LMA vs LIS data comparison

Joan Montayà & Nicolau Pineda

This presentation has been adapted from the original by:

Ícar Fontcuberta

Bachelor student of Aeronautics Engineering of the UPC Stage at Lightning Research Group (June-September 2018)

20181031

Index

- Current status at LRG
- Objective and working hypothesis
- Methodology
 - Data collection
 - Data analysis
- Results

- Processing Software
- Conclusions

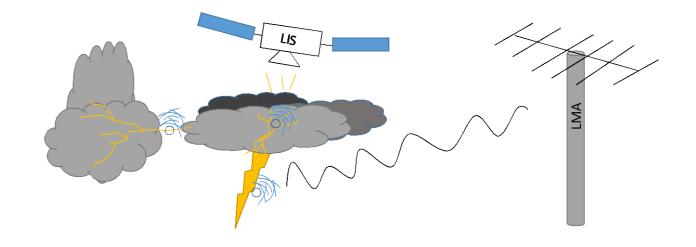
Current status at LRG

- Oscar's LMA software: maps sources, events and LINET
 - Required Inputs: txt files with LIS info.
 - Drawback: LIS data → HDF files

Processing code is required for download and adaptation of HDF files

Drawback: It can not be easily used to make statistical analysis

Analysis code that produces statistical values

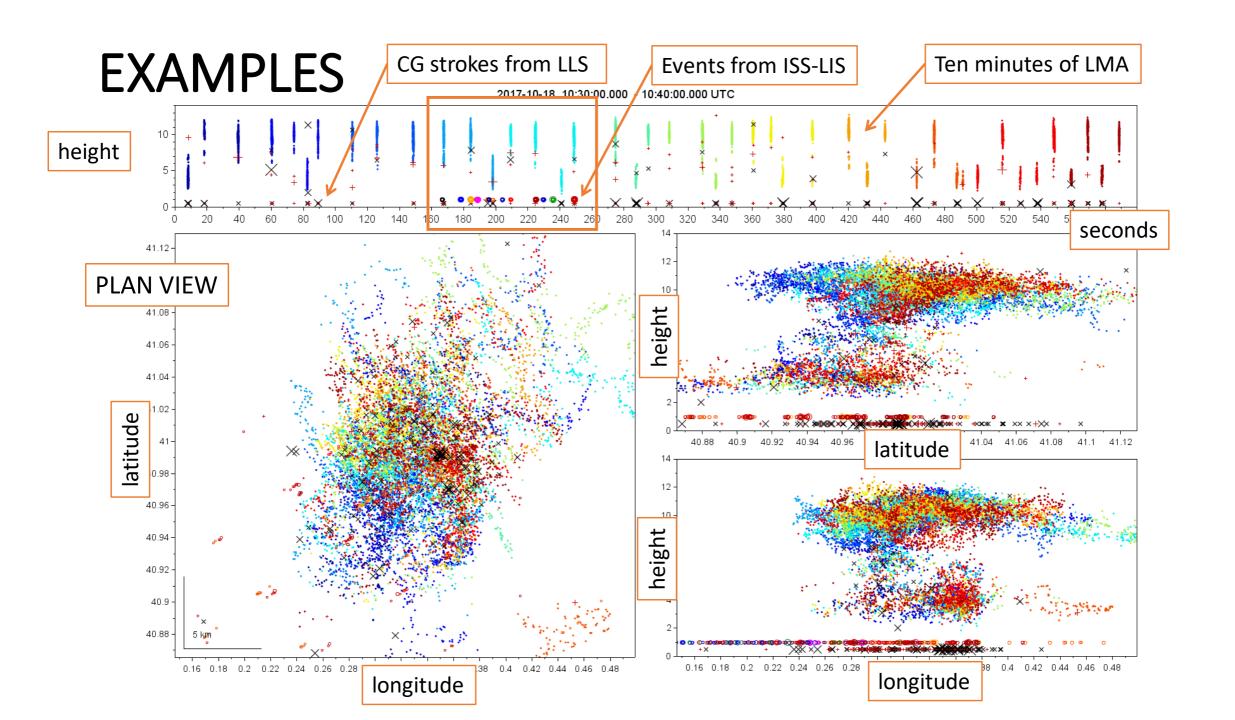

Objectives

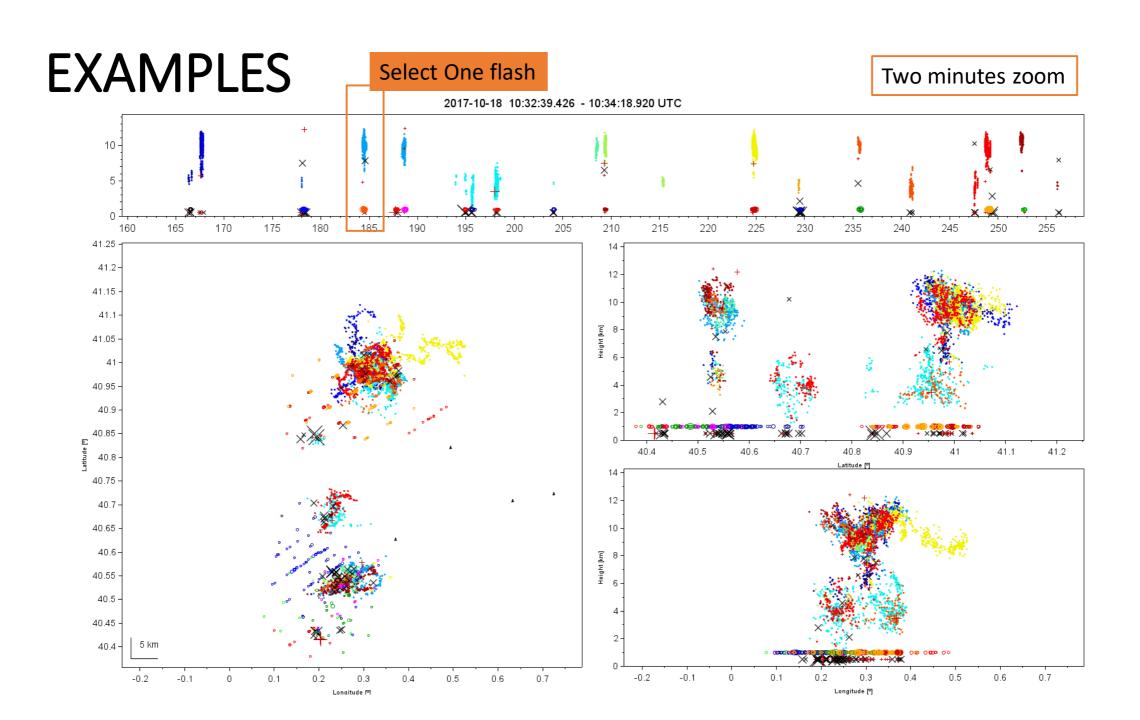
- Codes for processing the data files from the sensors into a nicer format
- Comparison of the data collected by LIS and LMA
- Explore the influence of sources properties as detected by LMA on its LIS detection

Hypothesis

"The luminosity detected by LIS is part of the same physical process that generates the VHF emissions recorded by LMA, i.e. leader propagating through the air."

