Potential of improved observation missions:

H. Bovensmann

with inputs from the Sentinel-4 and -5 Mission Advisory Group

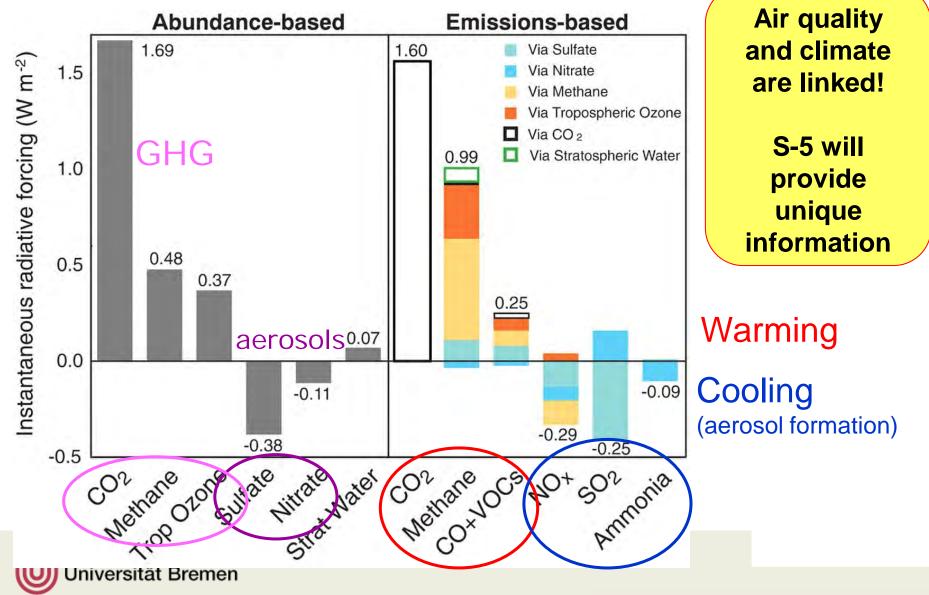
University of Bremen, Institute of Environmental Physics

3rd Post EPS User Consultation Workshop, EUMETSAT, Darmstadt, 29./30.9.2011

- A. Richter, A. Bracher, M. Buchwitz, S. Noel, M. Weber, J.P. Burrows, IUP
- J. Landgraf, SRON
- P. Levelt, P. Veefkind, KNMI
- T. Wagner, S. Beirle, MPIC
- D. Loyola, P. Valks, DLR IMF
- A. Simmons and MACC team, ECMWF
- M. van Roozendael, N. Theys, BIRA
- R. Siddans, B. Kerridge, RAL
- T. Erbertseder, DLR DFD
- P. Ingmann, B. Veihelmann, J.L. Bezy, ESA
- R. Munro, EUMETSAT
- O3SAF (FMI, KNMI, DLR ...)

Sentinel 5 - Heritage

- GOME on ERS-2
 - quantitative determination of trop. column distributions of O_3 , NO_2 , SO_2 , BrO, HCHO, H_2O
- SCIAMACHY on ENVISAT
 - In addition: quantitative determination of trop. column distributions of CHOCHO, CO, CH₄ and CO₂
 - improved spatial resolution (30 x 60 km²)
- OMI on AURA
 - use of **2-dimensional CCDs** for trace gas applications
 - improved spatial resolution (13 x 24 km²)
- GOME-2/METOP
 - Polarisation measurement system to characterise aerosol
 - Potential of UV-TIR synergy (GOME-IASI) to derive improved trop. O₃
- GeoSCIA/GeoTrope
 - Studies on requirements and instrument concepts geostationary
- MTG / Sentinel-4/-5 / Post EPS
 - Studies on requirements and instrument concepts for operational applications

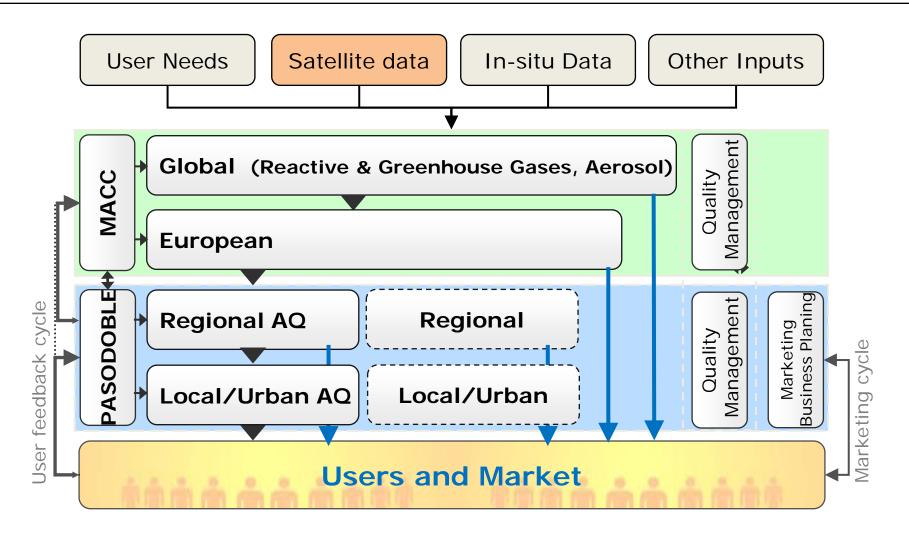

Needs in 2020 ++

- World population further increase (strong regional variation)
- On average standard of living expected to further increase (energy consumption, increase in transport/traffic etc.)
- More people expected to live in Megacity-type agglomerations (emissions co-located with human beings -> health issues)
- Emissions into the atmosphere expected to further increase globally with strong regional variability (incl. regions of decreasing emissions) and negative impact on health and crop yield
- Ozone layer response to the combined effect of ozone-depleting substances and climate change not clear.
- Air Quality and Climate are interlinked (heat waves, droughts etc.)

Adequate data for monitoring, forecast, verfication and process understanding needed!

