Science Plan for MTG-IRS

Some general ideas (TBA)....

- 1. Emphasis should be on science that showcases the unique combination of hyperspectral measurements with high GEO time and spatial sampling
- 2. It should be a relatively short, ambitious and exciting roadmap containing only enough detail to demonstrate that the ideas are credible.
- 3. It should <u>**not**</u> be a *stream of consciousness*, but should be focussed on achievable, high impact outcomes

Outline (high level) structure for MTG-IRS Science Plan

Title	Lead coordinators	Contributors
Chapter 1 : The rationale for MTG-IRS and system description	Dorothée	
Chapter 2: Cross cutting challenges	Johannes	
Chapter 3 : Support for operational meteorology	Christina	
Chapter 4 : Support for AC monitoring and forecasting	Pierre	
Chapter 5: Support for future climate science	Claude	
Chapter 6: Scientific process studies	Tony	

Chapter 1: The rationale for MTG-IRS and system description

- Combining two technologies GEO and HSRIR
- Benefits of GEO high temporal resolution
- Benefits of HSRIR high vertical resolution information on Met variables and information atmospheric composition (AC)
- Description of MTG
- Description of IRS
- Key aspects of data delivery strategy and archiving
- Supporting *real time operational* applications
- Supporting <u>scientific process studies</u> (with potential massive impacts for operational applications)

Chapter 2: Cross cutting challenges

Pre-requisites for MTG-IRS to deliver the science plan....

- Instrument calibration (radiometric / spectral) and validation
 - Mostly overview, but we can refer to existing CAL/VAL plan ?
- Radiative transfer capability
 - Spectroscopy
 - Line-by-line models
 - Fast models

Chapter 3: Support for operational meteorology

- High speed NRT generation of L2 Met products for forecasters that are <u>complementary</u> to the model output they have available
 - Instability / CAPE / winds / temperature / humidity
- High speed NRT generation of L2 Met products suitable for operational data assimilation
 - Transformed retrievals or retrievals with full error covariances / averaging kernels
 - 3D winds
- High speed NRT generation of L1 data for operational data assimilation
 - Radiances
 - PCA products
 - Meta-data on scene heterogeneity

Chapter 4: Support for AC monitoring and forecasting

- High speed NRT generation of L2 AC products for forecasters that are complementary to the model output they have available
 - Air quality, aerosol...
- High speed NRT generation of L2 AC products suitable for operational data assimilation
 - Retrievals with full covariances / averaging kernels

- High speed NRT generation of L1 data for operational assimilation
 - Radiances
 - PCA products
 - Meta-data on scene heterogeneity

Chapter 5: Support for future climate science

- Generation and archiving of L1 datasets with traceable calibration
 - Radiances
 - Meta-data
- Generation and archiving of L2 / L3 datasets with traceable calibration
 - Met / AC variables
 - Meta-data

Chapter 6: Scientific process studies

(some place holder ideas based on exploiting time/space sampling and hyperspectral facility of IRS)

Science Topic		Atmospheric Composition	Climate
Instrument CAL / VAL and L1 data (plus meta data) generation			
L2 product generation for assimilation and non-assimilation use			
Improving understanding diurnal properties of the land and ocean (Skin T / emis)			
Diurnal cycle of clouds, hydrological cycle and deep convection			
Monitoring and forecasting severe weather / AC events			
Improved RT of clouds, aerosols, solar radiation and the surface			
Genesis and forecasting of Atlantic Tropical cyclones			
Aerosol trajectory, extracting wind information and diurnal cycle of aerosols			
Convection role in AC processes (including aerosol)			
Diurnal cycle and rapid evolution of AC			•
more			

Possible template for Chapter 6 contributions:

Topic X:We could solicit proposals (MAG and beyond) submitted using
the above template for inclusion in the science plan ?

- 1. What is it ... generally improving our understanding of X?
- 2. Why does it matter ... current shortcomings of knowledge?
- 3. How will IRS be used ?
- 4. Who will actually do the work ...should we / can we guide this ?
- 5. What are the expected outcomes and who / what will benefit ?

Possible Chapter X: Supporting community science (?)

MTG-IRS (in combination with MTG-I and EPS-SG) will make the 0 degree GEO region the most comprehensively observed atmosphere / surface and ocean from space that has ever been known...

- Data accessibility and visualization for a wide range of (WWW) users
 - Formats
 - Tools
 - exposure

- Training and education
 - Online guides
 - Visualization / application tools
 - Conferences / courses

ECMWF 10 DAY FORECAST (FLORENCE / MANGKHUT) FROM 2018-08-31@12UTC

