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Symbol definition Dimension 

Geometry, wavelengths, others  

𝜆𝜆 Wavelength nm 

𝜃𝜃𝑠𝑠 Sun Zenith Angle  Degrees 

𝜇𝜇𝑤𝑤 Cosine of the angle of refraction of the solar beam just 
beneath the sea surface 

 

𝜂𝜂 Ratio of molecular scattering to total scattering  

   

Radiometry and Apparent Optical Properties (AOPs) 

𝑅𝑅𝑟𝑟𝑠𝑠 Remote Sensing Reflectance (above water) sr-1 

𝑟𝑟𝑟𝑟𝑠𝑠 Remote Sensing Reflectance (bellow water) sr-1 

𝐾𝐾𝑑𝑑 Attenuation coefficient for downwelling irradiance m-1 

   

Inherent Optical Properties (IOPs) 

𝑎𝑎(𝜆𝜆) Total absorption coefficient m-1 

𝑎𝑎𝑤𝑤(𝜆𝜆) Water absorption coefficient m-1 

𝑎𝑎𝑛𝑛𝑤𝑤(𝜆𝜆) Non water absorption coefficient m-1 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦(𝜆𝜆) Phytoplankton absorption coefficient m-1 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦∗ (𝜆𝜆) Phytoplankton specific absorption coefficient m2 mg-1 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐(𝜆𝜆) Colored Dissolved Matter absorption coefficient m-1 

𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆) Colored Dissolved Organic Matter absorption 
coefficient 

m-1 

𝑏𝑏𝑏𝑏(𝜆𝜆) Total backscattering coefficient m-1 

𝑏𝑏𝑏𝑏𝑝𝑝(𝜆𝜆) Water backscattering coefficient m-1 

𝑏𝑏𝑤𝑤(𝜆𝜆) Particulate backscattering coefficient m-1 

𝑆𝑆 CDOM spectral slope m-1 

𝑌𝑌 Particle backscattering slope m-1 
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1 INTRODUCTION 

1.1 Purpose and Scope 

This Algorithm Theoretical Basis Document (ATBD) is written for the Level-2 
product of aquatic Inherent Optical Properties from the Ocean and Land Colour 
Instrument (OLCI) on board of the European Commission Earth Observation 
Sentinel-3 satellite. The purpose of this document is to describe the final 
algorithm (the “two-step algorithm”) which has been selected, among others after 
an evaluation procedure, to estimate different Inherent Optical Properties (IOPs) 
from OLCI observations. 

 

1.2 Algorithm identification 

The two-step algorithm is identified under reference 
“EUM/RSP/REP/20/1160644” in the Sentinel-3 OLCI documentation. In this 
document, it will be referred to as a “two-step semi-analytical algorithm”, 2SAA. 

 

2 ALGORITHM OVERVIEW 

2.1 Objectives 

The objective is to derive several bio optical products from the spectrum of OLCI 
remote sensing reflectance, Rrs(λ). The following products can be derived from 
2SAA (bands Oa2 412.5nm and Oa3 442.5nm are abbreviated as 412 and 
443nm): 

• The diffuse attenuation coefficient for downward irradiance, Kd(λ), (in m-1) 
at 400, 412, 443, 490, 510, 560, 620, and 665 nm. 

• The non-water absorption coefficients, 𝑎𝑎𝑛𝑛𝑤𝑤 and particulate backscattering 
coefficient, 𝑏𝑏𝑏𝑏𝑝𝑝, (in m-1) at 400, 412, 443, 490, 510, 560, 620, and 665 nm. 

• The absorption by phytoplankton, aphy, and colored detrital matter, acdm at 
400, 412, 443, 490, 510, 560, 620, and 665 nm (all in m-1).  