Impact of precursors (NO₂, SO₂, CO) and non-CO2 halocarbons on climate: **Emission based estimates needed for mitigation**

Atmospheric services relate to chemical and particulate concentrations


Weather Climate forcing by agencies greenhouse gases and aerosols Long-range pollutant transport **GMES** atmospheric provide data & **European air quality** environmental information on services **Dust outbreaks** Solar energy **UV** radiation **Environmental** agencies

Application Areas (S-4/S-5 MRD)

Application Area	Air Quality	Climate	O3 Layer & Surface UV
Protocol Monitoring	UN/ECE CLRTAP; EMEP / Göteborg Protocol; EC directives EAP / CAFE AQ emission verification AQ distribution and trend monitoring	UNFCCC Rio Convention; Kyoto Protocol; Climate policy EU GHG and aerosol emission verification GHG/aerosol distribution and trend monitoring	UNEP Vienna Convention; Montreal and subs. Protocols CFC emission verification Stratospheric ozone, halogen and surface UV distribution and trend monitoring
Services	Local Air Quality (BL); Health warnings (BL) Chemical Weather (BL/FT) Aviation routing (UT)	NWP assimilation and (re- analysis Climate monitoring Climate model validation	Stratospheric composition and surface UV forecast NWP assimilation and (re-) analysis
Assessement	Long-term global, regional, and local data records UNEP, EEA assessments Regional & local PBL AQ processes; Tropospheric chemistry and long-range transport AQ source attribution AQ Health and safety effects	Long-term global data records IPCC assessments Earth System, climate, rad. forcing processes; UTLS transport-chemistry processes Forcing agents source attribution Socio-economic climate effects	Long-term global data records WMO Ozone assessments Stratospheric chemistry and transport processes; UV radiative transport processes Halogen source attribution UV health & biological effects

The GMES Atmosphere Service Lines

Adapted figure from T. Erbertseder, DLR

GMES Atmosphere Space Component

- Atmospheric composition requirements for an operational mission have been established based on in-depth analysis and studies (EUM AEGs, ESA CAPACITY, ESA CAMELOT etc.)
- Two complementary implementation components have been identified, namely
 - Sentinel-4, i.e. the GEO related component, will get implemented as a UVN instrument added to the MTG sounder satellites, making use of the IR sounder and MTG imager data
 - Sentinel-5, i.e. the LEO related component, implemented as a UVNS instrument on Post-EPS satellites, together with IASI-NG, VII and 3MI optimising on atmospheric composition products

To avoid a data gap a Sentinel-5 Precursor will get implemented on a dedicated platform making use of NPP/VIIRS

S5 (GOME-2) Products vs. Applications

Product	Air Quality	Application Climate	Strat. O3 & Surface	Comment
O ₃ total column, profile stratosphere	UV Rad	х	x	ECV
O ₃ trop. Column	Х	Х	X	ECV, Synergy with IR
BrO, OCIO total column			X	
NO ₂ total & trop. Column	Х	Х	X	
SO2 total column	x	X	х	Also for volcanic eruptions, Synergy with infrared data from IR
HCHO, CHOCHO total column	Х	Х		Linked to Secondary Organic Aerosol
H ₂ O total column		х		ECV, Synergy with infrared data from IR
CO total column	Х	Х		Synergy with infrared data from IR
CH₄ total column		Х		ECV, Synergy with infrared data from IR
CO ₂ total column (tbd)		Х		ECV, pot. observational capability, syn. IR
Aerosol extinction coeff. profile, column optical depth / type / index	х	x		ECV, also auxiliary for other S5 products Also for volcanic eruptions Synergy with VII and 3MI
Cloud optical thickness, fraction, altitude Universitat Bremen			X	ECV, auxiliary for other S5 products synergy with VII and 3MI

UV-VIS-NIR SWIR nadir observation capabilities

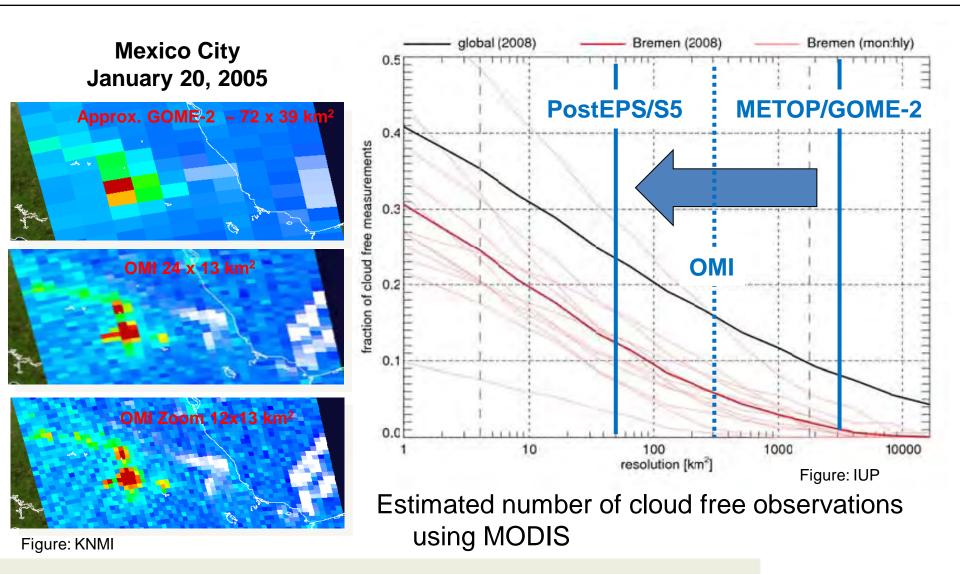
	Satellite	Data Availability	Orbit	Obs. Modes	Nadir Swath	Nadir Spatial Resolution
GOME	ERS-2	06/1995- 6/2011 (*)	10:30	Nadir	960 km	320 x 40 km ²
SCIAMACHY	ENVISAT	8/2002 –	10:00	Nadir, Limb,	960 km	60 x 30 km ²
GOME-2	METOP	01/2007- 2020	09:30	Nadir	1920 km	40 x 80 km²
Sentinel-5	METOP-SG	2018+	09:30	Nadir	2700 km (tbc)	7 x 7 km²
ОМІ	AURA	7/2004 – present	13:42	Nadir	2600 km	13 x 24 km²
OMPS	NPP/ JPSS	Early 2012 - 2026	13:30	Nadir (NPP Limb)	2600 km	50 x 50 km ²
Sentinel 5 Precursor	Dedicated	2015 – 2022	13:30	Nadir	2600 km	7 x 7 km²
Sentinel 4	MTG-S	2019+	GEO	Nadir		8 km x 8 km ²

