

# **SENTINEL-5**

#### J.-L. Bézy, P. Ingmann, B. Sierk, B. Veihelmann

#### Earth Observation Directorate

## Outline



AI/IASB/ESA



Mission objectives

- Project status
- Mission products
- Driving requirements
- Instrument concept and performance

Summary

OMI NO2 over Europe 2004-2005

Image by Pepijn Veefkind, KNMI

## **Mission Objectives**



- Monitoring of the composition of the atmosphere for GMES Atmosphere Services
  - ✓ Sources of trace gases and aerosols impacting air quality and climate
  - ✓ Major target trace gases are O3, NO2, CO, SO2, CH2O and CH4
- Services proposed will cover air quality near real-time applications, air quality protocol monitoring, and climate protocol monitoring
- □ The Sentinel-5 mission will consist of a
  - ✓ UVNS (Ultra-Violet, Visible, Near Infrared, Short Wave Infrared) spectrometer embarked on the post-EPS platforms and on the
  - ✓ Utilization of collocated measurements taken at the same time by METimage, IASI-NG and 3MI which will provide more information on clouds and deliver improved understanding of atmospheric composition, most notably in the troposphere.
- The Sentinel-5 UVNS mission will offer daily global coverage with an unprecedented spatial resolution of 7x7 km2 at nadir as compared to heritage instrument such GOME-2, SCIAMACHY and OMI. The high spatial resolution will enable more accurate detection of emission sources and provide an increased number of cloud-free ground pixels.

## **The Current Capabilities**



#### **Research missions**

SCIAMACHY (Envisat) – OMI (Aura), Scisat, Mopitt (Terra), Gosat

#### **Operational missions**

GOME-2, IASI (MetOp), OMPS, CRIS (JPSS)

#### Main gaps in current / planned operational system

- High temporal and spatial resolution (more cloud free-views) space-based measurements of tropospheric (PBL) composition for application to air quality
- High spatial/high precision monitoring of climate gases (CO<sub>2</sub>, CH<sub>4</sub> and CO) and aerosol monitoring with sensitivity to the PBL
- High vertical resolution measurements in the UT/LS region for ozone and climate applications



## **Project Status**



- Two feasibility (phase A/B1) studies are running in parallel led by Astrium GmbH and Kayser-Threde
- □ Study divided in 3 parts; PCR completed (ASG JUL KT SEP)
- □ Study is synchronised with the system Metop-SG phase A/B1 studies
- Interface constraints specified in the Interface Requirement Document (one ESA document applicable to all the "4 primes")
- Regular interface meetings with "all primes";



## **Level 2 Products**





#### **Level 1b Products**







Daily Global Coverage (at latitude beyond 20 deg)









#### Spectral bands



#### Spectral resolution (nm)

| T<br>G                         | 1.0 | 0.5 | 0.5 | 0.4 0.4 0.2 0.06 | 0.25 | 0.25 |  |  |  |
|--------------------------------|-----|-----|-----|------------------|------|------|--|--|--|
| Spatial Sampling Distance (km) |     |     |     |                  |      |      |  |  |  |
| B                              |     | 7   | 7   | 7                | 7    | 7    |  |  |  |
| G                              | 15  | 5   | 5   | 5                | 5    | 5    |  |  |  |
|                                |     |     |     |                  |      |      |  |  |  |

Sentinel-5 | J.-L. Bézy





#### Signal to Noise Ratio (SNR)







3rd Post-EPS User Consultation Workshop, Darmstadt, 29-30 September 2011

Sentinel-5 | J.-L. Bézy

## **The Instrument Challenge**



#### "Spectral Features"



#### Note how small the NO2 features are, about **0.5%** signal strength of the total

Contributors to these Spectral Features are: polarisation scrambler, coatings, gratings, sun diffuser, straylight, gain change, ...





All spectral channels shall "see the same atmospheric volume"

1. Inter-channel Spatial Co-registration

|        | UV1                | UV2             | VIS             | NIR-1           | NIR-2           | SWIR-1           | SWIR-3           |
|--------|--------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|
| UV1    | 0.1<br>(G:0.05)    | 0.2<br>(G:0.1)  | 0.2<br>(G:0.1)  | 0.2<br>(G:0.1)  | 0.2<br>(G:0.1)  | -                | -                |
| UV2    |                    | 0.1<br>(G:0.05) | 0.2<br>(G:0.1)  | 0.2<br>(G:0.1)  | 0.2<br>(G:0.1)  | -                | -                |
| VIS    |                    |                 | 0.1<br>(G:0.05) | 0.2<br>(G:0.1)  | 0.2<br>(G:0.1)  | -                | -                |
| NIR-1  |                    |                 |                 | 0.1<br>(G:0.05) | 0.2<br>(G:0.1)  | 0.2<br>(G:0.1)   | 0.2<br>(G:0.1)   |
| NIR-2  |                    |                 |                 |                 | 0.1<br>(G:0.05) | 0.2<br>(G:0.1)   | 0.2<br>(G:0.1)   |
| SWIR-1 |                    |                 |                 |                 |                 | 0.05<br>(G:0.02) | 0.2<br>(G:0.1)   |
| SWIR-3 | In fraction of SSD |                 |                 |                 |                 |                  | 0.05<br>(G:0.02) |