• The absorption by colored dissolved organic matter, acdom(443) (in m-1) 

The selected products recommended for operational generation are the 
following:  

• The non-water absorption coefficient, 𝑎𝑎𝑛𝑛𝑤𝑤 (443), and particulate 
backscattering coefficient, 𝑏𝑏𝑏𝑏𝑝𝑝 (443) 

• The absorption coefficient by colored detrital matter, 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) 
• The absorption coefficient by phytoplankton, 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) 
• The absorption coefficient by colored dissolved organic matter, 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 (443) 



 
 

• The spectral slope of 𝑏𝑏𝑏𝑏𝑝𝑝(𝜆𝜆), Y 
• The vertical diffuse attenuation coefficient for downward irradiance 

at 490 nm, Kd (490) 
• Optical Water Class (OWC) 

 

Another set of parameters will be provided as measurements of uncertainty: 
• The percentage of error during the Rrs reconstruction 
• The percentage of uncertainty based of the given water class (fixed) 
• A flag addressing the possible failures during the inversion 

 

For users requiring all IOP products in all OLCI spectral bands, a SNAP 
plugin will be delivered for processing of these products from operational 
OLCI Level-2 products:  

• The non-water absorption coefficient and particulate backscattering 
coefficient at 400, 412, 443, 490, 510, 560, 620, and 665 nm. 

• The vertical diffuse attenuation coefficient for downward irradiance 
at 490 nm. 

• The absorption coefficient by phytoplankton and colored detrital 
matter at 400, 412, 443, 490, 510, 560, 620, and 665 nm. 

• The absorption by colored dissolved organic matter at 443 nm. 
 

3 ALGORITHM DESCRIPTION 

3.1 Implementation workflow 

The general workflow of the algorithm can be divided in two steps. First, 𝑎𝑎𝑛𝑛𝑤𝑤 and 
𝑏𝑏𝑏𝑏𝑝𝑝 will be estimated in the first step from the Loisel et al. (2018) algorithm.  Then, 
acdm and aphy will be estimated in the second step mainly based on the algorithm 
of Zhang et al., (2015) which has been slightly modified using optical water 
classes (OWC) (Melin and Vantrepotte, 2015). The original version of the Zhang 
et al. (2015) algorithm requires the spectral values of 𝑎𝑎𝑝𝑝ℎ𝑦𝑦∗  for three phytoplankton 
size classes (pico, nano, micro-phytoplankton), and automatically calculate the 
spectral shape of 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐, 𝑆𝑆𝑐𝑐𝑑𝑑𝑐𝑐. Two different 𝑎𝑎𝑝𝑝ℎ𝑦𝑦∗   references spectra are used in 
2SAA. If the class belongs to 15 or higher (clear waters) the algorithm uses the 
𝑎𝑎𝑝𝑝ℎ𝑦𝑦∗  provided by Bricaud et al. (2010), otherwise the algorithm uses the original 
𝑎𝑎𝑝𝑝ℎ𝑦𝑦∗  from Uitz et al. (2008), as it is used in Zhang et al. (2015).This step is 
necessary to increase the precision in extremely clear waters. The estimation of 
𝑆𝑆𝑐𝑐𝑑𝑑𝑐𝑐 was also done based on OWC. If the pixel belongs to an optically complex 
waters (class 1 and 2), the algorithm uses the full Zhang et al. (2015) optimization 
techniques, otherwise the formulation of Lee et al (2009) to estimate 𝑆𝑆𝑐𝑐𝑑𝑑𝑐𝑐 is used. 



 
 

Note that 2SSA only addresses the total phytoplankton absorption, so the 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 
for each size class is not discussed here since it was not tested. Lastly the 
algorithm also retrieve 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 in two different ways. If the class is strictly under 15, 
Zhang et al. (2015) optimization is used, otherwise 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 is estimated by 
subtracting 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐  from 𝑎𝑎𝑛𝑛𝑤𝑤. 