Universität Bremen

(*) GOME global coverage lost in June 2003

TOMS, SBUV omitted

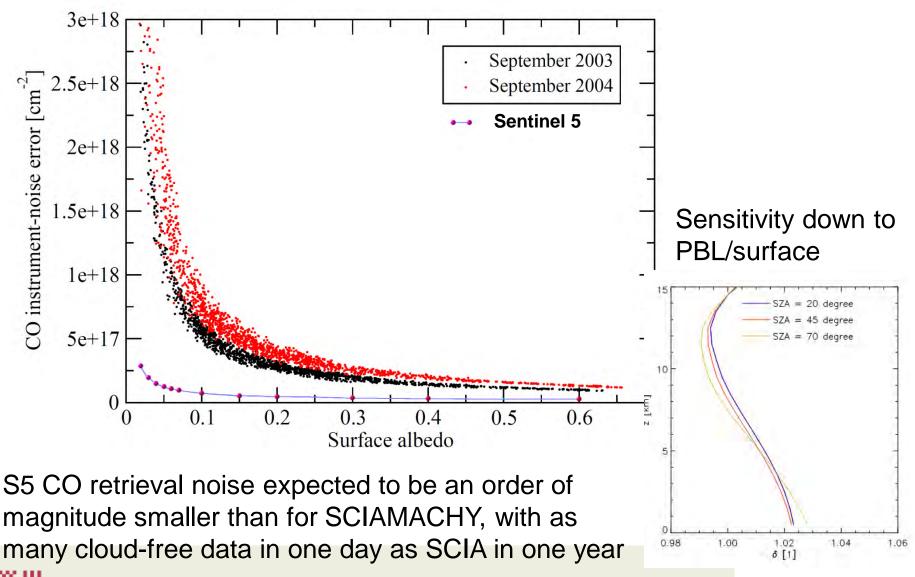
Spectral Sensor Characteristics [nm]


Spectral band	Demonstrated Products	SCIAMACHY	GOME, GOME-2	S-5	S5 MRD Products
UV	O3 column, O3 profile, trop. O3 SO2, BrO, HCHO, OCIO, AAI	214 – 400 0.25 nm	240 – 400 < 0.25 nm	270 – 400 < 0.5 nm (< 1 nm below 300 nm)	O3 column, O3 profile, trop. O3 SO2, BrO, HCHO, OCIO, AAI
VIS	Total NO2, trop. NO2, strat. NO2 CHOCHO, IO	400 – 620 0.44 nm	400 – 600 < 0.5 nm	400 – 500 < 0.5 nm	Total NO2, trop. NO2, strat. NO2 CHOCHO, IO
NIR	H2O, Aerosol, Cloud Height, COT	620 – 1050 0.54 nm	600 <i>–</i> 790 < 0.5 nm	685 - 710 – 775 < 0.06 (0.4) nm	H2O, Aerosol , Cloud Height, COT
SWIR-1	XCH4 (w.r.t. CO2)	1000- 1750 1.48 nm	-	1590-1675 < 0.25 nm	XCH4 (w.r.t. CO2)
SWIR-2	CO2 scattering correction	1935 – 2040 0.22 nm	-	2043-2085 < 0.125 under assessment	CO2 scattering correction
SWIR-3	CO (CH4, H2O), HDO	2260 – 2385 0.26 nm	-	2305-2385 < 0.25 nm	CO (CH4, H2O, HDO)

Key Sensor Improvements (compared to GOME-2)

- Spatial resolution 80 x 40 km² -> 7 x 7 km²
 - Higher spatial resolution will increase substantially the number of cloud free observations
 - Higher spatial resolution will allow for better quantification of Air Pollution on urban scales and of emission sources
 - Higher spatial resolution will allow for better discrimination of processes.
- Spatial coverage increased from 1920 km to 2700 km
 - Daily coverage also in the tropics
- Spectral coverage
 - optimised to assure continuity w.r.t. GOME-SCIA-GOME-2 data product time series (since 1995)
 - extended to include CO, CH₄ (CO₂ tbd)

Improvement: Number of Cloud Free Observations

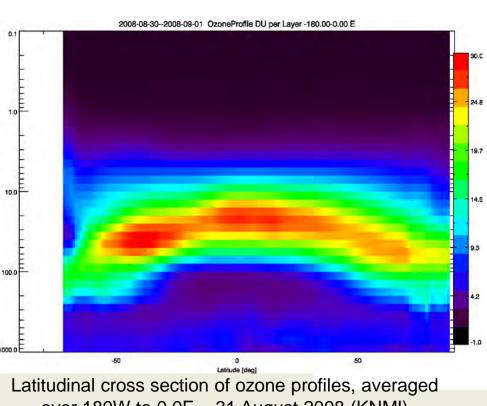


Carbon Monoxide (CO) from SCIAMACHY

Buchwitz et al., ACP, 2007

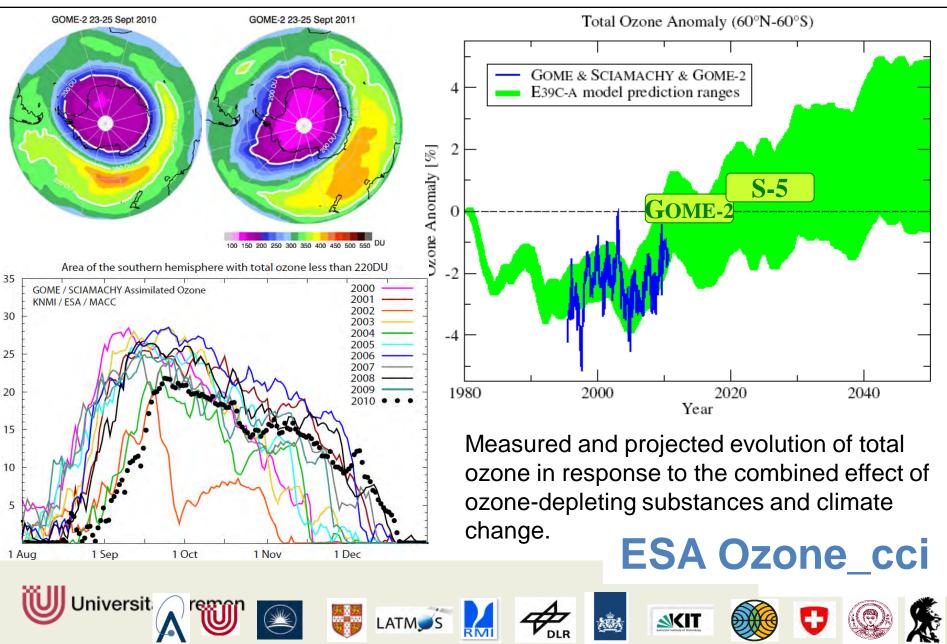
S5 CO retrieval noise compared to SCIAMACHY