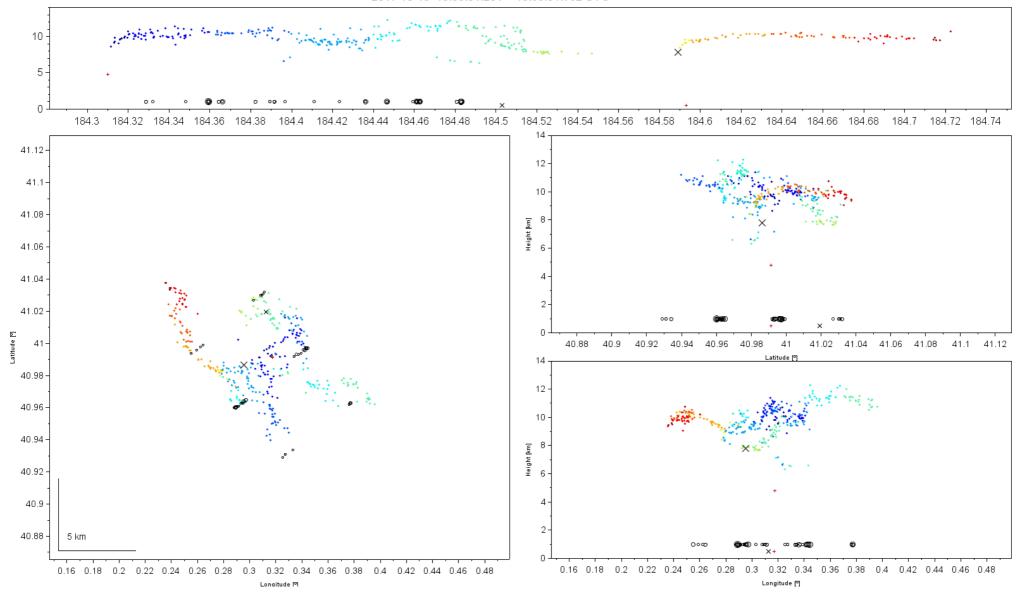
Methodology: data collection

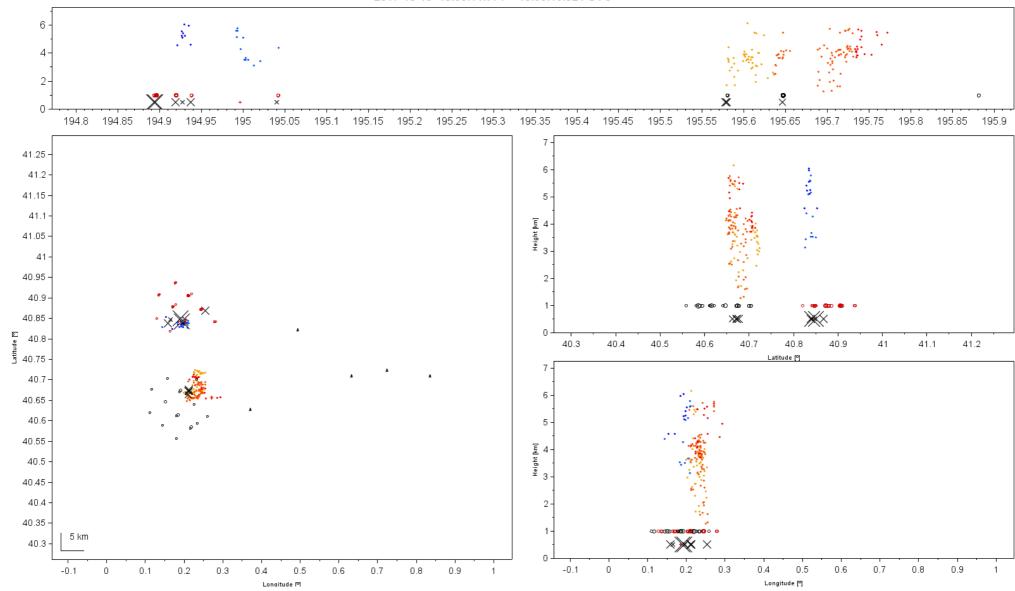

LIS


- High Luminosity Events
 - 777.4nm
 - 2ms
 - 4 km IFOV
 - CCD 128x128 pixel
 - ISS

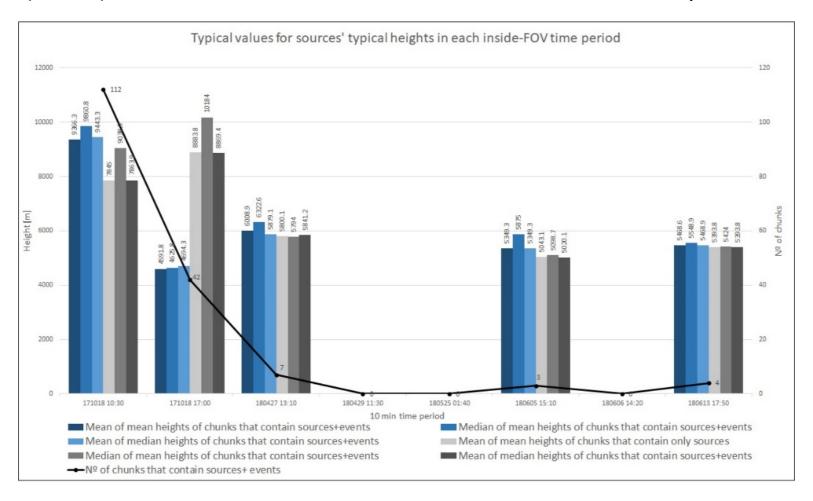
LMA

- Radio freq. antennae
 - 60-66 MHz
- Mapping sources using up to 7 antennae
- 60 km radius around Ebre delta @ sea level


Simultaneous measurements available from March 2017 (LIS start)
5 time periods (10 min) with simultaneous detections have been identified until July 2018


IC flash

2017-10-18 10:33:04.281 - 10:33:04.752 UTC


CG flash

2017-10-18 10:33:14.771 - 10:33:15.924 UTC

DATA SET

Simultaneous measurements available from March 2017 (LIS start)
5 time periods (10 min) with simultaneous detections have been identified until July 2018

DATA SET

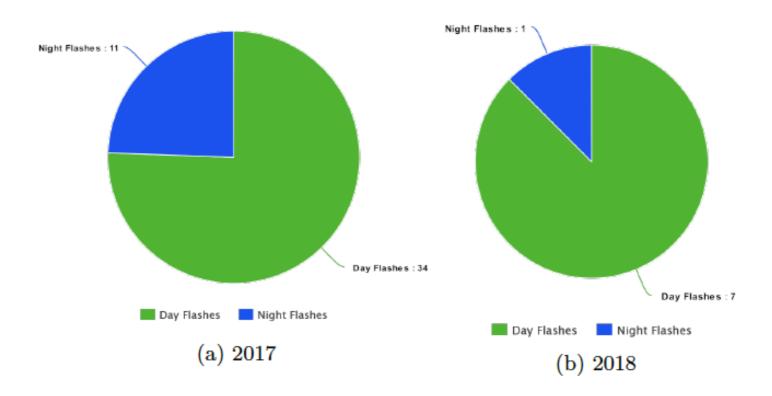
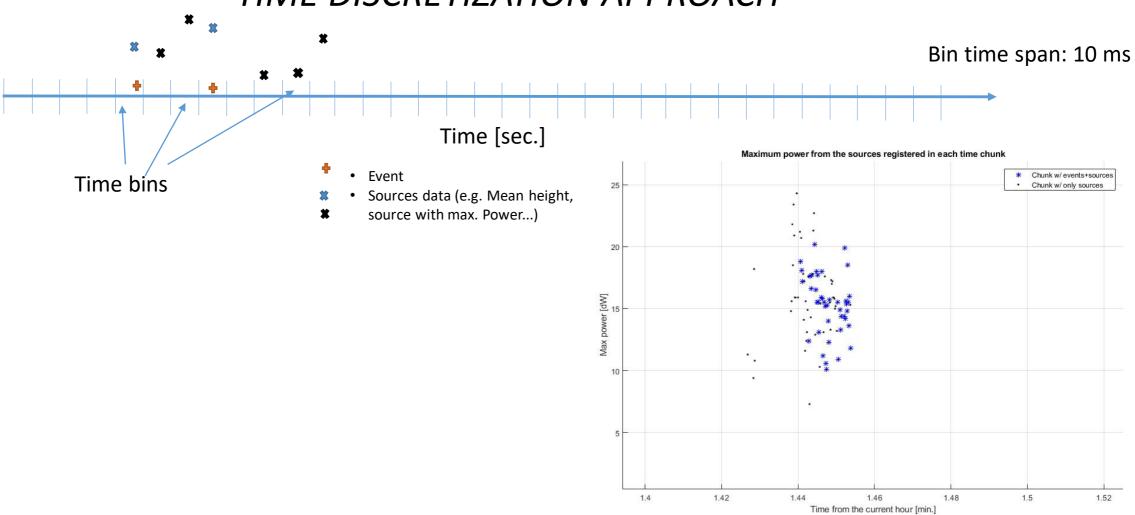



Figure 3.1: Night-Day presence of lightning detected by LIS around Deltebre area.

