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1 Introductions 

The purpose of this document is to show the performance of the 2SAA IOPs-
algorithm (described in the ATBD) using different synthetic, in situ, and match-up 
data sets. While the final products will all be provided at 443 nm, this report also 
shows the performance of the model at all available bands.  

The operational IOPs are the following ones:  

• The non-water absorption coefficient, 𝑎𝑎𝑛𝑛𝑤𝑤 (443), and particulate 
backscattering coefficient, 𝑏𝑏𝑏𝑏𝑝𝑝 (443) 

• The absorption coefficient by colored dissolved organic matter, 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) 

• The absorption coefficient by phytoplankton, 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) 

• The absorption coefficient by colored dissolved organic matter, 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 (443). 

The other IOPs that will be delivered through SNAP as demonstrative products 
are:  

• The non-water absorption coefficient and particulate backscattering 
coefficient at 400, 412.5, 490, 510, 560, 620, and 665 

• The vertical attenuation coefficient for the diffuse attenuation 
coefficient for downward irradiance at 490 nm. 

• The absorption coefficient by phytoplankton at 400, 412.5, 490, 
510, 560, 620, and 665 nm. 

• The spectral slope of 𝑏𝑏𝑏𝑏𝑝𝑝(𝜆𝜆) 

Another set of parameters will be provided as measurements of uncertainty: 

• The percentage of error during the Rrs reconstruction 

• The percentage of uncertainty based of the given water class (fixed) 

• A flag addressing the possible failures during the inversion. 

Three data sets are used to evaluate the performance of the two-step algorithm 
(2SAA) to retrieve IOPs from Rrs (see ATBD). The first step used Loisel et al., 
2018) algorithm (LS2) to obtain the total absorption and backscattering 
coefficients from Rrs. The second step focusses on the estimation of the 
absorption coefficient of phytoplankton (𝑎𝑎𝑝𝑝ℎ𝑦𝑦) and colored detrital matter (𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐) 
from non-water absorption coefficient (𝑎𝑎𝑛𝑛𝑤𝑤) using a slightly modified version of 
Zhang et al., 2015. 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 is estimated from a modified version of Loisel et 
al.,2014.  
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The data sets are divided in three groups, i) synthetic, which were generated 
through radiative transfer simulations with input of synthetic IOP data, ii) in situ 
with IOPs measurements which are subject to measurements uncertainties, and 
iii) matchup, which were obtained from remote sensing images from past and 
current ocean color sensors and in situ measurements collected from 
oceanographic cruises or from bio-argo floats (only for the particulate 
backscattering coefficient, 𝑏𝑏𝑏𝑏𝑝𝑝). 

2 Description of the synthetic data sets 

The synthetic group is composed of two data sets, IOCCG and CCRR. IOCCG 
was created as part of the Ocean Colour Coordinating Group (IOCCG) Working 
Group (IOCCG, 2006) project on inverse bio-optical algorithms, where IOPs are 
mainly driven by the chlorophyll concentration. CCRR was developed in the frame 
of CoastColour Round Robin for coastal waters (Nechad et al., 2015), with a 
broader range of IOPs, in which, the IOPs may or not be driven by chlorophyll. 
As synthetic data set are free of measurement errors, it allows evaluating the 
uncertainties of the tested models, which are associated solely with the 
algorithmic formulation. 

2.1 The IOCCG data set 

The IOCCG data set covers a large range of bio-optical properties of natural 
waters (Figure 1). For example, the 𝑎𝑎𝑛𝑛𝑤𝑤  values at 443 nm, which represents a 
sum of phytoplankton, non-algal particulate and CDOM contributions, ranges 
between 0.01 and 3.17 m-1 with a median value of 0.216 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) 
values range between 0.006 and 0.42 m-1 with a median value of 0.057 m-1. The 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) values range between 0.005 and 2.75 m-1 with a median value of 
0.159 m-1. The particulate backscattering coefficient 𝑏𝑏𝑏𝑏𝑝𝑝 (443) ranges between 
0.0006 and 0.127 m-1 with a median value of 0.012 m-1. Overall 500 IOP 
scenarios were used as input to generate the IOCCG data set. For each set of 
input IOPs the simulations were made for three sun zenith angles of 0, 30, and 
60°. 
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Figure 1: Histogram of the IOPs distribution for the IOOCG synthetic data set.  