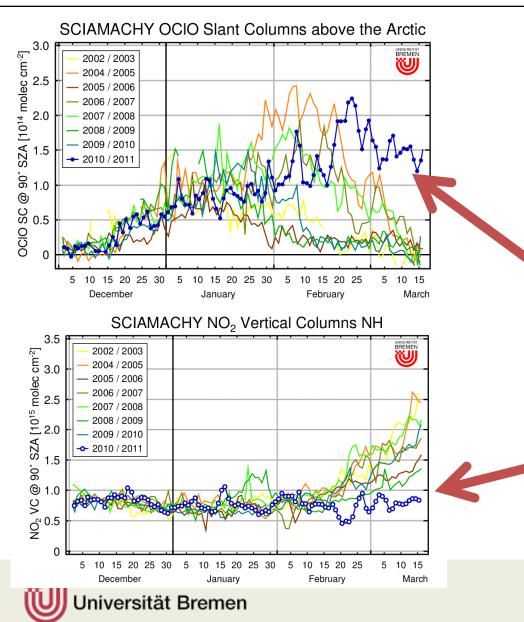
Universität Bremen


© SRON

Stratosperic Ozone Layer Monitoring

ssure [hPa

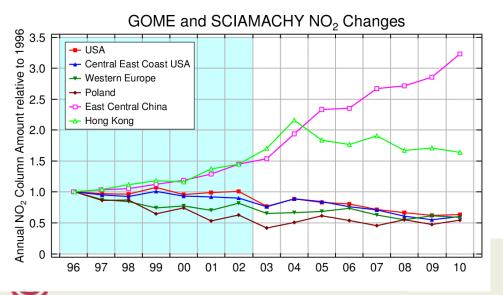

- Total Ozone time series
- Ozone profiling
- Strat. NO2
- BrO
- OCIO
- Surface UV

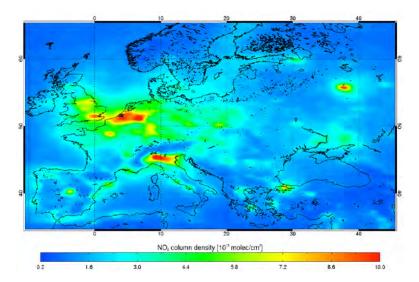


over 180W to 0.0E - 31 August 2008 (KNMI)

Continous Monitoring of the Ozone Layer since 1995

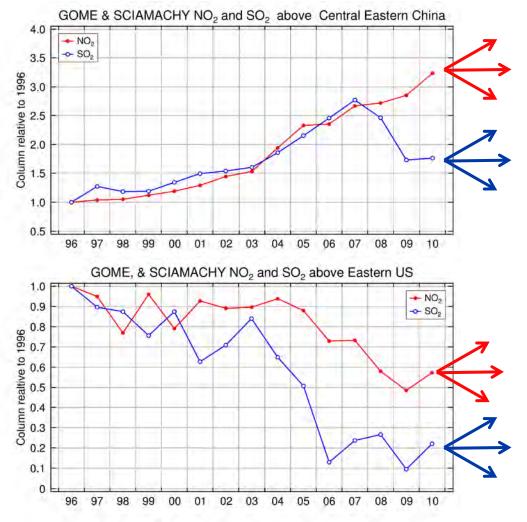
SCIAMACHY OCIO and NO₂ @ 90° SZA


- OCIO is highly variable in the Northern hemisphere, mainly following stratospheric temperatures
- Some winters have larger activation in February (2004 / 2005, 2007 / 2008
- Only in 2011, OCIO was still high in March
- NO₂ usually increases in late February
- Only in 2011, NO₂ remained low in March


A. Richter, IUP, University of Bremen

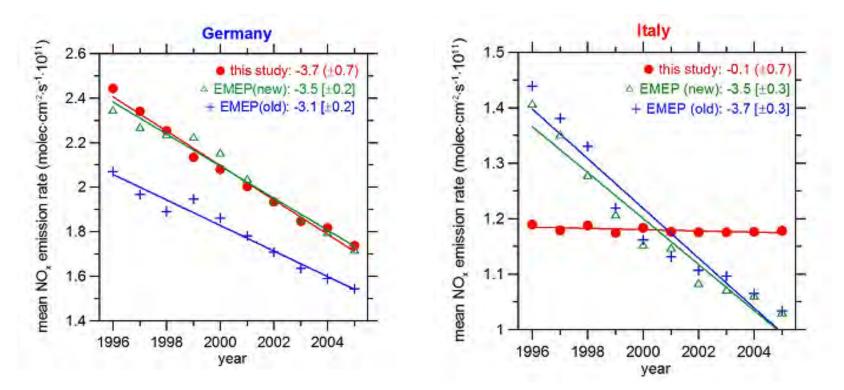
Air Pollution & Emissions

- Trop. NO2
- SO2 (volcanic, anthropogenic)
- VOC indicator (HCHO, CHOCHO)
- Carbon Monoxide
- Aerosol



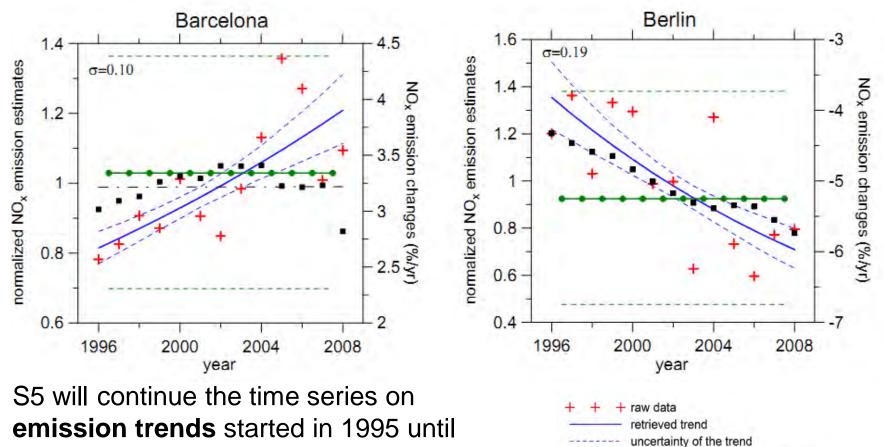
GOME-2 tropospheric NO₂ in Europe 2007-2010 (O3SAF)