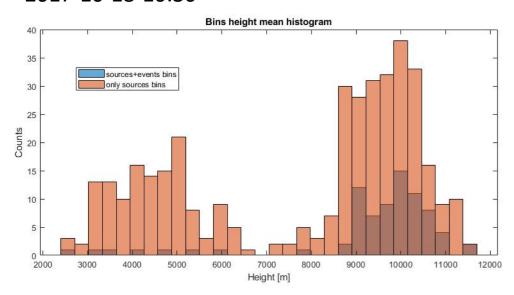
Period March 2017 to before July 2018

Methodology: data analysis

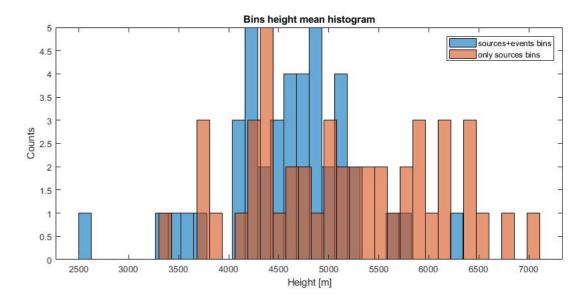
TIME DISCRETIZATION APPROACH

Results

- 1. Influence of bins' mean height on LIS detection
- 2. Influence of bins' maximum power
- 3. Influence of bins' power centroid
- 4. Influence of bins' numerical density

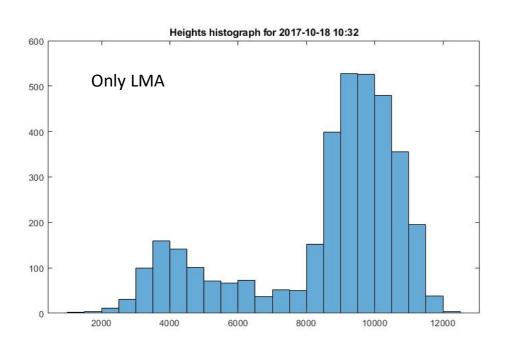

Other

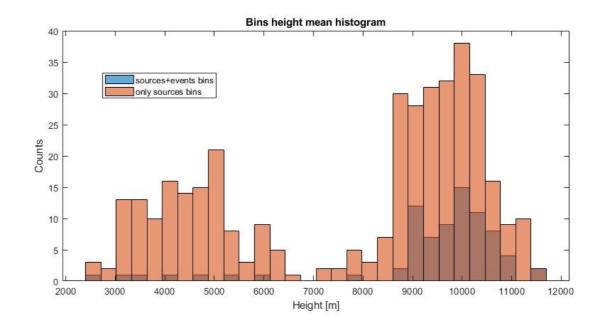
- 5. Histographic individual values vs bins discretization
- 6. Flash duration values depending on sensor
- 7. Influence of CCD pixels' position


