MTG-IRS Science Plan

© ECMWF October 16, 2019

Outline (high level) structure for MTG-IRS Science Plan

Title	Lead coordinators	Contributors
Chapter 1 : The rationale for MTG-IRS and system description	Dorothee Coppens	
Chapter 2: Cross cutting challenges	Johannes Orphal	
Chapter 3 : Support for operational meteorology	Christina Koepken-Watts	
Chapter 4 : Support for AC monitoring and forecasting	Pierre Coheur	
Chapter 5: Support for future climate science	Claude Camy-Peyret	
Chapter 6: Scientific process studies	Tony McNally	

Chapter 1: The rationale for MTG-IRS and system description

- Combining two technologies GEO and HSRIR
- Benefits of GEO high temporal resolution
- Benefits of HSRIR high vertical resolution information on Met variables and information atmospheric composition (AC)
- Description of MTG
- Description of IRS
- Key aspects of data delivery strategy and archiving
- Supporting <u>real time operational</u> applications
- Supporting <u>scientific process studies</u> (with potential massive impacts for operational applications)

CECMWF

Chapter Lead(s) :Dorothee Coppens Contributors :

Chapter 2: Cross cutting challenges

Pre-requisites for MTG-IRS to deliver the science plan....

- Instrument calibration (radiometric / spectral) and validation
 - Mostly overview, but we can refer to existing CAL/VAL plan ?
- Radiative transfer capability
 - Spectroscopy
 - Line-by-line models
 - Fast models

Chapter Lead(s) : Johannes Orphal Contributors :

Chapter 3: Support for operational meteorology

- High speed NRT generation of L2 Met products for forecasters that are <u>complementary</u> to the model output they have available
 - Instability / CAPE / winds / temperature / humidity
- High speed NRT generation of L2 Met products suitable for operational data assimilation
 - Transformed retrievals or retrievals with full error covariances / averaging kernels
 - 3D winds
- High speed NRT generation of L1 data for operational data assimilation
 - Radiances
 - PCA products
 - Meta-data on scene heterogeneity

Chapter Lead(s) :Christina Koepken-Watts Contributors :

Chapter 4: Support for AC monitoring and forecasting

- High speed NRT generation of L2 AC products for forecasters that are complementary to the model output they have available
 - Air quality, aerosol...
- High speed NRT generation of L2 Met products suitable for operational data assimilation
 - Retrievals with full covariances / averaging kernels

- High speed NRT generation of L1 data for operational assimilation
 - Radiances
 - PCA products
 - Meta-data on scene heterogeneity

Chapter Lead(s) :Pierre Coheur Contributors :

Chapter 5: Support for future climate science

- Generation and archiving of L1 datasets with traceable calibration
 - Radiances
 - Meta-data
- Generation and archiving of L2 / L3 datasets with traceable calibration
 - Met / AC variables
 - Meta-data

Chapter Lead(s) :Claude Camy-Peyret Contributors :

Chapter 6: Scientific process studies

(some place holder ideas based on exploiting time/space sampling and hyperspectral facility of IRS)

Science Topic / Process	Meteorology	Atmospheric Composition	Climate
Improving understanding diurnal properties of the land and ocean (Skin T / emis)	•		
Diurnal cycle of clouds, hydrological cycle and deep convection			
Improved RT of clouds, aerosols, solar radiation and the surface			
Genesis and forecasting of Atlantic Tropical cyclones			
Aerosol plume trajectory (e.g. Saharan dust) and diurnal cycle of aerosols			
Convection role in AC processes (including aerosol)			
Diurnal cycle and rapid evolution of gas AC			

Question: Do we solicit these for the science plan from outside the MAG ?

Example Template for Chapter 6 Study:

1. What is the process ?	
2. Why does it matter ?	
3. How will IRS improve understanding?	
4. What will be done and who will do it ?	
5. What are the expected outcomes	

Example contribution: Observing genesis and forecasting of Atlantic Tropical cyclones:

1. What is the process ?	Observing and understanding temperature, humidity and cloud changes that signal the genesis and / or rapid intensification / weakening of Tropical cyclones in the Atlantic basin
2. Why does it matter ?	These weather events have a devastating impact and any advances in range or accuracy of NWP forecasts can have profound consequences. Early warning of changes captured by forecast initial conditions is critical.
3. How will IRS improve understanding?	IRS will provide information on temperature, cloud and humidity with unprecedented accuracy, spatial scale and time frequency over key regions such as cost of W. Africa
4. What will be done and who will do it ?	Assimilation of IRS spectra at ECMWF: Task 1 Task 2 Task 3:
5. What are the expected outcomes	Improved NWP forecasts allowing improved steps to be taken to save lives and protect property.