A. Richter, IUP, University of Bremen


NO₂/SO₂ changes GOME & SCIAMACHY

- **China,** the increase in NO₂ and SO₂ levels was very similar until 2007 when SO₂ started to decline but NO₂ continued to increase
- **Eastern US**, the decline in NO_2 and SO_2 started at about the same time (2005), but reductions in SO_2 were much larger than those in NO_2 , probably because of other NOx sources
- S5 will continue the time series started in 1995 until 2035 with improved spatial resolution and coverage

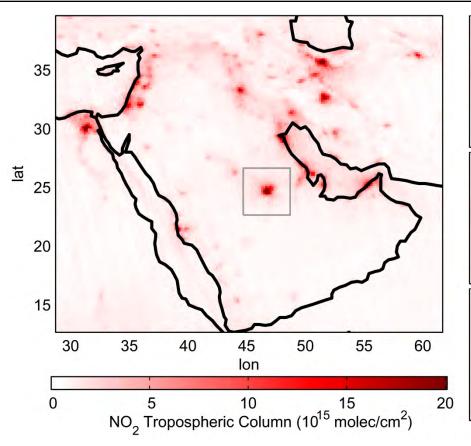
Monitoring changes in NOx emissions on country scale

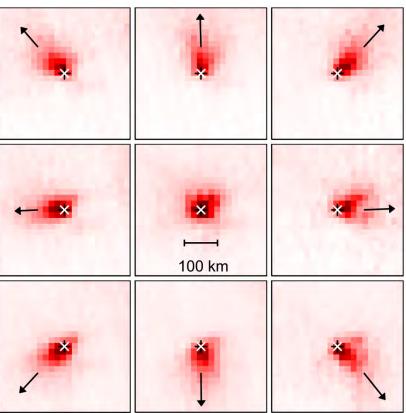


 S5 will continue (and extend to CO) the time series on emission trends started in 1995 until 2035 with improved spatial resolution and coverage, allowing monthly to seasonal temporal resolution

> Konovalov, I., Beekmann, M., Burrows, J. P., Richter, A., <u>Satellite measurement based estimates of decadal</u> <u>changes in European nitrogen oxides emissions</u>, Atmos. Chem. Phys., **8**, 2623-2641, 2008

Monitoring changes in NOx emissions on Megacity scale

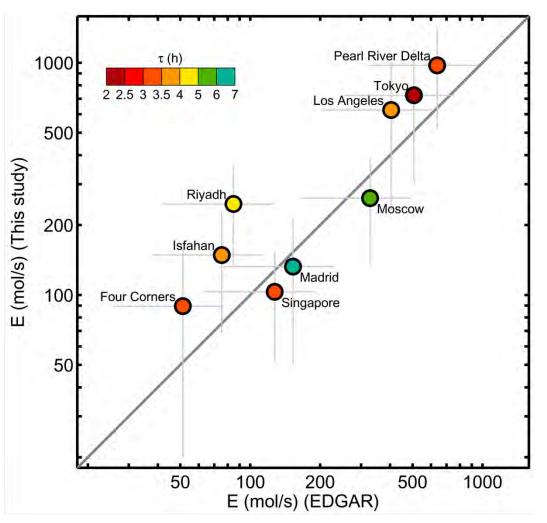

emission trends started in 1995 until 2035 with improved spatial resolution and coverage, allowing monthly to seasonal temporal resolution


Universität Bremen

EMEP emissions

interannual change (right axis) uncertainty of the interannual change

Independent verification of Megacity emissions

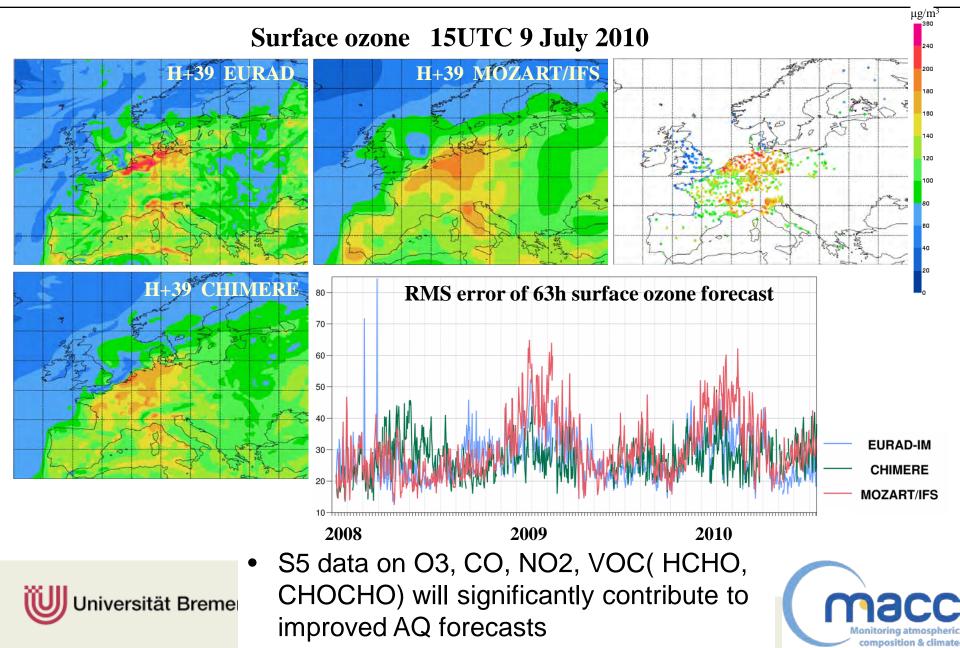

Mean NO₂ TVCD for the Middle East (OMI 2005-2009, cloud-free, calm) TVCD around Riyadh for different wind directions (ECMWF)