Results 1: LMA Height vs ISS-LIS detections

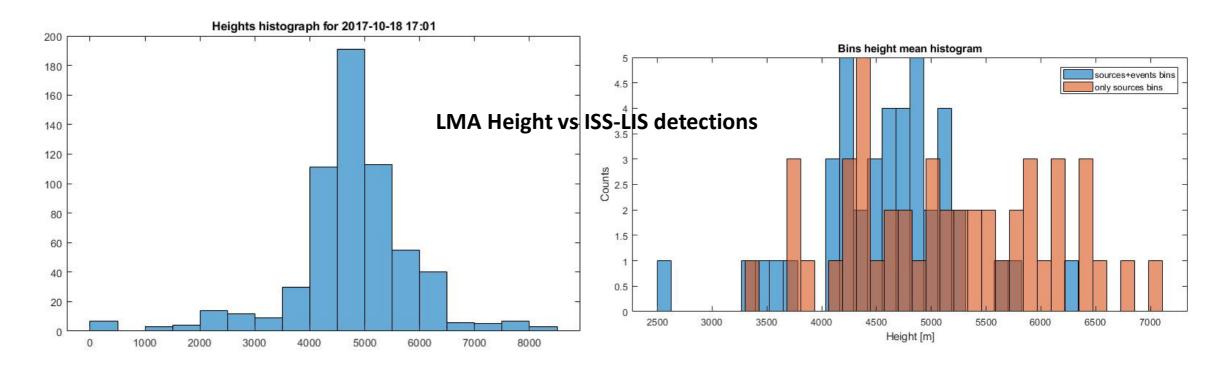
1: LMA Height vs ISS-LIS detections

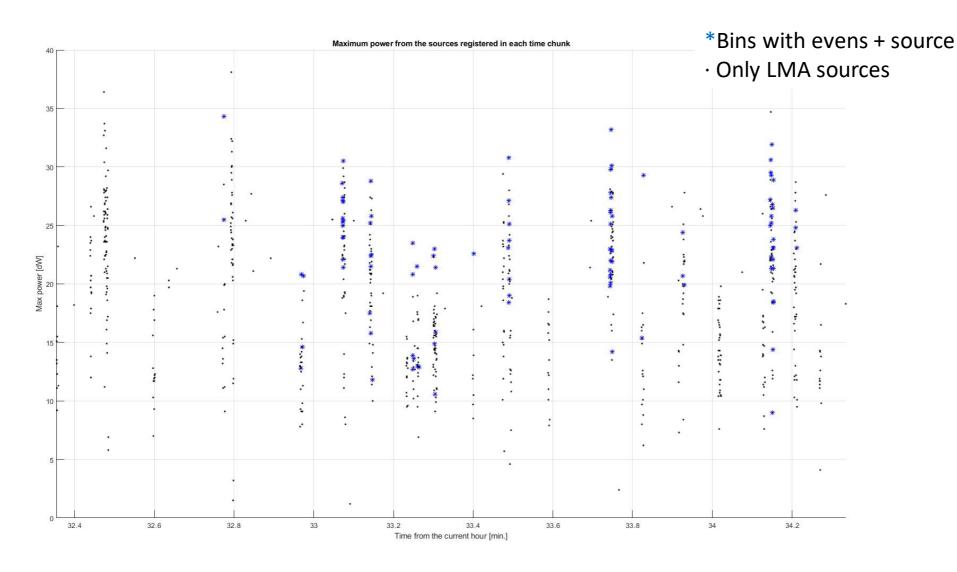
2017-10-18 10:30




2017-10-18 17:30

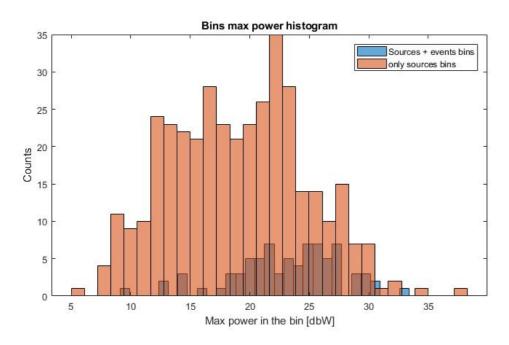
1: LMA Height vs ISS-LIS detections

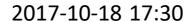

2017-10-18 10:30

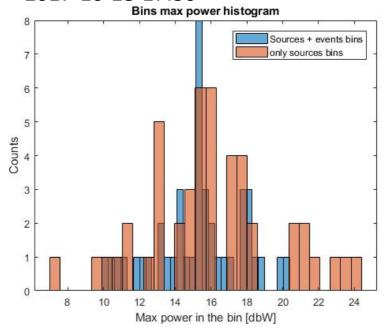

1: LMA Height vs ISS-LIS detections

2017-10-18 17:00

Results 2: LMA RF power vs ISS-LIS

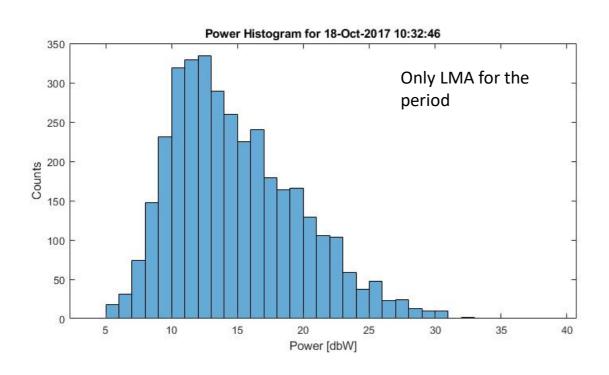

Results 2: LMA RF power vs ISS-LIS

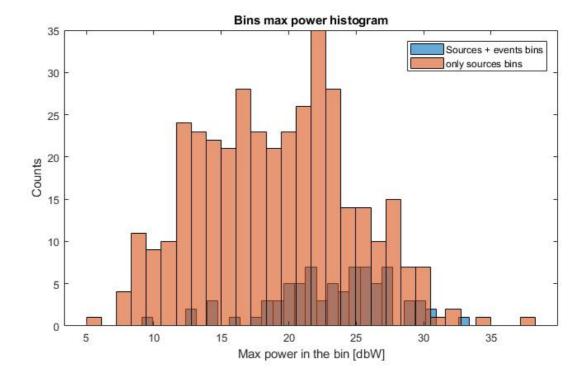



2: LMA RF power vs ISS-LIS

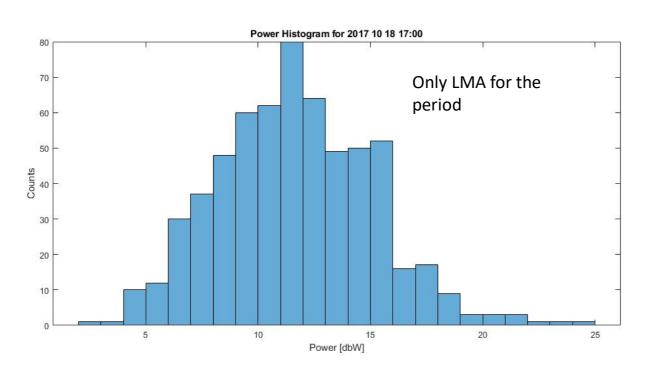
Histographical distributions

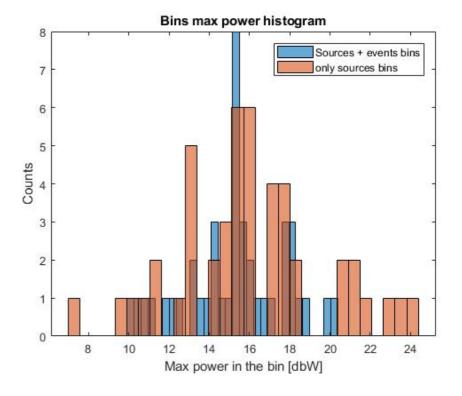
2017-10-18 10:30



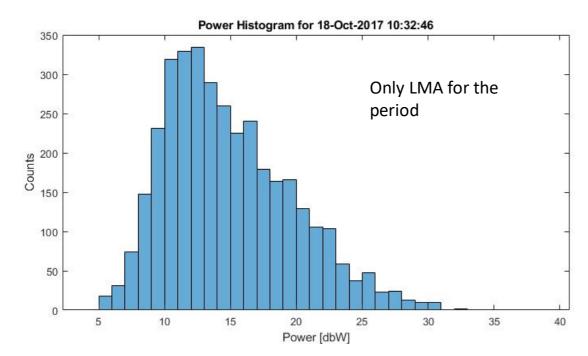


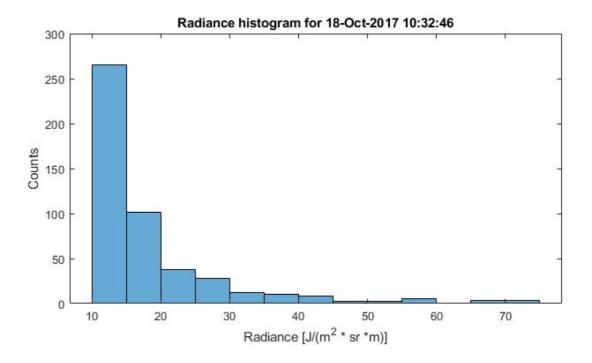
2: LMA RF power vs ISS-LIS


2017-10-18 10:30

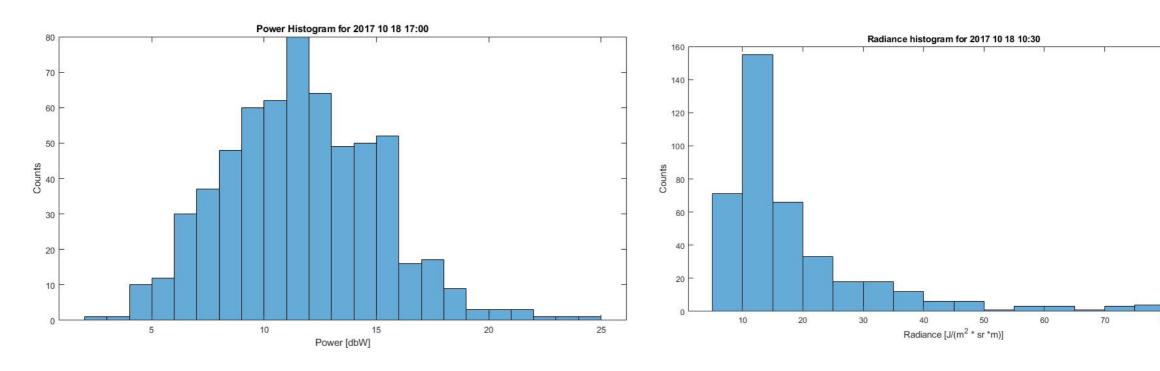


2: LMA RF power vs ISS-LIS

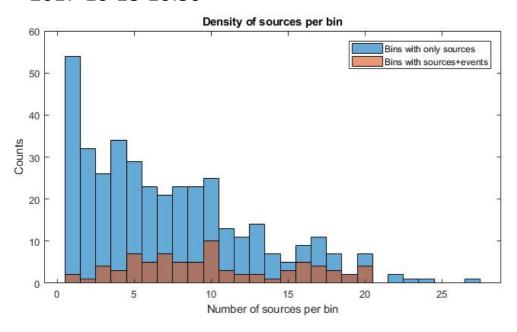

2017-10-18 17:00

