

- ✓ Accurate and fast (~10′/day with IASI)
- ✓ Compatible with NWC NRT timeliness
- ✓ Applicable to cloudy pixels: large yield
- ✓ 3D retrieval: suited for spectro-imager

Retrieval with physical modelling e.g. OEM (Optimal Estimation)

- Clear pixels only (RTM maturity & speed)
- > Requires regularisation: which a priori?
- > CPU-affordable with PCA and good prior

The Piece-Wise Linear Regression

PWLR³ – 3D retrieval, exploiting horizontal correlation

PWLR³

Input vector with adjacent measurements (PCS)+ viewing angle...

IR-only applicable to IRS. Exact window size, to be studied

- K-mean clustering based on observations
- Supervised statistical learning with real obs. matched with ECMWF re-analysis, CAMS
- ~100 millions teaching pairs
- Ensemble retrieval to reduce random noise
- Quality indicators (uncertainty estimates)

T, q, Ts, O₃, surface emissivity, cloud for every pixel separately

Cloud detection: OBS-CALC in window channels

- Computed online with RTTOV and PWLR³ profiles
- Can be also predicted by PWLR³ (faster)
- Completed with a neural network classifier

The outcome of the cloud detections and cloud retrieval is combined in a 4-stage cloudiness flag:

- 1. Clear-sky
- 2. Clear enough
- 3. Partly cloudy
- 4. Fully cloudy

Cloud detection: OBS-CALC in window channels

Cloud top and cloud fraction retrieval

- Minimising cost function Σ(OBS[k] CALC[k])², in selection of CO₂ channels [k]
- Parametric expression of CALC = (1-η). RTTOV_clear + η. RTTOV_cloud(p)
 where η is the cloud fraction, p is the cloud top pressure and
 RTTOV_cloud a simple cloud radiance modelling (grey body)

Dust indicator

Results: T. Trent (U. Leicester), EUM Study

- Linear regression, after Clarisse et al., ACP 2013, "A unified approach to infrared aerosol remote sensing and type specification"
- Unitless indicator of dust strength
- Correlates well with loss of accuracy in IASI L2 SST due to dust, evaluated vs AATSR AOD...

MODIS AOD 550nm

Optimal estimation

$$J = (x-x_a)^T.S_x^{-1}.(x-x_a) + (y - F(x))^T.S_y^{-1}.(y - F(x))$$

solution vs background atmospheric state, weighted by the background error covariance S_x

Measurements (y) fit by RT model F() with the retrieved state (x), weighted by the observation error S_y = instrument noise + forward modelling uncertainties

Optimal estimation in operations

- Scope = clear-sky and using IASI measurements only
- Retrieved parameters: T, H₂O and O₃ profiles, Ts
- Minimisation with atmospheric profiles in principal components
- Exploits **all spectral information** from Band 1 and 2, via **reconstructed radiances** in **common directions of measurement and forward** model subspaces. (3rd IASI Conf., 2013; Met. Satellites Users Conf., Vienna 2013; NWP-SAF workshop on PC for hyperspectral data, 2013; ITSC-19 2014)
- Dedicated **channel selection**, 139 in Band 1 and 2 (ITSC-18 2012) ⇔ PCS information content
- Variable radiance tuning, using the scan angle as predictor
- Variable *a priori*, from the PWLR³
- Variable observation error for land and sea surfaces
- Much faster 1D-Var, 1 or 2 pure Newton iterations only
- Provision of the full retrieval error covariance matrix (compressed) and a priori; allowing post-computation of the averaging kernels.

Assessment vs sondes

IASI L2 IR-only PWLR³

20 months: January 2016 – August 2017 vs radio-sondes (±3h; <50km)

Yield ~50%, includes cloudy pixels

IRONv20 vs IGRA sondes | [2016-01-02 - 2017-09-01]

Assessment vs sondes

IRONv20 vs IGRA sondes [500.0 hPa] | [2016-01-02 - 2017-09-01]

IASI L2 IR-only PWLR³

20 months: January 2016 – August 2017 vs radio-sondes (±3h; <50km)

Yield ~50%, includes cloudy pixels

Assessment vs sondes

IASI L2 IR-only **OEM**

5 Wednesdays June-July 2017 vs radio-sondes (±3h; <50km)

Clear-sky only

OEM6 (Iron20 as FG) vs IGRA | [2017-06-14 - 2017-07-13]

Comparison to model

IASI L2 IR-only
Cloud-free and clear-enough pixels
(e.g. ~40% yield over Northern lands)