2.2 The CCRR data set 

The data set CCRR covers an even broader range, including coastal waters and 
extremely complex waters (Figure 2). The 𝑎𝑎𝑛𝑛𝑤𝑤 values at 443 nm range between 
0.01 and 22.89 m-1 with a median value of 0.32 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) values range 
between 0.005 and 1.49 m-1 with a median value of 0.1 m-1. The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) values 
range between 0.005 and 2.75 m-1 with a median value of 0.2 m-1. The particulate 
backscattering coefficient 𝑏𝑏𝑏𝑏𝑝𝑝 (550) values range between 0.00016 and 4.64 m-

1with a median value of 0.0186 m-1. Overall 5000 IOP scenarios were used as 
input to generate CCRR data set. For each set of input IOPs the simulations were 
made for three sun zenith angles of 0, 40, and 60°. 
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Figure 2: Histogram of the IOPs distribution for the CCRR synthetic data set. 

3 Description of the in situ data sets 

3.1 Open and coastal waters data set 

The in situ data set is composed of twelve different data sets gathering 
measurements collected in open, coastal, and inland waters (Table 1). The first 
seven data sets comprise in situ measurements collected in different oceanic and 
coastal environments, and span a broad range of trophic and environmental 
conditions, while the last five data sets comprise in situ measurements collected 
in inland waters (lakes and Saint Laurent river). These data sets are used to 
evaluate the model for the scenario in which in situ measurements of Rrs provide 
input to the model. In this study, the model-derived IOPs are compared with in 
situ measurements of IOPs. Thus, this assessment is subject to uncertainties in 
both the algorithmic formulation of the model and measurements of Rrs and IOPs. 
For the evaluation we separated the in situ group in 2 data sets: coastal and 
ocean waters, and inland waters. The global distribution of IOPs for each in situ 
data sets is provided in Figure 3-7. 
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Figure 3: Distribution of the in situ stations with 𝑎𝑎𝑛𝑛𝑤𝑤  measurements at 443 nm. 
Coastal and open and coastal waters in blue and lakes in red. 

 

 

Figure 4: Distribution of the in situ stations with 𝑎𝑎𝑝𝑝ℎ𝑦𝑦  measurements at 443 nm. 
Coastal and open and coastal waters in blue and lakes in red. 
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Figure 5: Distribution of the in situ stations with 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐  measurements at 443 nm. 
Coastal and open and coastal waters in blue and lakes in red. 

 
Figure 6: Distribution of the in situ stations with 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐  measurements at 412 nm. 
Coastal and open and coastal waters in blue and lakes in red. 
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Figure 7: Distribution of the in situ stations with 𝑏𝑏𝑏𝑏𝑝𝑝 measurements between 443 – 510 
nm. Coastal and open and coastal waters in blue and lakes in red. 

The LOG data set (Table 1) is mainly dominated by case 2 waters. The spatial 
distribution of this data set is described on Loisel et al., (2018) (as DS2 data set) 
and the IOPs and Rrs protocols are described in Loisel et al., (2007), Lubac et 
al., (2008) and Neukermans et al., (2012). The 𝑎𝑎𝑛𝑛𝑤𝑤  values at 443 nm range 
between 0.095 and 5.27 m-1 with a median value of 0.67 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) 
values range between 0.003 and 10.94 m-1 with a median value of 0.25 m-1. The 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) values range between 0.04 and 1.76 m-1 with a median value of 0.51 
m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (490) values range between 0.002 and 0.85 m-1 with a median value 
of 0.07 m-1. 

The Scripps data set (Table 1) comprises globally distributed data including 
polar and lower latitude regions and encompassing contrasting bio-optical 
environments that range from the clearest waters in ocean subtropical gyres to 
extremely turbid coastal waters. The spatial distribution of this data set is 
described on Loisel et al., (2018) (as DS3 data set) and the IOPs and Rrs 
protocols are described in Stramski et al., (2008) and Zheng et al., (2014). The 
𝑎𝑎𝑛𝑛𝑤𝑤  values at 443 nm ranges between 0.002 and 2.910 m-1 with a median value 
of 0.058 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) values range between 0.001 and 0.275 m-1 with a 
median value of 0.012 m-1. The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) range between 0.00045 and 2.720 m-

1 with a mean value of 0.042 m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (560) range between 0.0004 and 0.05 
m-1 with a median value of 0.0013 m-1. 