 
3.2 Estimation of the total absorption and backscattering coefficients 

The proposed algorithm is the “LS2” semi analytical algorithm developed by 
Loisel et al. (2018). It is the last version of the original LS1 algorithm, proposed 
in Loisel & Stramski (2000). The LS2 model was developed on the basis of 
radiative transfer simulations to enable the estimation of two IOPs, the total 
absorption, 𝑎𝑎(𝜆𝜆), and backscattering, 𝑏𝑏𝑏𝑏(𝜆𝜆), coefficients within the surface ocean, 
from the Remote Sensing Reflectance, 𝑅𝑅𝑟𝑟𝑠𝑠(𝜆𝜆) (sr-1), and the average attenuation 
coefficient for downwelling irradiance, < 𝐾𝐾𝑑𝑑 >1 (m-1). It also includes the 



 
 

correction by Raman scattering by water molecules, which can be significant for 
clear waters. 

The algorithm can be written as: 
𝑏𝑏𝑏𝑏

< 𝐾𝐾𝑑𝑑 >1
= 𝑓𝑓(𝑅𝑅𝑟𝑟𝑠𝑠) 

< 𝐾𝐾𝑑𝑑 >1

𝑎𝑎
= 𝑔𝑔(𝑅𝑅𝑟𝑟𝑠𝑠) 

where the functions f and g depend on the ratio of molecular scattering to total 
scattering, 𝜂𝜂, and sun zenith angle, 𝜃𝜃𝑠𝑠, or equivalently 
𝜇𝜇𝑤𝑤(cos(arcsin(sin(𝜃𝜃𝑠𝑠)/1.34))). η is calculated as in Loisel et al. (2018) which 
requires the chlorophyll-a concentration. 

The first equation can be rewritten as: 
𝑏𝑏𝑏𝑏 =< 𝐾𝐾𝑑𝑑 >1 [𝑏𝑏𝑏𝑏1(𝜂𝜂,𝜇𝜇𝑤𝑤)𝑅𝑅𝑟𝑟𝑠𝑠 + 𝑏𝑏𝑏𝑏2(𝜂𝜂, 𝜇𝜇𝑤𝑤)𝑅𝑅𝑟𝑟𝑠𝑠2 + 𝑏𝑏𝑏𝑏3(𝜂𝜂,𝜇𝜇𝑤𝑤)𝑅𝑅𝑟𝑟𝑠𝑠3 ] 

Where the coefficients 𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2 and 𝑏𝑏𝑏𝑏3 vary as a function of 𝜂𝜂 and 𝜇𝜇𝑤𝑤. 

In the same way: 

𝑎𝑎 =< 𝐾𝐾𝑑𝑑 >1/[𝑎𝑎1(𝜂𝜂,𝜇𝜇𝑤𝑤) + 𝑎𝑎2(𝜂𝜂,𝜇𝜇𝑤𝑤)𝑅𝑅𝑟𝑟𝑠𝑠1 + 𝑎𝑎3(𝜂𝜂,𝜇𝜇𝑤𝑤)𝑅𝑅𝑟𝑟𝑠𝑠2 + 𝑎𝑎4(𝜂𝜂,𝜇𝜇𝑤𝑤)𝑅𝑅𝑟𝑟𝑠𝑠3 ] 

Where the coefficients 𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2 and 𝑏𝑏𝑏𝑏3 vary as a function of 𝜂𝜂 and 𝜇𝜇𝑤𝑤. Specific 
values of the coefficients 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑏𝑏𝑖𝑖 are provided in a look-up-table and an 
interpolation procedure is applied to calculate these coefficients for intermediate 
values of 𝜂𝜂 and 𝜇𝜇𝑤𝑤 that are not included in the look-up table.  