Universität Bremen

Beirle et al., Science, 2011

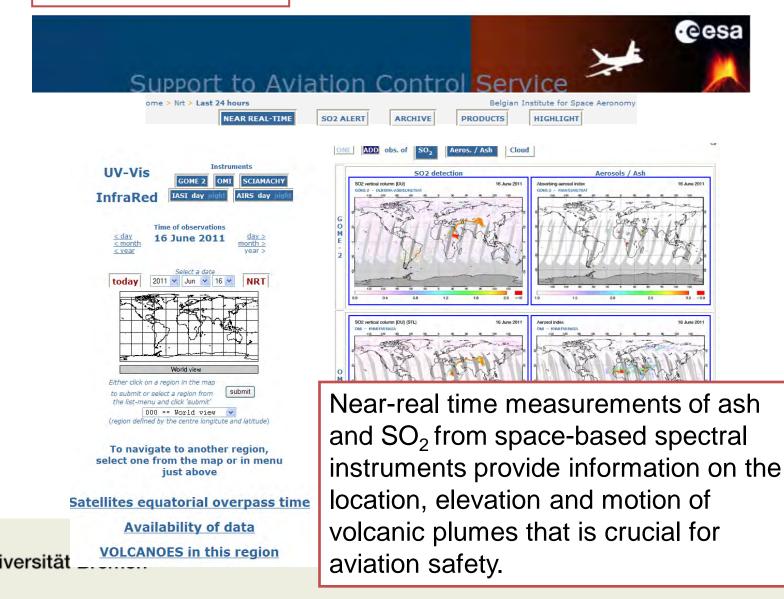
Comparison to EDGAR v4.1, for 2005

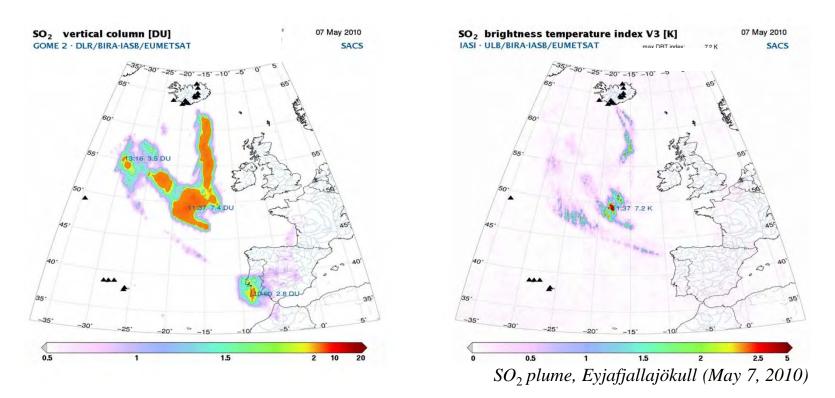
- Approach currently limited large to well spatially isolated cities due to spatial resolution of used sensor (13 x 24 km2, OMI)
- S5 with its 7 x 7 km will allow to apply the methdod to much more cities on a yearly basis.



http://edgar.jrc.ec.europa.eu

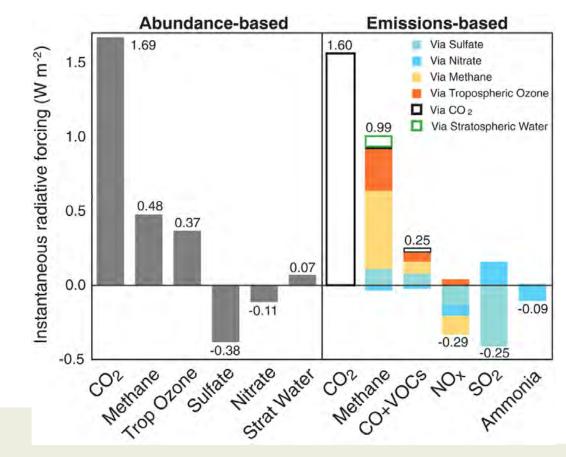
Beirle et al., Science, 2011

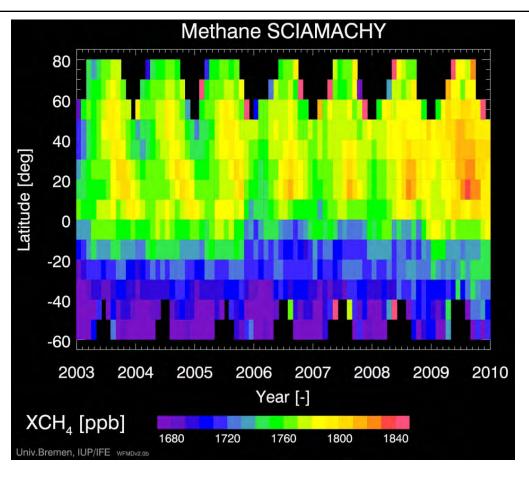

Improving global and regional AQ forecasts

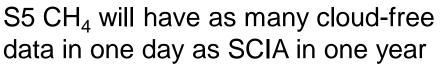


http://sacs.aeronomie.be/

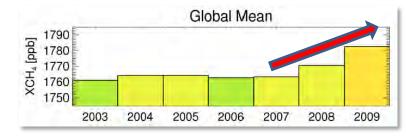
- Key measurements from space: high spatial resolution and coverage.
- UVN and IR Soundings are complementary in terms of measurement sensitivity and temporal sampling.