The NAAMES data set (Table 1) was collected in the scope of the NASA EV-S 
North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), with 2 
missions in the subarctic Atlantic. The project collected profiles of 𝑏𝑏𝑏𝑏𝑝𝑝, 𝑎𝑎𝑛𝑛𝑤𝑤  and 
Rrs and the full description of the protocols and the studies associated with this 
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project is listed in https://naames.larc.nasa.gov/science-publications.html. The 
𝑎𝑎𝑛𝑛𝑤𝑤  values at 443 nm ranges between 0.012 and 0.149 m-1 with a median value 
of 0.034 m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (490) values range between 0.0005 and 0.0053 m-1 with a 
median value of 0.0013 m-1. 

The BOUSSOLE data set (Table 1) was obtained from the "BOUée pour 
l'acquiSition d'une Série Optique à Long termE" (Boussole) project. The 
measurements were collected from the buoy deployed in the Ligurian Sea, and 
all the information pertaining it is described in Antoine et al., (2006). The 𝑏𝑏𝑏𝑏𝑝𝑝 (490) 
values range between 0.0005 and 0.0053 m-1 with a median value of 0.0013 m-

1. 

The PnB data set (Table 1) is composed by samples collected at eight sampling 
stations in California’s (USA) optically complex waters. The 𝑎𝑎𝑛𝑛𝑤𝑤  values at 440 nm 
ranges between 0.009 and 2.599 m-1 with a mean value of 0.45 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 
(443) values range between 0.003 and 1.8 m-1 with a mean value of 0.152 m-1. 
The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) values range between 0.004 and 1.8 m-1 with a median value of 
0.29 m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (560) values range between 0.001 and 0.007 m-1 with a median 
value of 0.002 m-1. 

The Peacetime data set (Table 1) was collected as part of the Peacetime cruise 
in the Mediterranean Sea, in which the aim of the project is to study the impact of 
the processes induced by atmospheric deposition in the air-sea interface. The 
𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) values range between 0.004 and 0.008 m-1 with a median value of 
0.008 m-1. 

The Valente data set (Table 1)  (Valente et al., 2015 and Valente et al., 2016) 
gathers data which were acquired from several sources (MOBY, BOUSSOLE, 
AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), 
between 1997 and 2012. Note that the data which are present in the previously 
described data set have been removed. The 𝑎𝑎𝑛𝑛𝑤𝑤 at 440 nm ranges between 
0.005 and 2.60 m-1 with a median value of 0.115 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) range 
between 0.002 and 1.48 m-1 with a median value of 0.043 m-1. The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) 
range between 0.003 and 1.8 m-1 with a median value of 0.06 m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (490) 
range between 0.005 and 2.6 m-1 with a median value of 0.115 m-1. 
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Figure 8: Histogram of the IOPs distribution for the open and coastal waters in situ 
data set. 
Table 1: General overview of the IOPs distribution that was used to compose the open 
and coastal waters data set. 𝑎𝑎𝑛𝑛𝑤𝑤, 𝑎𝑎𝑝𝑝ℎ𝑦𝑦, 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐  and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐  were set at 443 nm, and 
𝑏𝑏𝑏𝑏𝑝𝑝 was set at 665 nm. The terms min, median, max, std and N were used to address 
the minimum, median, maximum, standard deviation and number of samples for each 
subset of the data set.  

LOG Scripps NAAMES BOUSSOLE P&B Peacetime Valente 
𝑎𝑎𝑛𝑛𝑤𝑤_min 0.095 0.002 0.012 - 0.023 - 0.005 

𝑎𝑎𝑛𝑛𝑤𝑤_median 0.670 0.058 0.034 - 0.103 - 0.115 
𝑎𝑎𝑛𝑛𝑤𝑤_max 5.268 2.910 0.149 - 0.552 - 2.598 
𝑎𝑎𝑛𝑛𝑤𝑤_std 0.706 0.370 0.037 - 0.129 - 0.456 

N 175 151 14 0 115 0 848         
𝑏𝑏𝑏𝑏𝑝𝑝_min 0.0022 - 0.0005 0.0003 - - 0.0005 

𝑏𝑏𝑏𝑏𝑝𝑝_median 0.0709 - 0.0013 0.0012 - - 0.0033 

𝑏𝑏𝑏𝑏𝑝𝑝_max 0.8482 - 0.0053 0.0036 - - 0.0479 

𝑏𝑏𝑏𝑏𝑝𝑝_std 0.1743 - 0.0014 0.0005 - - 0.0065 
N 186 0 15 10888 0 0 235         

𝑎𝑎𝑝𝑝ℎ𝑦𝑦_min 0.003 0.001 - - 0.014 0.004 0.002 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦_median 0.249 0.012 - - 0.050 0.005 0.043 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦_max 10.942 0.275 - - 0.459 0.008 1.480 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦_std 1.766 0.049 - - 0.108 0.001 0.174 
N 49 181 0 0 111 12 937         