#### 0.1 SSD = distance of few microns at detector level!



$$IE_{S}(A) = \iint_{A} SPSF_{i,j}(x - x_{i}, y - y_{i}) dx dy$$
$$IE_{S}(SSD_{ax}.SSD_{al}) = [0.70 - 0.75]$$



Polarisation (in)sensitivity

Degree of polarisation (DOP) of TOA radiance can be quite high. S5 has to be insensitive to the TOA radiance polarisation

 $P = \frac{S_{\text{max}} - S_{\text{min}}}{S_{\text{max}} + S_{\text{min}}} \qquad P$ 

 $P \leq 0.005$  in UV VIS NIR





#### Straylight

Signal dynamic range up to 10<sup>3</sup> in UV and SWIR-3 Spectral straylight is an issue for deep absorption lines Requirement shall be on background signal **Before correction : Straylight < 1% L**<sub>dark</sub>

#### After correction : Straylight < 0.1% L<sub>dark</sub>







Slide 14 European Space Agency

#### **Instrument Concept**



**Pushbroom Imaging** Dispersive grating spectrometer Large heritage (MERIS, <u>OMI</u>, SCIAMACHY) Dispersing FOV Re-imaging 108 deg element lens Spectral radiance Collimator Slit Swath ~ 2650 km Х 2D array Telescope detector Satellite motion Ground swath

## **Instrument Concept**



- ☐ Telescope (in this example a single telescope for all bands)
- □ UV-1 spectrometer
- UV-2 spectrometer
- □ VIS spectrometer
- NIR spectrometer
- □ SWIR spectrometers
- Spectral bands are separated by dichroics
- Polarisation scrambler located in the telescope





# Telescope



- The instrument throughput via optimised coatings
- The polarisation scrambler
- The calibration diffusers



Courtesy of TNO

- The telescope imaging functions will be identical to ensure the same distortion for all bands, hence a good spatial co-registration
- ☐ Two across-track mapping laws are under investigation





## Gratings



- □ The core of the spectrometers !
- □ Often a large source of (spectral) straylight and to polarisation sensitivity
- □ One dedicated grating per spectrometer
  - In UV-VIS-NIR: several manufacturers available Europe (Horiba Jobin-Yvon, IOF, Zeiss, TNO)
  - ✓ In SWIR, immersed grating to minimise volume; single source: SRON



Courtesy of ZEISS

GAIA NIR grating



Courtesy of IOF

TROPOMI immersed SWIR grating

Courtesy of SRON

#### Detectors



- Detectors are the heart of optical instruments
- □ They are usually driving both the performance and the instrument development schedule
- □ Detector proposed for Sentinel-5 are
  - Frame transfer CCD for UV, VIS and NIR bands
  - HgCdTe IR CMOS for SWIR bands
- CCD detectors have excellent performance and maturity. S5 might benefit from on-going development for Sentinel-4 sources: E2V, DALSA
- SWIR detectors are less mature than CCD in Europe. Space qualified SWIR detectors exist in Europe and are being considered. Detector development, if any, will be based on currently existing technological bricks– sources: SOFRADIR, AIM, Selex



Courtesy of e2v 3rd Post-EPS User Consultation Workshop, Darmstadt, 29-30 September 2011

#### SATURN HgCdTe IR CMOS and cryostat



Courtesy of SOFRADIR Sentinel-5 | J.-L. Bézy

#### **Acquisition Video Chain**



- □ 16 bits, 2 to 5 MHz, low noise video chain
- □ Large expertise in Europe (RALASIC, HIVAC/VASP (MTG), GAIA, S2, …)



Courtesy of Astrium-F

SECCHI Camera Electronics Box



Courtesy of RAL

## **Instrument Calibration**



- Instrument state-of-the art calibration is required for meeting the mission objectives
- Both pre-flight and in-orbit calibration principles are based on the successful OMI concept



|                  |   |     |      | •             |   |
|------------------|---|-----|------|---------------|---|
| S_5 Solar AER    |   |     |      |               | • |
| Time (UTCG):     | 7 | Jun | 2019 | 10:52:47.000  |   |
| Azimuth (deg):   |   |     | •    | 209.538       |   |
| Elevation (deg): |   |     |      | 1.131         |   |
| Range (km):      |   |     | 1516 | 320464.701312 |   |

· ·

5

Nadir (Detic)