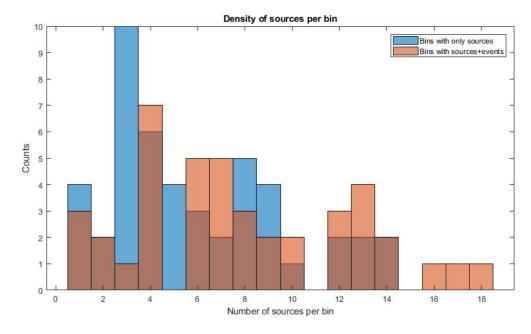


3: LMA RF power and ISS-LIS radiance histograms


2017-10-18 10:30

3: LMA RF power and ISS-LIS radiance histograms

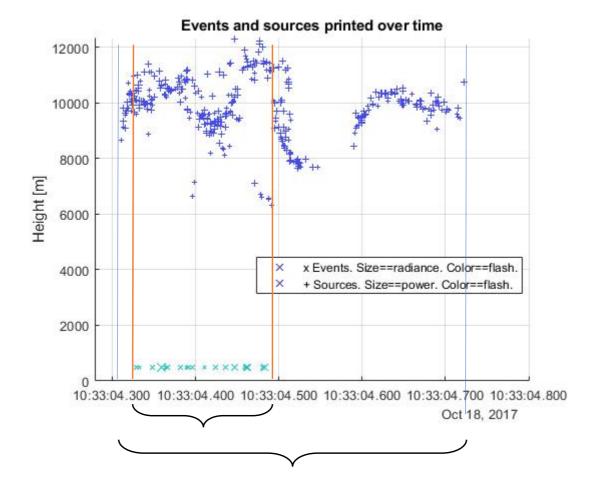

2017-10-18 17:00


Results 4: Bin densities

4: Bin densities

2017-10-18 10:30

2017-10-18 17:30

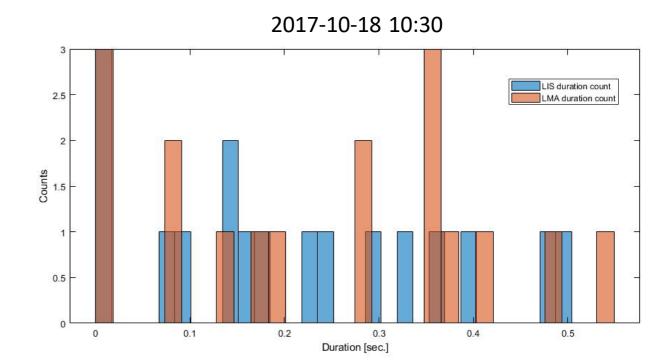


Results 5: Flash durations: LMA and ISS-LIS

5: Flash durations: LMA and ISS-LIS

2017-10-18 10:30 time period

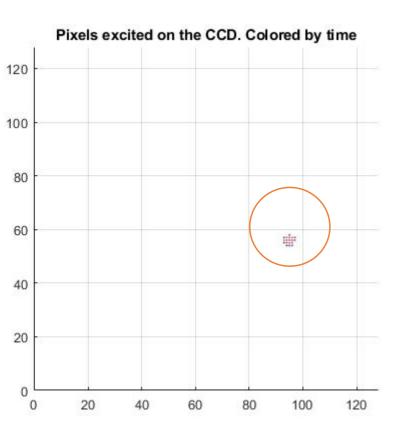
Flash duration

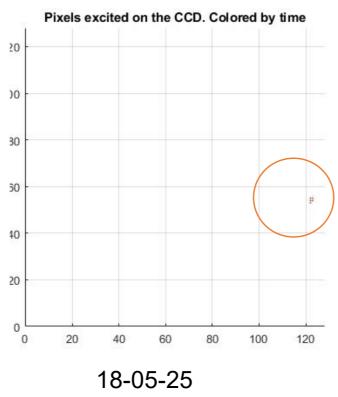

5: Flash durations: LMA and ISS-LIS

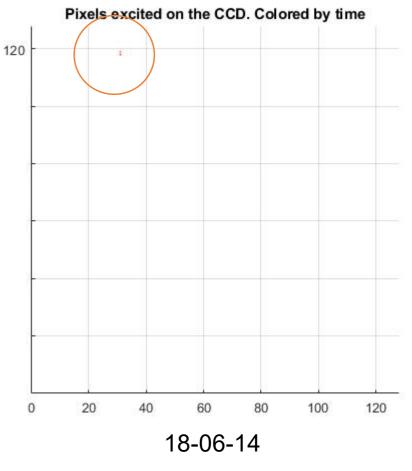
TYPICAL FLASH DURATION

• ISS-LIS: mean=0.2144 median=0.1809

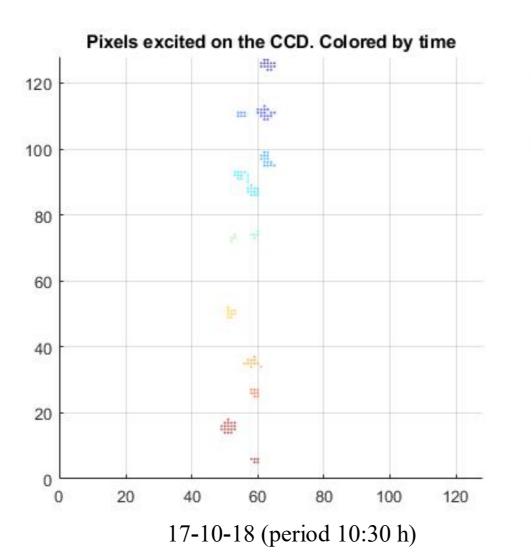
• LMA: mean=0.2405 median=0.2754

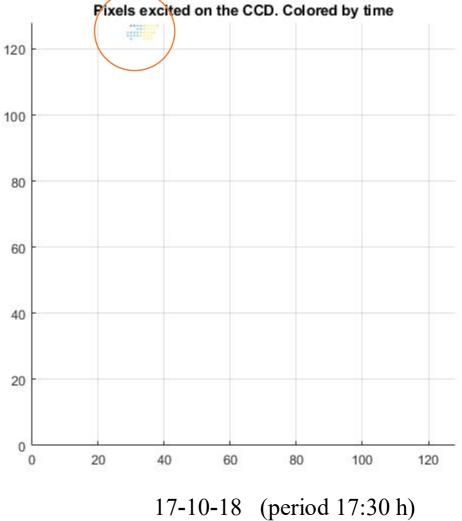

2017-10-18 10:30 time period


Results 6: Influence of the CCD pixels position


6: Influence of the CCD pixels position

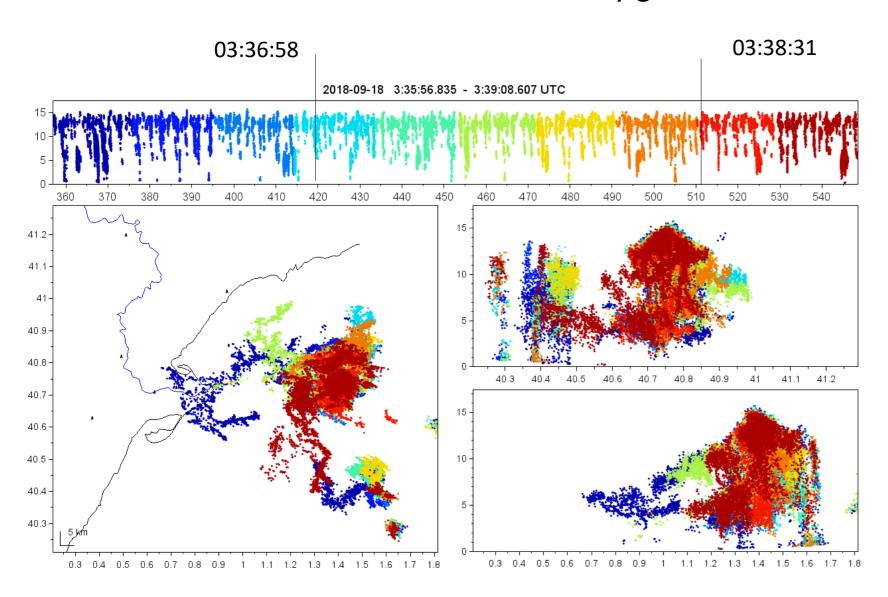
Days with few LMA - ISS-LIS coincidences


