

Study on validation of spectral band adjustment factors using lunar hyperspectral measurements

Ralph Snel Matthijs Krijger Pieter van der Meer Bart Viticchie Tim Hewison Sebastien Wagner

Study on validation of spectral band adjustment factors using lunar hyperspectral measurements SCIAMACHY, GIRO & GOME2

Ralph Snel Matthijs Krijger Pieter van der Meer Study funded by SAT

Bart Viticchie Tim Hewison Sebastien Wagner

2016-11-17 krijger@earthspace.nl

Albedo (normalised)

2016-11-17 krijger@earthspace.nl

GIRO

2016-11-17 krijger@earthspace.nl

Study

- Focus
 - Difference spectral response
 - GIRO low spectral resolution (32 bands)
 - Interpolation based on scaled Apollo-return soil
 - Definition reference calibration scale
 - GIRO absolute calibration uncertain
- Solution: SCIAMACHY

SCIAMACHY on ENVISAT

2016-11-17 krijger@earthspace.nl

9

2016-11-17 krijger@earthspace.nl

The instrument

- Imaging spectrometer
- Spatial dimensions through scan mirror(s):
 - IFoV: 0.045 degrees by 1.8 degrees
- Spectral dimension through 8-channel spectrometer, 8192 wavelengths:
 - 214 nm to 1773 nm
 - 1934 nm to 2044 nm
 - 2259 nm to 2386 nm
- Nadir, Limb, sub-solar, solar occultation and lunar occultation views
- Many in-flight calibration and monitoring modes
- Data provided by ESA

SCIAMACHY viewing modes

2016-11-17 krijger@earthspace.nl

SCIAMACHY viewing modes

2016-11-17 krijger@earthspace.nl

Lunar phase angle coverage

13

2016-11-17 krijger@earthspace.nl

Lunar libration angle coverage

14

krijger@earthspace.nl

2016-11-17

SCIAMACHY Lunar Measurements (1)

16

2016-11-17 krijger@earthspace.nl

SCIAMACHY Lunar Measurements (2)

krijger@earthspace.nl

2016-11-17

SCIAMACHY Lunar Measurements (3)

18

2016-11-17 krijger@earthspace.nl

SCIAMACHY Lunar Measurements (4)

19

SCIAMACHY lunar measurements

2016-11-17 krijger@earthspace.nl

SCIAMACHY Lunar Measurements (5)

3×10¹² signal [arb.units] 2×10¹² 1×10¹² 0 2.380136×10^{3} 2.380137×10^{3} 2.380137×10^{3} 2.380138×10^{3} time since 2000.0 [days]

SCIAMACHY lunar measurements

2016-11-17 krijger@earthspace.nl

SCIAMACHY Lunar Measurements (6)

SCIAMACHY lunar measurements, PMD signal

2016-11-17 krijger@earthspace.nl

SCIAMACHY Solar Mode

2016-11-17 krijger@earthspace.nl

23

SCIAMACHY Solar Transmission Degradation

SCIAMACHY Light Path Monitoring Results, Channel 1

24

prod. 23-Apr-2012 by SOST-IFE (Stefan Noel@iup.physik.uni-bremen.de)

krijger@earthspace.nl

2016-11-17

SCIA Lunar Degradation

25

2016-11-17 krijger@earthspace.nl

Degradation model: Dirty Mirror

2016-11-17 krijger@earthspace.nl

Contamination changes reflectivity

Model Results

28

2016-11-17 krijger@earthspace.nl

Irradiance

krijger@earthspace.nl

2016-11-17

29

30

2016-11-17 krijger@earthspace.nl

31

2016-11-17 krijger@earthspace.nl

EARTH SPACE SOLUTIONS 32

krijger@earthspace.nl

2016-11-17

Phase angle Dependence

pace.nl 33 EARTH SPACE SOLUTIONS

krijger@earthspace.nl

2016-11-17

SCIA Phase Angle (1)

34

2016-11-17 krijger@earthspace.nl

SCIA Phase Angle (2)

35

2016-11-17 krijger@earthspace.nl

SCIA ASM Angle (1)

36

2016-11-17 krijger@earthspace.nl

SCIA ASM Angle (2)

SCIAMACHY lunar phase angle vs ASM angle 20 Lunar phase angle [degrees] -20 -40 -60 -80 └─ -70 -60 -50 -30 -20 -40 ASM angle [degrees]

2016-11-17 krijger@earthspace.nl

SCIA ASM angle (3)

2016-11-17 krijger@earthspace.nl

38

Results

2016-11-17 krijger@earthspace.nl

Irradiances

krijger@earthspace.nl 40

2016-11-17

Phase angle dependence

krijger@earthspace.nl

2016-11-17

41

Libration (Lon)

EARTH SPACE SOLUTIONS

2016-11-17 krijger@earthspace.nl

Libration (Lat)