Climate Data Sets


- Ozone
- CH₄
- CO₂ (ESA study)
- H2O
- Aerosol

iversität Bremen

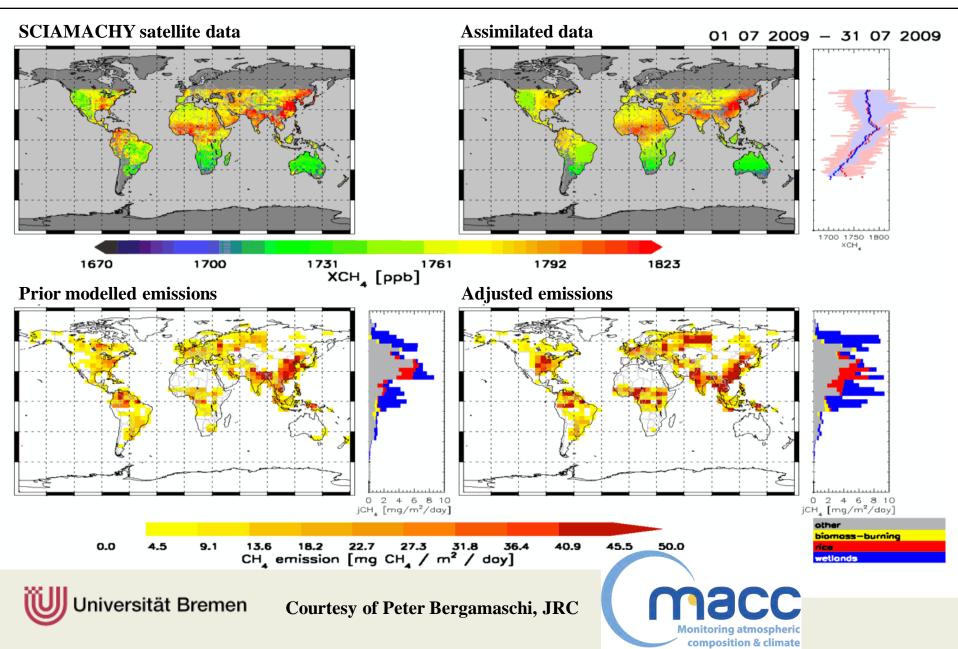


Methane (CH₄) from SCIAMACHY

iversität Bremen

Latitude band	seasor	mplitude nal cycle	Anomaly since 2007 [ppb yr ⁻¹]	
	[ppb] SCIA TM5(2003)		SCIA	TM5(2003)
Global	13.4 ± 4.0	9.8±2.9	7.4	-0.4
NH	13.7 ± 2.6	9.3 ± 0.3	8.2	-0.5
SH	8.5±5.3	8.5 ± 1.7	5.4	-0.6
30° N–90° N	12.4 ± 8.0	11.2 ± 0.8	6.6	-0.6
30° S–30° N	7.3 ± 3.7	5.1 ± 0.9	8.2	-0.2
30° S–90° S	10.6 ± 1.2	8.5 ± 3.1	4.4	0.0
0° N–30° N	17.2 ± 1.9	10.8 ± 1.0	9.1	-0.4
0° S-30° S	6.1 ± 2.7	5.2 ± 0.3	5.8	-0.5

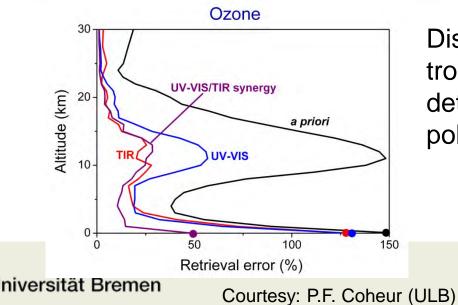
~8 ppb/yr > 30°S


Atmos. Chem. Phys., 11, 2863–2880, 2011 www.atmos-chem-phys.net/11/2863/2011/ doi:10.5194/acp-11-2863-2011 © Author(s) 2011. CC Attribution 3.0 License.

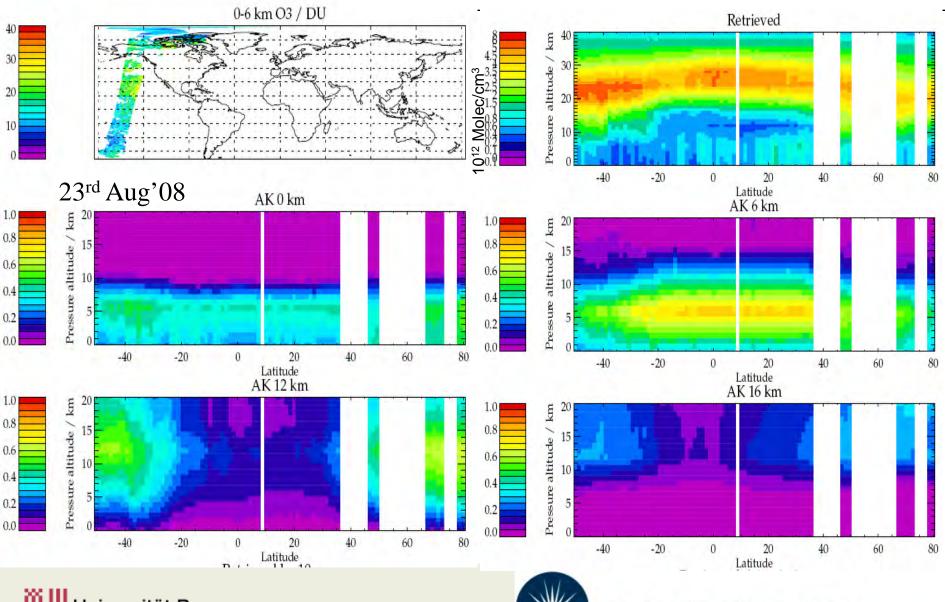
Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY

O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows Institute of Environmental Physics (IUP), University of Bremen FB1, Bremen, Germany

First six months of routine methane flux inversion


Synergies across Post EPS – S5 perspective

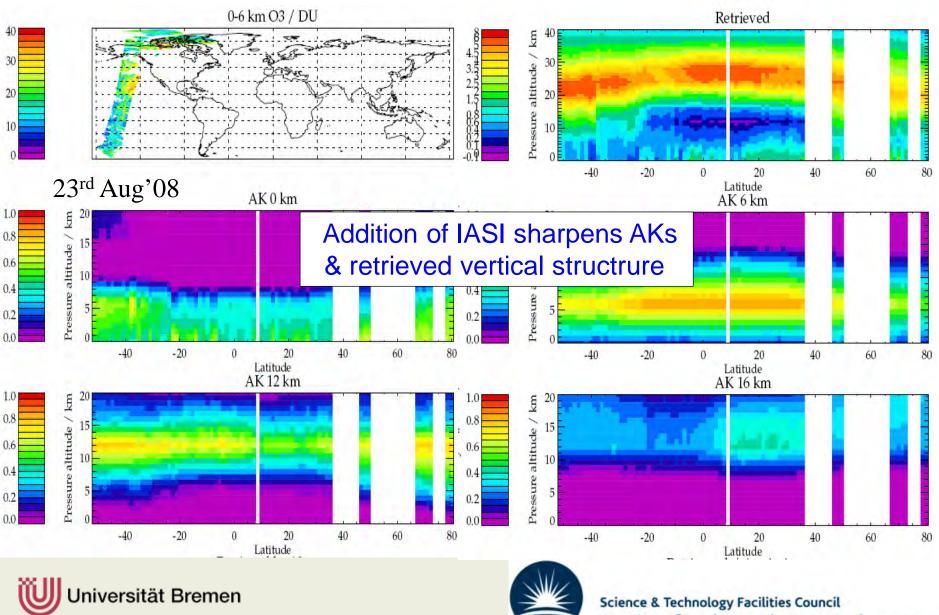
- S5-IASI-NG:
 - improved trop. O_3 (UV-IR)
 - improved trop. H_2O (VIS-IR)
 - improved CO (SWIR-IR)
 - improved CH₄ (SWIR-IR)
 - improved trop SO₂ (column, height etc.)
 - tbd: improved CO₂ (SWIR-IR)
 - Synergistic data usage Air Pollutiond & Climate
- S5-VII/3MI:
 - improved trop. trace gas products using colocated high resolution cloud and aerosol data
 - "increase" in spatial resolution of trop. trace gas products using high resolution colocated cloud coverage data
 - unique aerosol characterisation (see presentation J. Riedi/P.Stammes)