18-04-29

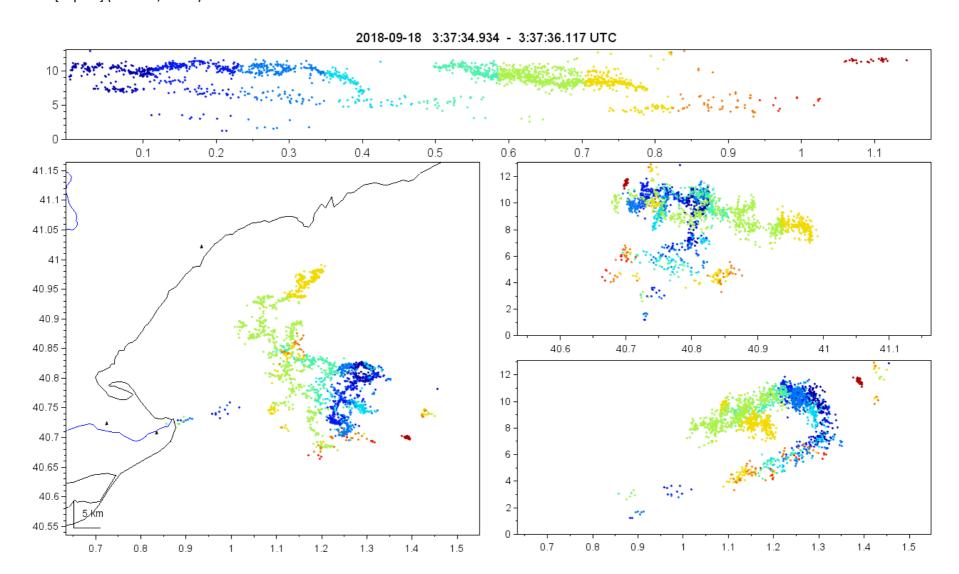


6: Influence of the CCD pixels position

Good data



New summer 2018 data (to check)


File name		Start time (UTC)	End time (UTC)	Flashes
ISS_LIS_SC_P0.2_20180623_NQC_08371.hdf	[Jun 23]	2018-174T13:11:18Z	2018-174T14:43:542	Z 1
ISS_LIS_SC_P0.2_20180712_NQC_08658.hdf	[Jul 12]	2018-193T00:08:21Z	2018-193T01:41:002	<u> </u>
ISS_LIS_SC_P0.2_20180716_NQC_08723.hdf	[Jul 16]	2018-197T04:27:41Z	2018-197T06:00:172	Z 1
ISS_LIS_SC_P0.2_20180807_NQC_09071.hdf	[Aug 07]	2018-219T13:35:46Z	2018-219T15:08:232	7 7
ISS_LIS_SC_P0.2_20180808_NQC_09090.hdf	[Aug 08]	2018-220T18:55:26Z	2018-220T20:28:032	Z 6
ISS_LIS_SC_P0.2_20180809_NQC_09105.hdf	[Aug 09]	2018-221T18:04:38Z	2018-221T19:37:152	<u> </u>
ISS_LIS_SC_P0.2_20180811_NQC_09132.hdf	[Aug 11]	2018-223T11:45:12Z	2018-223T13:17:492	Z 4
ISS_LIS_SC_P0.2_20180812_NQC_09151.hdf •	[Aug 12]	2018-224T17:04:51Z	2018-224T18:37:282	<u>z</u> 4
ISS_LIS_SC_P0.2_20180816_NQC_09212.hdf	[Aug 16]	2018-228T15:14:13Z	2018-228T16:46:492	<u>z</u> 1
ISS_LIS_SC_P0.2_20180822_NQC_09304.hdf	[Aug 22]	2018-234T13:14:28Z	2018-234T14:47:052	<u>z</u> 2
ISS_LIS_SC_P0.2_20180823_NQC_09319.hdf	[Aug 23]	2018-235T12:23:38Z	2018-235T13:56:152	Z 1
ISS_LIS_SC_P0.2_20180831_NQC_09441.hdf	[Aug 31]	2018-243T10:14:37Z	2018-243T11:47:142	2
ISS_LIS_SC_P0.2_20180904_NQC_09498.hdf	[Sep 04]	2018-247T02:13:16Z	2018-247T03:45:522	Z 1
ISS_LIS_SC_P0.2_20180917_NQC_09712.hdf	[Sep 17]	2018-260T20:32:09Z	2018-260T22:04:462	Z 14
ISS_LIS_SC_P0.2_20180918_NQC_09716.hdf	[Sep 18]	2018-261T02:42:36Z	2018-261T04:15:132	7 121
ISS_LIS_SC_P0.2_20181010_NQC_10064.hdf	[Oct 10]	2018-283T11:53:11Z	2018-283T13:25:482	<u>z</u> 2
ISS_LIS_SC_P0.2_20181014_NQC_10129.hdf	[Oct 14]	2018-287T16:13:05Z	2018-287T17:45:422	35
ISS_LIS_SC_P0.2_20181018_NQC_10190.hdf	[Oct 18]	2018-291T14:22:28Z	2018-291T15:55:052	Z 13

New data: 20180918 seems a very good case!

New data: 20180918 case of 3:37:34.9 – 3:37:36.1

2018-261T03:37:34.9398Z[Sep 18] (40.758, 1.237) 1789 645 38 **107** 9716 2018-261T03:37:34.9509Z[Sep 18] (40.682, 1.465) 152 182 6 **10** 9716 2018-261T03:37:35.4778Z[Sep 18] (40.811, 1.217) 4362 107 27 **170** 9716

Processing Software

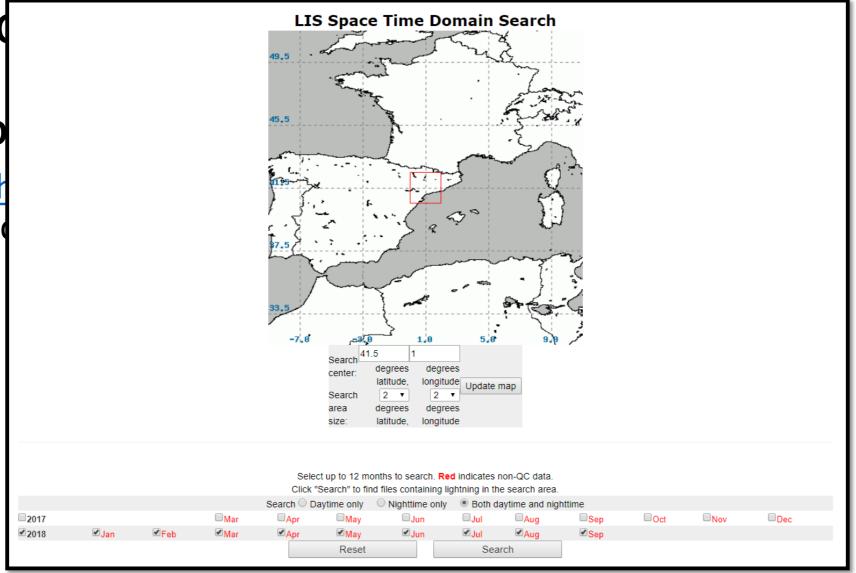
- A. HDF files processer
- B. LMA vs LIS comparator
- C. NC files processer (similar to HDF files)

Annex

HDF files processer (MATLAB)

MAIN APPLICATIONS

- 1. Download interesting HDF files
- 2. Search for interesting HDF files in a PC database and extract its relevant information and print txt files containing such information


WAY OF USE (I/V)

Go to https://lightning.nsstc.nasa.gov/isslisib/isslissearch.html and select desired space-time domain, and click "Search"

1. Do

WAY O

Go to select

and

WAY OF USE (II/V)

Manually select all the files info that is displayed

The table below lists the files containing flashes in the area of interest (**red rectangle**) in the image.

Click a file name for detailed information about that orbit.

Click a flash count to show the flashes for just that orbit on this map.