 
The last parameter needed for LS2 inversion is the diffuse attenuation coefficient 
for downwelling radiance (< 𝐾𝐾𝑑𝑑 >1). The algorithm of Jamet et al. (2012) is based 
on a neural network approach which allows the estimation of < 𝐾𝐾𝑑𝑑 >1 at any 
wavelength between 412 and 670 nm from 𝑅𝑅𝑟𝑟𝑠𝑠(𝜆𝜆). For the LS2, a modified 
version of Jamet et al. (2012) was implemented, to improve the retrieval accuracy 
in very oligotrophic and turbid waters. In this case, the model calculates the ratio 
between Rrs at 490 and 555 nm and if it is lower or equal to 0.85, the neural 
networks use all Rrs values between 443 and 670 nm as input parameters. In this 
case, the neural network has two hidden layers with five neurons for each layer. 
On the other hand, if the Rrs is higher than 0.85, the neural network ignores the 
red part of the spectrum. In this case, the neural network has two hidden layers 
with four neurons for each layer. This difference for clear waters is due to the low 
signal and high signal-to-noise ratio when compared to other bands. For both 
cases, < 𝐾𝐾𝑑𝑑 >1 is estimated for all OLCI bands, and in each case, the algorithm 
architecture combines a minimal error with a minimal number of neurons. The 
neural network additionally inputs the solar geometry to allow for more accurate 
< 𝐾𝐾𝑑𝑑 >1 retrieval. 



 
 

The non-water absorption coefficient, anw(λ), and particulate backscattering, 
bbp(λ),  coefficients are estimated from a(λ) and bb(λ) for which the pure sea water 
absorption and backscattering coefficients have been removed. The aw(λ) and 
bbw(λ) values are estimated from Mason et al. (2016) and Zhang et al. (2009), 
respectively. The implementation of the Temperature and Salinity dependence of 
bbw(λ) is done following Werdell et al. (2013).  

 

The calculation of Y is done through a linear regression analysis between 
Log(bbp(λ)) and Log(λ). For that purpose, only the bbp(λ) values at 443, 490, 510 
and 560 nm are used. 

 

3.3 Water classification approach 

The optical water classes (OWC) considered are based on the work of Melin & 
Vantrepotte (2015) where they applied a classification method of waters with a 
broad range of bio optical properties. Sixteen OWC were initially defined by these 
authors in their initial paper, an additional 17th optical class has then been added 
in order to take into account the ultra-oligotrophic waters of the oceanic gyres. 
These OWC were defined by Mélin and Vantrepotte (2015) considering a training 
data set of normalized Rrs spectra (Figure 1). 

The classification then consists in calculating the class membership of a given 
Rrs spectrum to each of the 17 OWC which is defined statistically by its average 
spectrum, 𝜇𝜇 (normalized and log transformed reflectance data), and a covariance 
matrix, ∑ . 

𝑟𝑟𝑛𝑛 =
𝑅𝑅𝑟𝑟𝑠𝑠

∫ 𝑅𝑅𝑟𝑟𝑠𝑠
𝜆𝜆2
𝜆𝜆1 𝑑𝑑𝜆𝜆

 

Then, the classification method calculates the distance between the log value of 
the normalized input spectrum (x = log(𝑟𝑟𝑛𝑛)) and the given class 𝑖𝑖𝑖𝑖 using the 
squared Mahalanobis distance  ∆𝑖𝑖𝑐𝑐2 : 

∆𝑖𝑖𝑐𝑐2 (𝑥𝑥) = (𝑥𝑥 − 𝜇𝜇𝑖𝑖𝑐𝑐)𝑇𝑇� (𝑥𝑥 − 𝜇𝜇𝑖𝑖𝑐𝑐)
−1

𝑖𝑖𝑐𝑐
 

where T indicates the matrix transpose. As a first approximation, this distance 
was used to quantify the proximity between an unknown Rrs spectra 𝑥𝑥 and the Rrs 

data sets corresponding to the different optical classes defined in Mélin and 
Vantrepotte (2015), µic. It has to be compared to a theoretical threshold (∆𝑇𝑇2 ) 
provided from the Chi-square distribution which represents a given percentage of 
the data distribution for a degree of freedom corresponding to the dimension d 
(i.e. the number of wavelengths considered for testing the correspondence 



 
 

between satellite Rrs spectra and those associated with the referenced optical 
classes (Vantrepotte et al.  (2012)).  