43

EARTH SPACE SOLUTIONS

krijger@earthspace.nl

SBAFS

Bands	GIRO	SCIA	DCC	Libya	SCIA Ratio-	DCC Ratio-	Libya1	SCIA phase	GIRO
					1	1	Ratio-1		phase
MET7_VIS_vs_AQUA_1	0.8562	0.8407	0.8740	0.7540	-0.0182	0.0208	-0.1194	0.0077	-0.0034
MET7_VIS_vs_SNPP_I1	0.8483	0.8316	0.8560	0.7550	-0.0197	0.0293	-0.1180	0.0136	0.0012
MSG1_HRVIS_vs_AQUA_1	0.8727	0.8573	0.8820	1.0040	-0.0177	0.0289	0.1383	0.0107	0.0007
MSG1_HRVIS_vs_SNPP_I1	0.8647	0.8480	0.8640	0.7890	-0.0192	0.0188	-0.0868	0.0166	0.0053
MSG1_NIR016_vs_AQUA_6	0.9884	0.9889	1.0110	0.9560	0.0005	0.0224	-0.0544	-0.0006	0.0002
MSG1_NIR016_vs_SNPP_I3	0.9651	0.9621	1.0750	0.9530	-0.0031	0.1173	-0.1135	0.0123	0.0020
MSG1_VIS006_vs_AQUA_1	1.0074	1.0087	1.0150	1.0010	0.0013	0.0063	-0.0138	-0.0044	-0.0033
MSG1_VIS006_vs_SNPP_I1	0.9981	0.9978	0.9950	1.0020	-0.0003	-0.0029	0.0070	0.0015	0.0013
MSG1_VIS008_vs_AQUA_2	1.1134	1.1139	1.1360	1.0430	0.0004	0.0199	-0.0819	-0.0130	-0.0045
MSG1_VIS008_vs_SNPP_I2	1.1231	1.1236	1.1450	1.0460	0.0005	0.0190	-0.0865	-0.0143	-0.0046
MSG2_HRVIS_vs_AQUA_1	0.8741	0.8588	0.8850	0.7880	-0.0175	0.0305	-0.1096	0.0098	-0.0001
MSG2_HRVIS_vs_SNPP_I1	0.8661	0.8496	0.8670	0.7880	-0.0190	0.0205	-0.0911	0.0158	0.0046
MSG2_NIR016_vs_AQUA_6	0.9842	0.9845	1.0200	0.9510	0.0003	0.0360	-0.0676	0.0008	0.0005
MSG2_NIR016_vs_SNPP_I3	0.9611	0.9578	1.0850	0.9480	-0.0034	0.1328	-0.1263	0.0138	0.0022
MSG2_VIS006_vs_AQUA_1	1.0073	1.0086	1.0150	1.0010	0.0013	0.0064	-0.0138	-0.0043	-0.0032
MSG2_VIS006_vs_SNPP_I1	0.9980	0.9978	0.9950	1.0020	-0.0003	-0.0028	0.0070	0.0016	0.0014
MSG2_VIS008_vs_AQUA_2	1.1157	1.1161	1.1380	1.0460	0.0004	0.0196	-0.0808	-0.0132	-0.0047
MSG2_VIS008_vs_SNPP_I2	1.1254	1.1259	1.1470	1.0490	0.0005	0.0187	-0.0854	-0.0145	-0.0048
MSG3_HRVIS_vs_AQUA_1	0.8735	0.8581	0.8840	0.7870	-0.0176	0.0302	-0.1097	0.0099	0.0000
MSG3_HRVIS_vs_SNPP_I1	0.8654	0.8489	0.8860	0.7870	-0.0191	0.0437	-0.1117	0.0159	0.0046
MSG3_NIR016_vs_AQUA_6	0.9845	0.9848	1.0200	0.9520	0.0003	0.0357	-0.0667	0.0008	0.0004
MSG3_NIR016_vs_SNPP_I3	0.9614	0.9581	1.0840	0.9490	-0.0034	0.1314	-0.1245	0.0138	0.0022
MSG3_VIS006_vs_AQUA_1	1.0096	1.0113	1.0200	1.0000	0.0017	0.0086	-0.0196	-0.0057	-0.0043
MSG3_VIS006_vs_SNPP_I1	1.0003	1.0006	0.9990	1.0010	0.0003	-0.0016	0.0020	0.0000	0.0003
MSG3_VIS008_vs_AQUA_2	1.1156	1.1161	1.1380	1.0470	0.0004	0.0197	-0.0800	-0.0132	-0.0047
MSG3_VIS008_vs_SNPP_I2	1.1253	1.1258	1.1480	1.0500	0.0005	0.0197	-0.0854	-0.0145	-0.0048

2016-11-17 krijger@earthspace.nl

44

Summary

- SCIAMACHY
 - High (0.25nm) resolution lunar spectrum
 - Precise (<0.5%) lunar spectrum
 - Many (~1100) lunar measurements
 - Different geometries
 - New improved calibration (mirror model)
- Good agreement ROLO/GIRO (<2%)
 - Lunar phase angle dependence (GIRO?)
- Potentials for GIRO update
 - Phase angle dependence
 - Extension to shorter wavelength
 - GIRO polarisation?

Thank you

2016-11-17 krijger@earthspace.nl

46

2016-11-17 krijger@earthspace.nl

Lunar phase angle coverage (2)

49

2016-11-17 krijger@earthspace.nl

Problematic Correlations

2016-11-17 krijger@earthspace.nl

51

Libration

@NASA

2016-11-17 krijger@earthspace.nl

52

Spectral variation

2016-11-17

Future: GOME2

2016-11-17 krijger@earthspace.nl

54

Earth Mode

GOME2 Lunar Positions relative to GOME2

Signal vs Phase

STC BOOM **Azimuth Dependence** GOME2 lunar pixel 500 channel 4 sample 1×10¹² 8×10¹¹ 6×10¹¹ Signal 4×10¹¹ 2×10¹¹ Stillen 0 88.5 90.0 90.5 89.0 89.5 91.0 91.5 azimuth [degree] EARTH SPACE SOLUTIONS 2016-11-17 krijger@earthspace.nl 60

SCIA vs GIRO