2. Dow

WAY OF U

Manually

File name		Start time (UTC)		Flashes
ISS_LIS_SC_P0.2_20180425_NQC_07453.hdf◆	[Apr 25]	2018-115T12:30:11Z	2018-115T14:02:46Z	6
ISS_LIS_SC_P0.2_20180427_NQC_07484.hdf◆	[Apr 27]	2018-117T12:20:33Z	2018-117T13:53:09Z	
ISS_LIS_SC_P0.2_20180429_NQC_07514.hdf◆	[Apr 29]	2018-119T10:38:20Z	2018-119T12:10:55Z	1
ISS_LIS_SC_P0.2_20180501_NQC_07545.hdf◆	[May 01]	2018-121T10:28:41Z	2018-121T12:01:16Z	1
ISS_LIS_SC_P0.2_20180509_NQC_07667.hdf◆	[May 09]	2018-129T06:44:42Z	2018-129T08:17:17Z	
ISS_LIS_SC_P0.2_20180523_NQC_07893.hdf◆	[May 23]	2018-143T19:31:23Z	2018-143T21:03:59Z	2
ISS_LIS_SC_P0.2_20180527_NQC_07954.hdf •	[May 27]	2018-147T17:39:49Z	2018-147T19:12:24Z	
ISS_LIS_SC_P0.2_20180529_NQC_07985.hdf •	[May 29]	2018-149T17:30:18Z	2018-149T19:02:54Z	
ISS_LIS_SC_P0.2_20180530_NQC_08000.hdf◆	[May 30]	2018-150T16:39:15Z	2018-150T18:11:51Z	2 2
ISS_LIS_SC_P0.2_20180601_NQC_08031.hdf◆	[Jun 01]	2018-152T16:29:43Z	2018-152T18:02:19Z	2
ISS_LIS_SC_P0.2_20180602_NQC_08046.hdf◆	[Jun 02]	2018-153T15:38:39Z	2018-153T17:11:15Z	
ISS_LIS_SC_P0.2_20180604_NQC_08080.hdf◆	[Jun 04]	2018-155T20:06:53Z	2018-155T21:39:29Z	
ISS_LIS_SC_P0.2_20180605_NQC_08092.hdf◆	[Jun 05]	2018-156T14:38:01Z	2018-156T16:10:37Z	
ISS_LIS_SC_P0.2_20180606_NQC_08107.hdf◆	[Jun 06]	2018-157T13:46:56Z	2018-157T15:19:32Z	_
ISS_LIS_SC_P0.2_20180613_NQC_08218.hdf◆	[Jun 13]	2018-164T17:04:48Z	2018-164T18:37:24Z	
ISS_LIS_SC_P0.2_20180712_NQC_08658.hdf◆	[Jul 12]	2018-193T00:08:21Z	2018-193T01:41:00Z	_
ISS_LIS_SC_P0.2_20180716_NQC_08723.hdf◆	[Jul 16]	2018-197T04:27:41Z	2018-197T06:00:17Z	
ISS_LIS_SC_P0.2_20180801_NQC_08979.hdf◆	[Aug 01]	2018-213T15:35:13Z	2018-213T17:07:50Z	
ISS_LIS_SC_P0.2_20180805_NQC_09040.hdf◆	[Aug 05]	2018-217T13:44:44Z	2018-217T15:17:21Z	
ISS_LIS_SC_P0.2_20180807_NQC_09071.hdf◆	[Aug 07]	2018-219T13:35:46Z	2018-219T15:08:23Z	
ISS_LIS_SC_P0.2_20180808_NQC_09090.hdf◆	[Aug 08]	2018-220T18:55:26Z	2018-220T20:28:03Z	
ISS_LIS_SC_P0.2_20180809_NQC_09105.hdf◆	[Aug 09]	2018-221T18:04:38Z	2018-221T19:37:15Z	
ISS_LIS_SC_P0.2_20180812_NQC_09151.hdf◆	[Aug 12]	2018-224T17:04:51Z	2018-224T18:37:28Z	
ISS_LIS_SC_P0.2_20180813_NQC_09166.hdf◆	[Aug 13]	2018-225T16:14:02Z	2018-225T17:46:39Z	2
ISS_LIS_SC_P0.2_20180816_NQC_09212.hdf◆	[Aug 16]	2018-228T15:14:13Z	2018-228T16:46:49Z	
ISS_LIS_SC_P0.2_20180822_NQC_09304.hdf◆	[Aug 22]	2018-234T13:14:28Z	2018-234T14:47:05Z	
ISS_LIS_SC_P0.2_20180823_NQC_09319.hdf◆	[Aug 23]	2018-235T12:23:38Z	2018-235T13:56:15Z	
ISS_LIS_SC_P0.2_20180831_NQC_09437.hdf◆	[Aug 31]	2018-243T04:04:11Z	2018-243T05:36:48Z	67

o a txt file

View flash data

Start a new search

WAY OF USE (III/V)

Enter required directories and files

website_filename: file where the names of HDF files are

WAY OF USE (IV/V)

Select Option

- 0: Exit Program
- 1: Write general event txt files
- 2: Write general event txt and plot them
- 3: Write event txt files for scilab (TO VERIFY)
- 4: Plot events in interesting time-space from HDF4 files (TO VERIFY)
- 5: Plot events in interesting time-space from .txt files
- 6: Correct GHRCs URLs and generate a new URLs txt file
- 7: Process website filenames to list of interesting URLs
- 8: Check only for interesting files and save the workspace.

WAY OF USE (V/V)

Open the Windows CMD

Execute the command

wget --user earthdata_username --ask-password --auth-no-challenge --no-check-certificate -i URLSfile_dir

This will download the HDF to the current directory

WAY OF USE (I/III)

Enter required directories and files

read_dir: where the HDF files are stored

write_dir: where to write the txt files

WAY OF USE (II/III)

Select interesting space-time domain

```
%coordinates info
deltebre=[40.7212388 0.7176492];
santamarta=[11.2403547 -74.2110227];
barranca=[7.06878 -73.744418];

%scanning_area specification
centroid=barranca; %LAT/LON (remember, on the plot, this would be y and x)
range=60*sqrt(2); %range in km
%time interval
starttime=datetime(2018,6,1,0,0,0);
endtime=datetime(2018,7,3,8,0,0);
timerange=[starttime endtime];
```

WAY OF USE (III/III)

Select Option

- 0: Exit Program
- 1: Write general event txt files
- 2: Write general event txt and plot them
- 3: Write event txt files for scilab (TO VERIFY)
- 4: Plot events in interesting time-space from HDF4 files (TO VERIFY)
- 5: Plot events in interesting time-space from .txt files
- 6: Correct GHRCs URLs and generate a new URLs txt file
- 7: Process website filenames to list of interesting URLs
- 8: Check only for interesting files and save the workspace.