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 _min 0.042 0.000 - - 0.012 - 0.003 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 _median 0.511 0.042 - - 0.050 - 0.064 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 _max 1.762 2.720 - - 0.152 - 1.802 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 _std 0.458 0.387 - - 0.027 - 0.295 

N 34 153 0 0 110 0 848         
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 _min 0.014 0.000 0.004 - 0.009 - - 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 _median 0.241 0.051 0.029 - 0.071 - - 
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𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 _max 9.235 1.858 0.116 - 0.195 - - 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 _std 0.650 0.330 0.028 - 0.032 - - 

N 327 156 14 0 117 0 0 
 

 

3.2 Inland water data set 

The St-Laurence data set was collected in the St. Lawrence during two field 
missions in 2013 and 2014. The 𝑎𝑎𝑛𝑛𝑤𝑤  (443) values range between 0.29 and 4.94 
m-1 with a median value of 1.41 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) values range between 0.017 
and 0.84 m-1 with a median value of 0.24 m-1. The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) values range 
between 0.21 and 4.53 m-1 with a median value of 1.11 m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (665) values 
range between 0.0044 and 0.1987 m-1 with a median value of 0.06 m-1. 

The Great-Lakes data set (Table 2) was collected in the Great Lakes between 
2011 and 2017 with optical properties mainly driven by phytoplankton. The 
𝑎𝑎𝑛𝑛𝑤𝑤  values at 443 nm ranges between 0.047 and 2.49 m-1 with a median value of 
0.37 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) values range between 0.009 and 0.76 m-1 with a median 
value of 0.15 m-1. The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) values range between 0.02 and 1.73 m-1 with 
a mean value of 0.3 m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (665) values range between 0.0051 and 0.5347 
m-1 with a median value of 0.0486 m-1. 

The Estonian-Lakes data set (Table 2)  was collected in Estonian lakes in 2013, 
2016 and 2017. The full data acquisition procedure is described in Kutser et al., 
(2016). The 𝑎𝑎𝑛𝑛𝑤𝑤 at 440 nm ranges between 1.89 and 5.46 m-1 with a mean value 
of 3.63 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) range between 0.13 and 3.59 m-1 with a mean value 
of 1.94 m-1. The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) range between 0.93 and 2.02 m-1 with a mean value 
of 1.49 m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (665) range between 0.0286 and 0.093 m-1 with a median 
value of 0.064 m-1. 

The Netherlands-Lakes data set (Table 2)  was collected in Ijsselmeer and 
Markermeer (Netherlands) optically complex lakes, with 10 samplings stations 
visited during one field mission performed in 2015. The optical properties are 
driven by both 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐. The 𝑎𝑎𝑛𝑛𝑤𝑤 at 440 nm ranges between 1.89 and 5.46 
m-1 with a mean value of 3.63 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) range between 0.13 and 3.59 
m-1 with a mean value of 1.94 m-1. The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) range between 0.93 and 2.02 
m-1 with a mean value of 1.49 m-1. The are no measurements of 𝑏𝑏𝑏𝑏𝑝𝑝. 

Lastly, the Mamiraua-Lakes (Brazil) data set (Table 2)  was collected in four 
different lakes inside the Mamirauá Sustainable Development Reserve (MSDR) 
during the FAPESP project number 2014/23903-9, with a total of 102 sampling 
stations over the course of two years (2015 and 2016). The optical properties are 
driven by both 𝑏𝑏𝑏𝑏𝑝𝑝 and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐. The 𝑎𝑎𝑛𝑛𝑤𝑤 at 440 nm ranges between 3.15 and 8.81 
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m-1 with a median value of 4.72 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) range between 0.11 and 1.33 
m-1 with a median value of 0.66 m-1. The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) range between 2.48 and 8.18 
m-1 with a median value of 4.03 m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (510) range between 0.0438 and 
6.7 m-1 with a median value of 0.15 m-1. 