5 Wednesdays June-July 2017 vs ECMWF analyses

- First retrieval: PWLR³
- Second retrieval: OEM

IASI sounding products applications

- T/q profiles are input to AC/AQ processing
- Cloud product and T/q/O₃ profiles used in AMVs products
- Regional service EARS-IASI L2, timeliness < 30'
- T/q profiles monitored in Met. Services
- ... more to be studied

Outline

- Overview of L2 operational products
- IRS specificities and open questions
 - Apodisation
 - Spectral coverage, relative perfo. IRS vs IASI
 - Choice of a priori for the OEM
 - Viewing geometry
- Products processing and dissemination

Apodisation question

Apodisation question

Practical issues with non-apodised spectra

- ✓ In principle, PWLR³ could work with non-apodised spectra
- !! Negative channel radiances and layer channel transmittance
 - not physical
 - problem with BT channel-based algorithms
 - some FRTM (including RTTOV) would need re-design
- !! SRF large spectral spread, well beyond the claimed channel range
 - Information not localised
 - Large computation / spectral convolution of LBL monochromatic radiances required
- !! linear assumptions behind physical retrievals requires localised (apodised) channel SRF A. Gambacorta, excerpts from "Comprehensive Remote Sensing", Elsevier 2017

FWHM and localised spectral information

SRF

0.0020

Apodisation question

Apodisation does NOT degrade the spectral information content, does NOT affect retrievals performances

if reversible

(apo. and non-apo. are then linear combination)

Mathematically demonstrated:

- practical application to IASI in Amato et al. (Serio), Applied Optics 1998.
- practical application to CrIS in Barnet et al., IEEE TGRS 2000.
- rationale and practical discussion of apodisation for CrIS in "CrIS data processing ATBD", 2009.

Effect of different SRFs on channel weighting functions

SRFs and information content

Independent measurements made to better than measurement error are in singular values of

(Rodgers 2000)

Instrument dependent

Instrument independent

SRFs and information content

Jacobians at "infinite" spectral resolution (0.001cm⁻¹) computed for the US Standard Atmosphere with LBLRTM

courtesty of M. Matricardi (ECMWF)

convolved with

Instrument	SRF	Noise
IASI Band 1,2	Apodised, L1c	CNES noise covariance matrix
IASI Band 1,2,3	Apodised, L1c	CNES noise covariance matrix
IRS NoApo	Unapodised, MOPD=0.8cm	Smooth noise, diagonal matrix
IRS Hamming	Hamming apodised, MOPD=0.8cm	Above smooth noise, Hamming-convolved covariance matrix

IRS definition in this study:

Spectral sampling: 0.625 cm⁻¹

spectral range: 700-1210 and 1600-2175 cm⁻¹

IRS and IASI instrument noise

SRFs and information content

Same information content with or without apodisation.

Less information than IASI → relative performances?

Outline

- Overview of L2 operational products
- IRS specificities and open questions
 - Apodisation
 - Relative performances IRS vs IASI
 - > A pseudo-IRS product
 - Choice of a priori for the OEM
 - Viewing geometry
- Products processing and dissemination

Theoretical relative performances IRS vs IASI

Total posterior theoretical error

$$S = [K^T . S_y^{-1} . K + S_x^{-1}]^{-1}$$

Averaging Kernels

$$AK = S \cdot K^{\mathsf{T}} S_{\mathsf{y}}^{-1} K$$

evaluate
$$S_{IASI} - S_{IRS}$$
 and AK_{IASI} VS AK_{IRS}

with same background error covariance matrix: Global climatology (ECMWF analyses), from 1-year of T, q, O₃ profiles

Climatological background spread

Theoretical performances IRS vs IASI - Temperature

Theoretical performances IRS vs IASI – Water-vapour

IASI vs IRS averaging kernels - Temperature

IASI vs IRS averaging kernels – Water-vapour

Outline

- Overview of L2 operational products
- IRS specificities and open questions
 - Apodisation
 - > Relative performances IRS vs IASI
 - > A pseudo-IRS product
 - > Choice of a priori for the OEM
 - Viewing geometry
- Products processing and dissemination

A pseudo-IRS product from real measurements

Step 1. Emulate IRS observations from IASI

Step 2. Train PWLR³ with pseudo-IRS PC scores

Step 3. Apply to IASI obs. and assess performances

A pseudo-IRS product

IASI L2 IR-only and pseudo-IRS, PWLR³

1st wednesday each month of 2016 vs radio-sondes (±3h; <50km)

Yield ~50%, includes cloudy pixels

IRONv20 and IRS-PWLR3 vs IGRA

Outline

- Overview of L2 operational products
- IRS specificities and open questions
 - Apodisation
 - > Relative performances IRS vs IASI
 - > A pseudo-IRS product
 - ➤ Choice of a priori for the OEM
 - Viewing geometry
- Products processing and dissemination