Note that an accurate estimation of the class membership probability 
associated with an unknown spectrum (like through the fuzzy logic approach 
described in Moore et al., 2001, Mélin and Vantrepotte 2015) would provide more 
precise information, particularly useful in deriving class based inversion 
algorithms using OWCs.  



 
 

 

 

 
Figure 1: Illustration of the mean spectrum associated with the 17 OWT considered in 
the frame of this study (16 from Mélin and Vantrepotte, 2015 + 1 OWT for gyre area).  

Unclassified spectra are flagged as class -1. 

 



 
 

3.4 Estimation of the absorption by phytoplankton and colored dissolved 
organic matter 

The step 2 inversion is based on the model of Zhang et al. (2015) in which 𝑎𝑎𝑛𝑛𝑤𝑤(𝜆𝜆) 
is fractioned into 𝑎𝑎𝑝𝑝ℎ𝑦𝑦(𝜆𝜆) and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐(𝜆𝜆), where specific absorption 𝑎𝑎𝑝𝑝ℎ𝑦𝑦∗  is further 
decomposed in three size classes: micro, nano and picoplankton. For each 
phytoplankton size class, the specific absorption spectrum is assumed from Uitz 
et al. (2008). For 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 the authors assumed the specific absorption spectra 
normalized at 400 nm as wavelength-dependent exponential 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐∗ = 𝑒𝑒(−𝑆𝑆(𝜆𝜆−400)). 
Consequently,  

𝑎𝑎(𝜆𝜆) = �𝑚𝑚𝑖𝑖𝑎𝑎𝑖𝑖∗(𝜆𝜆)
𝐶𝐶

𝑖𝑖=1

 

where M is the number of constituents, 𝑎𝑎𝑖𝑖∗(𝜆𝜆) is the specific absorption of 
constituent 𝑖𝑖 at 𝜆𝜆 (eigenvector), and 𝑚𝑚𝑖𝑖 is its specific contribution (eigenvalue). 
The eigenvectors were constructed to avoid either singularity or ill-condition, 
which requires that for any given 𝑎𝑎𝑖𝑖∗ the difference to the other constituents (𝑎𝑎𝑗𝑗∗) 
is beyond a certain threshold. For this algorithm, the threshold 𝑆𝑆𝑖𝑖,𝑗𝑗 was set at 0.1 
and is calculated as follows: 

𝑆𝑆𝑖𝑖,𝑗𝑗 =
2
𝐵𝐵𝐵𝐵

� �
𝑎𝑎𝑖𝑖∗(𝜆𝜆𝑘𝑘) − 𝑎𝑎𝑗𝑗∗(𝜆𝜆𝑘𝑘)
𝑎𝑎𝑖𝑖∗(𝜆𝜆𝑘𝑘) + 𝑎𝑎𝑗𝑗∗(𝜆𝜆𝑘𝑘)

�
𝐵𝐵𝐵𝐵

𝑘𝑘=1

 

where BN stands for band number. The authors used a non-negative optimization 
scheme to obtain the absorption fractions, and this process can be done in two 
different ways based on which OWC the Rrs spectrum belongs to. First, the 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐(𝜆𝜆) slope (S) is estimated from the 𝑎𝑎𝑛𝑛𝑤𝑤 as originally done in Zhang et al. 
(2015) for OWC 1 and 2. For OWC between 3 and 17, S is directly calculated 
using a similar equation as developed in Lee et al. (2009) which has been slightly 
adapted for 2SAA : 

𝑆𝑆𝑐𝑐𝑑𝑑𝑐𝑐 = 0.019 + �
0.002

0.6 + 𝑟𝑟𝑟𝑟𝑠𝑠(443) 𝑟𝑟𝑟𝑟𝑠𝑠(560)⁄ � 

where 𝑟𝑟𝑟𝑟𝑠𝑠 is the remote sensing reflectance bellow water which is linked to Rrs as 
follows: rrs = Rrs/(0.52+1.7Rrs). 