"ISS_LIS_20171018_1701_1701_events" 7.8249969644140697E+08 7.8249969644140697E+08

```
|TAI93 time e lat e lon e radiance group g lat g lon flash f lat f lon area a lat a lon a observe time x pixel y pixel bg radia
7.8249969643939281E+08
                      40.598
                                        9 27 40.567
                                                       1.192 3 40.570
                                                                         1.195 3 40.570
                                                                                          1.195 97 33 124 0
7.8249969643939281E+08
                       40.609
                               1.177
                                       11 27
                                              40.567
                                                      1.192 3 40.570
                                                                        1.195 3 40.570
7.8249969643939281E+08
                       40.573
                               1.130
                                       23 27 40.567
                                                       1.192 3 40.570
                                                                         1.195 3 40.570
                       40.536
                               1.090
                                       12 27 40.567
                                                       1.192 3 40.570
                                                                        1.195 3 40.570
7.8249969643939281E+08
7.8249969643939281E+08
                       40.547
                               1.194
                                       19 27
                                              40.567
                                                       1.192 3 40.570
                                                                         1.195 3 40.570
7.8249969643939281E+08
                       40.584
                               1.233
                                       14 27
                                              40.567
                                                       1.192 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 32 126 0
7.8249969643939281E+08
                       40.595
                               1.337
                                        9 27 40.567
                                                       1.192 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 31 127 0
7.8249969643939281E+08
                       40.558
                               1.297
                                       13 27
                                              40.567
                                                       1.192 3 40.570
                                                                         1.195 3 40.570
                       40.520
                               1.257
                                       10 27 40.567
                                                       1.192 3 40.570
                                                                        1.195 3 40.570
7.8249969643939281E+08
                                                                                          1.195 97 33 127 0
7.8249969644140697E+08
                       40.609
                               1.178
                                        9 28
                                              40.570
                                                       1.220 3 40.570
                                                                         1.195 3 40.570
                                                                                          1.195 97 32 125 0
7.8249969644140697E+08
                       40.573
                               1.130
                                       21 28
                                              40.570
                                                       1.220 3 40.570
                                                                         1.195 3 40.570
                       40.535
                               1.090
                                       10 28
                                              40.570
                                                       1.220 3 40.570
                                                                        1.195 3 40.570
7.8249969644140697E+08
                       40.546
                                                       1.220 3 40.570
                       40.584
                               1.234
                                       14 28
                                              40.570
                                                       1.220 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 32 126 0
                       40.595
                               1.337
                                        9 28
                                              40.570
                                                       1.220 3 40.570
                                                                        1.195 3 40.570
7.8249969644140697E+08
                                                                                          1.195 97 31 127 0
                               1.376
7.8249969644140697E+08
                       40.633
                                        9 28
                                              40.570
                                                       1.220 3 40.570
                                                                        1.195 3 40.570
                       40.558
                               1.297
                                                       1.220 3 40.570
                                                                                          1.195 97 32 127 0
7.8249969644140697E+08
                                       13 28
                                              40.570
                                                                        1.195 3 40.570
7.8249969644140697E+08
                       40.520
                               1.257
                                       10 28
                                              40.570
                                                       1.220 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 33 127 0
7.8249969644291759E+08
                       40.572
                               1.130
                                       15 29
                                              40.565
                                                       1.204 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 33 125 0
7.8249969644291759E+08
                       40.584
                               1.234
                                       10 29
                                              40.565
                                                       1.204 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 32 126 0
7.8249969644291759E+08
                       40.546
                               1.194
                                       12 29
                                              40.565
                                                       1.204 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 33 126 0
7.8249969644291759E+08
                       40.557
                               1.297
                                       10 29
                                              40.565
                                                       1.204 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 32 127 0
7.8249969658813548E+08
                       40.567
                               1.139
                                       10 30
                                              40.542
                                                       1.203 3 40.570
                                                                         1.195 3 40.570
7.8249969658813548E+08
                       40.578
                               1.243
                                       10 30
                                              40.542
                                                       1.203 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 32 126 0
7.8249969658813548E+08
                       40.541
                               1.203
                                       20 30
                                              40.542
                                                       1.203 3 40.570
                                                                        1.195 3 40.570
7.8249969658813548E+08
                       40.503
                               1.163
                                        9 30
                                              40.542
                                                       1.203 3 40.570
                                                                         1.195 3 40.570
7.8249969658813548E+08
                       40.514
                               1.267
                                        9 30
                                              40.542
                                                       1.203 3 40.570
                                                                        1.195 3 40.570
7.8249969667758250E+08
                       40.537
                               1.209
                                              40.537
                                                       1.209 3 40.570
                                                                        1.195 3 40.570
                                        9 31
7.8249969667958140E+08
                       40.537
                               1.209
                                       11 32
                                              40.537
                                                       1.209 3 40.570
                                                                         1.195 3 40.570
7.8249969672079539E+08
                       40.573
                               1.251
                                       11 33 40.573
                                                       1.251 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 32 126 0
7.8249969676199412E+08
                       40.723
                               1.156
                                       11 34
                                              40.592
                                                       1.196 3 40.570
                                                                         1.195 3 40.570
                                       16 34
7.8249969676199412E+08
                       40.735
                               1.260
                                              40.592
                                                       1.196 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 29 124 0
7.8249969676199412E+08
                       40.697
                               1.220
                                       22 34
                                              40.592
                                                       1.196 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 30 124 0
7.8249969676199412E+08
                       40.660
                               1.173
                                       12 34
                                              40.592
                                                       1.196 3 40.570
                                                                         1.195 3 40.570
7.8249969676199412E+08
                       40.623
                               1.134
                                       13 34
                                              40.592
                                                       1.196 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 32 124 0
7.8249969676199412E+08
                       40.585
                               1.094
                                       15 34
                                              40.592
                                                       1.196 3 40.570
                                                                         1.195 3 40.570
7.8249969676199412E+08
                       40.597
                               1.198
                                       40 34
                                              40.592
                                                       1.196 3 40.570
                                                                         1.195 3 40.570
7.8249969676199412E+08
                       40.634
                               1.237
                                       12 34
                                              40.592
                                                       1.196 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 31 125 0
7.8249969676199412E+08
                       40.671
                               1.277
                                       16 34 40.592
                                                       1.196 3 40.570
                                                                         1.195 3 40.570
7.8249969676199412E+08
                       40.709
                               1.324
                                       11 34
                                              40.592
                                                       1.196 3 40.570
                                                                         1.195 3 40.570
                       40.571
                               1.254
                                              40.592
                                                       1.196 3 40.570
                                                                        1.195 3 40.570
7.8249969676199412E+08
                                       26 34
                                                                                          1.195 97 32 126 0
7.8249969676199412E+08
                       40.560
                               1.150
                                       70 34
                                              40.592
                                                       1.196 3 40.570
                                                                        1.195 3 40.570
7.8249969676199412E+08
                       40.523
                               1.110
                                       20 34
                                              40.592
                                                       1.196 3 40.570
                                                                        1.195 3 40.570
7.8249969676199412E+08
                       40.534
                               1.214
                                       55 34
                                              40.592
                                                       1.196 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 33 126 0
7.8249969676199412E+08
                       40.497
                               1.174
                                       20 34
                                              40.592
                                                       1.196 3 40.570
                                                                        1.195 3 40.570
7.8249969676199412E+08
                       40.507
                               1.278
                                       11 34
                                              40.592
                                                       1.196 3 40.570
                                                                        1.195 3 40.570
7.8249969676350474E+08
                       40.597
                               1.198
                                       14 35
                                              40.555
                                                       1.192 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 32 125 0
7.8249969676350474E+08
                       40.560
                               1.150
                                       20 35
                                              40.555
                                                       1.192 3 40.570
                                                                        1.195 3 40.570
                                                                                          1.195 97 33 125 0
7.8249969676350474E+08
                       40.571
                               1.254
                                        9 35
                                              40.555
                                                       1.192 3 40.570
                                                                         1.195 3 40.570
                                                      1.192 3 40.570
7.8249969676350474E+08
                      40.534
                               1.214
                                       15 35 40.555
                                                                        1.195 3 40.570
                                                                                          1.195 97 33 126 0
```

ISS_LIS_20171018_1701_1701_events - Llibreta

LMA vs LIS comparator

WAY OF USE (I/III)

Introduce the required directories

sources_data_file: the txt file from Oscar program

events_data_file: the txt file with LIS info, from HDF processor

LMA vs LIS comparator

WAY OF USE (II/III)

Specify timestep with "etimestep" variable 10e-3 recommended

LMA vs LIS comparator

```
WAY OF USE (III/III)
Select modes
       correcting 1/0
       toinput 1/0
       storedinput 1/0 (by "fovtime" variable)
              fovtime=[datetime(2017,10,18,17,01,25), datetime(2017,10,18,17,01,28)];
       plotting 1/0
       save_workspace 1/0
       savingcsvfile 1/0
```