OEM retrieval dependency on a priori

5 Wednesdays in June-July 2017 vs radiosondes (±3h; <50km)

Specific Humidity [g/kg]

IASI L2 PPF:

- ➤ Is FCT-free (EPS requirement)
- Can successfully process NWP forecasts (MTG assumption)
- Posterior stays close to prior if accurate a priori
- Some resilience to inaccurate a priori but not as good as standalone OEM(PWLR³)
- Brings independent accurate information

Outline

- Overview of L2 operational products
- IRS specificities and open questions
 - Apodisation
 - > Relative performances IRS vs IASI
 - > A pseudo-IRS product
 - > Choice of a priori for the OEM
 - Viewing geometry
- Products processing and dissemination

A training set for PWLR³ and viewing sensitivity study

One disk simulation so far

- ✓ Simulations with RTTOV-IRS, trained out to 85°
- ✓ Clear-sky radiances
- ✓ Surface emissivity built-in RTTOV
- √ T/q/O₃ and Ts, Ps from ECMWF model (15/03/2016 @ 12:UTC)
- ✓ Data stored in realistic dwells (viewing angle, lat/lon)
- ✓ Slant radiances simulation with slant path and vertical profiles

Slant RT with slant path vs vertical profiles at pixel location

Sensitivity peak shift with viewing angle

IRS specific viewing geometry, slant profiles

PWLR³ and **OEM** functional at all angles:

- surface emissivity at high angles needs study (e.g. for OEM but also L1 DA)
- > Lower signal with increasing angle: effect on sounding perfo. to be studied

Application is configuration/training matter:

> Specifications possible now

Rim-sounding, to be studied

Staging required to reconstruct vertical profiles

Outline

- Overview of L2 operational products
- IRS specificities and open questions
 - Apodisation
 - > Relative performances IRS vs IASI
 - > A pseudo-IRS product
 - > Choice of a priori for the OEM
 - Viewing geometry
- Products processing and dissemination

L2PF IRS Timeliness Simulator

Post-Processing constraints

L2PF IRS Timeliness Simulator

Cloudiness climatology for 2015 based on SEVIRI cloud mask and MACC aerosol data

L2PF IRS Timeliness Simulator

End-to-end timeliness for IRS L2 products:

- Simulated with 200 CPU cores
- Dwell-staging is a major constraint
- 20 min achievable, with margins
- Worst case analysis and studies for other LACs still TBD

Dissemination not always in sensing order, but data-rate relatively constant

Production and NRT dissemination of:

- T/q/O₃ profiles
- Surface temperature and emissivity
- Cloud detection and characterisation
- All LACs, including cloudy pixels

Development approach for IRS L2

- Specific to IRS L2 development and demonstration:
 - Prototype initial configuration with synthetic test data
 - Emulate pseudo-IRS products from IASI
 - > Estimate theoretical performances at high viewing angle:
 - > FY4 GIIRS
 - Surface emissivity modelling study
 - Airborne high-viewing angle measurement + in situ campaign
 - Long-path sounding aiming production over Northern Member States
 - Advanced 3D-Var: practicalities/benefits TBD
 - \triangleright AC/AQ feasibility and algorithms [O₃ already in the Day-1 baseline]
 - **>** ...

Summary

- IASI L2 concept [IR-only] is applicable → rim investigations do not impact ATBD/PS
- Quality of IASI L2 operational product established: T<1K, q<1-1.5g/kg in tropo.
- PWLR³ first retrieval: currently 10'/day IASI → ~10 seconds / IRS dwell
- Pseudo-IRS product demonstrated from real IASI observations
- Expected IRS sounding performance relative to IASI
- Day-1 products: T, q, T_s, LSE, O₃, clouds → all LACS + sounding in cloudy pixels
- Reasonable CPU budget (including OEM) to meet timeliness requirements
- Studies / Investigations needed with real observations (FY4-GIIRS, airborne high-viewing angles, rim sounding...)

Thank you!

Questions?

Spare

2. IASI L2 v6 perfo.

Assessment in radiance space

2. IASI L2 v6 perfo.

Assessment in radiance space

IASI Metop-B L2 performance Conventional, Land

EUMETSAT Meteorological Satellite Conference 2017 October 2-6, 2017

Results: B. Sun (NOAA)
Talk at EUM User Conf'17

Temperature

Mean diff(K)

Water vapor mixing ratio

Conventional RS92 & RS41, land, ~17,900 collocations (1hr/50km)

2.0 2.5 3.0 3.5

RMS diff(K)