In the second part of the algorithm, a single value decomposition (SVD) is 
used to optimize the eigenvalues and extract the corresponding fractions. The 
algorithm uses the proposed eigenvectors (specific absorption spectra) to extract 
chlorophyll-a for each size class and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 at reference wavelength. From the 
chorophyll-a and the specific absorptions spectrum, the model can 
reconstruct 𝑎𝑎𝑝𝑝ℎ𝑦𝑦. A distinct characteristic of Zhang et al. (2015) model is the use 
of a non-negative optimization, in which all the solutions are feasible. The model 



 
 

can use Rrs at any number of wavelengths as input during the optimization, and 
will give the full spectrum as output. For this optimization, the bands 412, 443, 
490 and 510 proved to be the most accurate. Lastly the algorithm reconstructs 
𝑎𝑎𝑝𝑝ℎ𝑦𝑦 in two different ways. If the class is 14 or bellow, the Zhang et al. (2015) 
optimization is used, and the 𝑎𝑎𝑝𝑝ℎ𝑦𝑦  is the sum of 𝑎𝑎𝑝𝑝ℎ𝑦𝑦  of each size class, 
otherwise 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 is estimated by subtracting 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐  from 𝑎𝑎𝑛𝑛𝑤𝑤. This procedure is 
required because of the low values of 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 in very oligotrophic waters (Bricaud et 
al. 2010), typically in gyres, and the higher sensitivity to noise in the inversion of 
of 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 compared to 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐. 

 

3.5 Estimation of the colored dissolved organic matter 

The last output generated in the proposed model is 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐(443), based on 
the algorithm described in Loisel et al. (2014). The algorithm assumes that 
𝐾𝐾𝑑𝑑(443)  is mainly driven by the absorption coefficient. So, for wavelengths in 
which the absorption by CDOM is dominant, we can describe 𝐾𝐾𝑑𝑑 as follows: 

𝐾𝐾𝑑𝑑(443) = 𝐾𝐾𝑤𝑤(443) + 𝑓𝑓�𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐(443)� + Δ𝑝𝑝(443) 

where 𝐾𝐾𝑤𝑤(443) is the diffuse attenuation coefficient for a pure sea water body, 
𝑓𝑓�𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(443)� is a function that only depends on the absorption coefficient by 
CDOM at 443 nm, and Δ𝑝𝑝(443) is the residual term accounting for impact of 
scattering and absorption of particulate matters on the 𝐾𝐾𝑑𝑑(443) values. 

The effect of particulate scattering and absorption on 𝐾𝐾𝑑𝑑(443) can be partially 
assessed using an appropriated wavelength, at which colored dissolved organic 
matter has a negligible or limited effect due to the dominating impact of pure sea 
water and particulate IOPs. In this case, the wavelength chosen is 560nm. As 
such, based on the equation previously described, a fit was constructed between 
the attenuation dominated by the effect of CDOM (𝑋𝑋) and the 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 at 443 nm. 
For this algorithm, a linear fit performed on the IOCCG in situ data set was the 
most adequate, and it can be defined as:  

𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(443) = 10[𝑎𝑎1 𝑙𝑙𝑐𝑐𝑙𝑙10(𝑋𝑋)+𝑏𝑏1] 

where a1 and b1 are equal to 0.9902 and -0.0522, respectively,  𝑋𝑋 = 𝑌𝑌 −
(Δ𝑝𝑝(443) − Δ𝑝𝑝(560)) and 𝑌𝑌 = �𝐾𝐾𝑑𝑑(443) − 𝐾𝐾𝑤𝑤(443)� − (𝐾𝐾𝑑𝑑(560) − �𝐾𝐾𝑤𝑤(560)� 

The term 𝑋𝑋 is retrieved by dividing the equation in two parts, the contribution from 
𝐾𝐾𝑑𝑑 and 𝐾𝐾𝑤𝑤 (term Y), and the contribution from Δ𝑝𝑝. The calculation of the term 𝑌𝑌 is 
done using a neural network approach based on Loisel et al. 2018 and Jamet et 
al. 2012, meanwhile the term Δ𝑝𝑝(443) − Δ𝑝𝑝(560) is calculated as follows: 

Δ𝑝𝑝(443) − Δ𝑝𝑝(560) = 10[𝑎𝑎2 𝑙𝑙𝑐𝑐𝑙𝑙10(𝑌𝑌)+𝑏𝑏2] 



 
 

where a2 and b2 are equal to 0.906 and -0.5259 respectively, and Y is the term 
estimated by the neural network. 