S5-IASI-NG Synergies

Species		Vertical layers boundaries H. Bovensmann et al. Advances in Space Research 34 (2004) 69					04) 694-69
		0–2 km		2–7 km		7–12 km	
03	Combined TIR UV-VIS	5%	28% <10%	<5%	13% <6%	<5%	6.6% <13%
со	Combined TIR SWIR	10%	24%	<10% Column <10%	10%	<10%	10%
CH₄	Combined TIR SWIR	2%	7.1% 13%	1%	3% 12%	1%	2.6% 18%
H ₂ O	Combined TIR VIS	<1%	1.2% 5%	<1%	1.1% 5%	<1%	2.8% 30%

Distinguishing PBL from freetropospheric ozone and CO for determining long-range transport of pollution and emission sources

Orbit x-section: GOME-2 only Retrieval & Averaging Kernels



Universität Bremen

Science & Technology Facilities Council Rutherford Appleton Laboratory

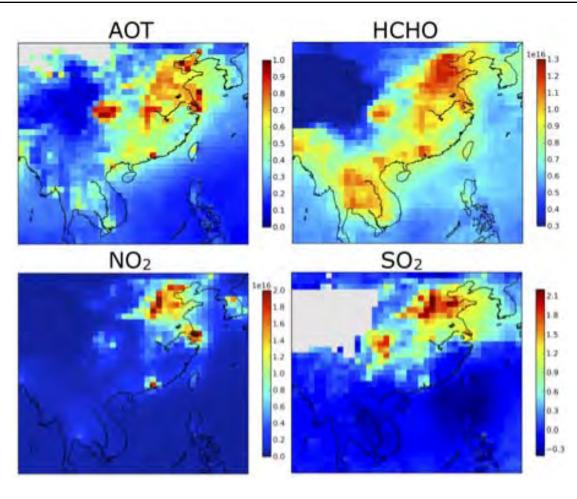
Orbit x-section: GOME-2 + IASI Retrieval & Averaging Kernels

Rutherford Appleton Laboratory

Synergies by Data Utilization (S5, VII/3MI, IASI)

Analysis based on multiple species to constrain processes

Need for consistency in retrieval methods.


Data assimilation

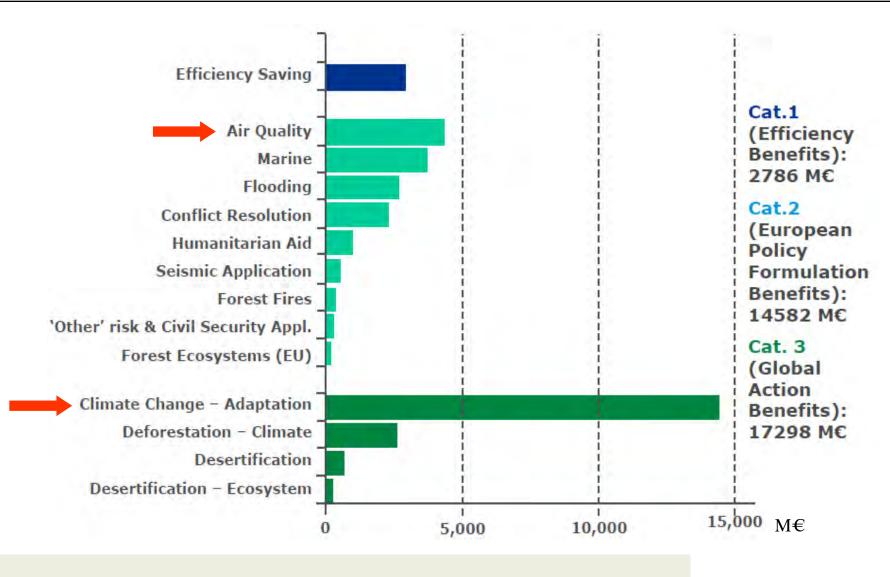
Sophisticated error analysis are needed.

Focus on the troposphere

Sensitivity varies with altitude, aerosols and clouds.

Operational data usage *near-real-time data*

Veefkind, J. P., et. al.: Atmos. Chem. Phys. 10, 2011


+ IASI-NG: NH₃, HNO₃, Methanol, C₂H₄ ... + S5/IASI-NG synergistics: trop. O3, trop. CH4, PBL CO ...

Synergies across Sentinel – S5 perspective

- S5-S4
 - Cross-calibration
 - Improved S4 tropospheric products using stratospheric constrain from S5 (O3, NO2 etc.)
 - S4 adds the high temporal resolution needed of regional to urban AQ applications

Affordability: Socio-oeconomic benefits of GMES_(up to 2030)

Universität Bremen

Adapted from EC, based on PWC Study

Summary

- Sentinel 5 will serve key PostEPS MRD and GMES Atmosphere requirements in a unique and affordable way (Air Pollution, Climate, Ozone)
- Continuation of GOME-SCIA-GOME-2 products time series (since 1995)
- Drastically increased spatial resolution in combination with improved coverage will boost tropospheric applications
- CO and CH₄ (CO₂ tbd) adds very important products
- Synergistic products require good co-location of sensor, => S5 UVNS needs to be accomodated on one platform with IASI-NG, VII & 3MI
- S5 in combination with its Post-EPS "colleagues" IASI-NG, VII and 3MI will allow to continue established and establish new air quality, chemistry and climate services and applications.
- Pre-operational services well underway (MACC, PASODOBLE etc.)