S\_5 ICR Axes 7 Jun 2019 10:52:47.000 Time Step: 1.00 sec

## **Instrument Cooling**



- ❑ Cooling is a complexity for the instrument design and testing
- ☐ For sentinel-5, the following elements have to be cooled
  - Detectors to minimise the dark current and radiation induced degradation effects
    - UV-VIS-NIR CCD: 200 .. 240 K
    - SWIR HgCdTe IR CMOS: 135 .. 160 K
  - SWIR spectrometers to minimise the instrument self-emission: 200 .. 240 K
- Passive cooling is proposed as opposed to active cooling mainly for their reliability and maturity
- □ Large experience in Europe



Courtesy Dutch Space

IASI radiant cooler (90 K)



Courtesy Thales Alenia Space

Sentinel-5 | J.-L. Bézy

SCIAMACHY radiant cooler (120 K)

## **Mission Profile**



Instrument operational concept based on autonomous mode switching commanded by timeline. The instrument will always stay in "nominal operation mode" while there are a number of sub-modes to switch between Earth View, Solar Calibration and further calibrations.



#### **S5 Data Sheet**



|                                           |                    |                     | _                                         |              |                |                |  |  |
|-------------------------------------------|--------------------|---------------------|-------------------------------------------|--------------|----------------|----------------|--|--|
| Concept                                   | Imaging spectro    | maging spectrometer |                                           | ]            |                |                |  |  |
| Host satellite                            | MetOp-SG (SAT A)   |                     | semi-major axis: 7,195.6 km - LTAN: 21:30 |              |                |                |  |  |
|                                           | Farth TOA Radiance |                     | ]                                         |              |                |                |  |  |
| Level 1b product                          | Solar Irradiance   |                     |                                           |              |                |                |  |  |
|                                           |                    | 6                   |                                           |              |                |                |  |  |
| Level 2 product                           | O3 (vertical pro   | file, tropospheri   |                                           |              |                |                |  |  |
|                                           | Clouds, CH4, CC    | ), BrO, CHOCHO      |                                           |              |                |                |  |  |
| Coverage                                  | 1 day              | Poleward of 20°     | ° lat                                     |              |                |                |  |  |
| Swath width                               | 2715 km            | -                   |                                           |              |                |                |  |  |
| FOV                                       | 108.4 °            |                     |                                           |              |                |                |  |  |
|                                           | 10./4              | 18/2                | VIC                                       | NUD          |                | CM/ID 2        |  |  |
|                                           | 01                 | 072                 | VIS                                       | NIK          | SWIK-1         | SWIK-3         |  |  |
| Spectral range                            | 270 - 300 nm       | 300 - 370 nm        | 370 - 500 nm                              | 710 - 775 nm | 1590 - 1675 nm | 2305 - 2385 nm |  |  |
| Spectral resolution                       | 1 nm               | 0.5 nm              | 0.5 nm                                    | 0.4 nm       | 0.25 nm        | 0.25 nm        |  |  |
| Spectral oversampling                     | 3                  | 3                   | 3                                         | 3            | 2.5            | 2.5            |  |  |
| Spatial Sampling Distance                 | 28 km              | 7 km                | 7 km                                      | 7 km         | 7 km           | 7 km           |  |  |
| SNR in continuum                          | ≈ 100400           | ≈ 1201400           | ≈ 1500                                    | ≈ 500        | ≈ 250          | ≈ 100          |  |  |
| Absolute Radiometric<br>Accuracy          | 23%                | 23%                 | 23%                                       | 23%          | 23%            | 23%            |  |  |
| Relative Spectral<br>Radiometric Accuracy | 0.10%              | 0.05%               | 0.05%                                     | 1%           | 0%             | 0.30%          |  |  |
| Polarisation sensitivity                  | 0.50%              | 0.50%               | 0.50%                                     | 0.50%        | 20%            | 20%            |  |  |
| Mass                                      | 250 kg             | ]                   |                                           |              |                |                |  |  |
| Power                                     | 220 W              | 1                   |                                           |              |                |                |  |  |
| Data rate                                 | 20 Mbit/s          | 1                   |                                           |              |                |                |  |  |

3rd Post-EPS User Consultation Workshop, Darmstadt, 29-30 September 2011

Volume

1.2x1.4x1.0 m<sup>3</sup>

Sentinel-5 | J.-L. Bézy

#### Summary



- Air pollution is a significant cause of health problems and environment damages worldwide
- Sentinel-5 (and Sentinel-4) will monitor the Earth's atmosphere as part of the Europe Union's Global Monitoring for Environment and Security (GMES) programme
- Industrial feasibility studies of sentinel-5 UVNS instrument are currently on-going; Instrument concept benefits from large heritage (OMI, MERIS, Sciamachy) and is based on existing technology
- □ Studies are synchronised with PEPS system studies

Mission will be MetOp-SG satellites for a launch in 2018+ and will be operated by EUMETSAT



# Thank you

www.temis.nl

OMI, NO2

KNMI/IASB/ESA