 

4 CRITERIA APPLIED TO CONSIDER A PIXEL VALID 

During the implementation of the algorithm, different criteria were used to 
consider the pixel valid or not. For the first step of the inversion (LS2), the 
following criteria are used, otherwise the pixel is set as flagged, and no output is 
given for 𝑎𝑎𝑛𝑛𝑤𝑤 and 𝑏𝑏𝑏𝑏𝑝𝑝: 

• The input Rrs at 443, 490, 510 and 560 nm need to be positive. 

• Retrieved Kd need to be positive for all wavelengths. 

For the Y product, the value of R2 and the Significance Level based on the value 
of R and the degrees of freedom will be provided to the user as a parameter of 
uncertainty. 

For the second step of the algorithm, the criteria are specific to the Zhang et al. 
(2015) algorithm. The optimization is done using a non-negative linear 
optimization, in which only positive values for 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) and Chlorophyll-a are 
accepted. Another criteria used during the optimization is the tolerance between 
the input 𝑎𝑎𝑛𝑛𝑤𝑤 and the reconstructed 𝑎𝑎𝑛𝑛𝑤𝑤, which was set at 1.10-4. 

Lastly, a final set of criteria is used for all the retrieved parameters. The Rrs is 
reconstructed following Werdell et al. (2013) and the thresholds are set as such: 

• -0.05<𝑏𝑏𝑏𝑏𝑝𝑝<1 

• -0.05<𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐<10 

• -0.05<𝑎𝑎𝑝𝑝ℎ𝑦𝑦<5 

• ∆𝑅𝑅𝑟𝑟𝑠𝑠<33% 

where ∆𝑅𝑅𝑟𝑟𝑠𝑠 is calculated as follows: 

∆𝑅𝑅𝑟𝑟𝑠𝑠 =
100%
𝐵𝐵𝜆𝜆

= �
�𝑅𝑅�𝑟𝑟𝑠𝑠(𝜆𝜆𝑖𝑖) − 𝑅𝑅𝑟𝑟𝑠𝑠(𝜆𝜆𝑖𝑖)�

𝑅𝑅𝑟𝑟𝑠𝑠(𝜆𝜆𝑖𝑖)

𝐵𝐵𝜆𝜆

𝑖𝑖=1

 

where 𝑅𝑅�𝑟𝑟𝑠𝑠(𝜆𝜆𝑖𝑖) is the reconstructed 𝑅𝑅𝑟𝑟𝑠𝑠 at the wavelength 𝑖𝑖, and 𝑅𝑅𝑟𝑟𝑠𝑠(𝜆𝜆𝑖𝑖) is the 
measured 𝑅𝑅𝑟𝑟𝑠𝑠 at wavelength 𝑖𝑖. The value of ∆𝑅𝑅𝑟𝑟𝑠𝑠 is provided as a standard 
product, allowing the end-user to have a certain confidence in the inversion 
process. 

A table with all the flags used in 2SAA can be seen bellow: 
 

Table 1 Specific flags for each parameter described in this section. 



 
 

Flag name Flag condition Flag output 

Rrs failure ∆𝑅𝑅𝑟𝑟𝑠𝑠>33% 1 

bbp Failure -0.05>𝑏𝑏𝑏𝑏𝑝𝑝>1 2 

acdm Failure -0.05>𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐>10 4 

aphy Failure -0.05>𝑎𝑎𝑝𝑝ℎ𝑦𝑦>5 8 

Kd Failure  Kd<0 16 
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