 

Figure 9: Histogram of the IOPs distribution for the inland waters in situ data set. 
Table 2: General overview of the IOPs distribution that was used to compose the 
inland water data set. 𝑎𝑎𝑛𝑛𝑤𝑤, 𝑎𝑎𝑝𝑝ℎ𝑦𝑦, 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐  and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐  were set at 443 nm, and b_bp  was 
set at 665 nm. The terms min, median, max, std and N were used to address the 
minimum, median, max, std and N were used to address the minimum, median, 
maximum, standard deviation and number of samples for each subset of the data set.  

St-
Laurence 

Great-
Lakes 

Estonian-
Lakes 

Netherlands-
Lakes 

Mamiraua-
Lakes 

𝑎𝑎𝑛𝑛𝑤𝑤_min 0.295 0.047 1.904 1.896 3.159 
𝑎𝑎𝑛𝑛𝑤𝑤_median 1.416 0.372 3.160 3.978 4.726 
𝑎𝑎𝑛𝑛𝑤𝑤_max 4.945 2.498 6.743 5.470 8.817 
𝑎𝑎𝑛𝑛𝑤𝑤_std 1.085 0.398 1.388 1.261 1.161 

N 56 121 25 9 93       
𝑏𝑏𝑏𝑏𝑝𝑝_min 0.004 0.005 0.029 - - 

𝑏𝑏𝑏𝑏𝑝𝑝_median 0.065 0.049 0.064 - - 

𝑏𝑏𝑏𝑏𝑝𝑝_max 0.199 0.535 0.094 - - 

𝑏𝑏𝑏𝑏𝑝𝑝_std 0.052 0.093 0.023 - - 
N 42 130 25 0 0       

𝑎𝑎𝑝𝑝ℎ𝑦𝑦_min 0.017 0.009 - 0.127 0.111 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦_media
n 

0.243 0.146 - 1.705 0.664 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦_max 0.836 0.762 - 3.594 1.334 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦_std 0.177 0.132 - 1.191 0.250 
N 57 121 0 10 93       

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 _min 0.211 - - 0.931 2.484 
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𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 _medi
an 

1.113 - - 1.569 4.033 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 _max 4.531 - - 2.015 8.189 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 _std 0.967 - - 0.379 1.196 

N 56 0 0 9 93       
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 _min 0.390 - 2.393 1.188 - 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 _med

ian 
1.121 - 4.443 1.271 - 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 _max 4.901 - 7.382 1.965 - 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 _std 1.016 - 1.419 0.238 - 

N 56 0 25 9 0 
 

 

4 Description of the match-up data set 

The match-up group is composed of three data sets, GlobColour (GC), MERIS-
ESA, and Bio Argo data sets. GlobColour data set was created combining the 
in situ data set presented in the last section with the merged product from 
GlobColour (http://hermes.acri.fr). For this processing, all the concurrently 
images with in situ data from either MEdium Resolution Imaging Spectrometer 
(MERIS), Moderate-Resolution Imaging Spectroradiometer (Modis), Sea-viewing 
Wide Field-of-view Sensor (SeaWiFS) or Visible Infrared Imaging Radiometer 
Suite (VIIRS) were selected, and the Rrs was extracted. For the MERIS-ESA data 
set, the Full resolution (FR - 260 x 290 m) and Reduced Resolution (RR - 1040 x 
1160 m) were used. RR is usually the product available for the end user, 
meanwhile FR are provided only under specific conditions. Bio Argo data set, was 
developed combining the 𝑏𝑏𝑏𝑏𝑝𝑝 data set collected from the Bio Argo floats over the 
globe (Claustre et al. 2010) with the OLCI concurrent images. This product was 
also developed by GlobColour. 

 

4.1 The Globcolour-merged data set 

GC IOPs are mainly representative of open ocean waters (Figure 11). The 
𝑎𝑎𝑛𝑛𝑤𝑤  values at 443 nm ranges between 0.0047 and 1.4 m-1 with a median value of 
0.12 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) values range between 0.0018 and 0.475 m-1 with a 
median value of 0.05 m-1. The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) values range between 0.0027 and 
0.822 m-1 with a median value of 0.06 m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (490) values range between 
0.0003 and 0.19 m-1 with a median value of 0.0019 m-1. The full histogram of the 
IOPs can be observed in Figure 10. 

http://hermes.acri.fr/
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Figure 10: Histogram of the IOPs distribution for the matchup data set developed by 
Glob Colour. 

 

Figure 11: Distribution of the data sets containing concomitant IOP at 443 nm and Rrs 
from the GLobColour Merge product.  

4.2 The MERIS (ESA process) data set (FR and RR) 

This data set was subdivided in two groups Full Resolution (FR) and Reduced 
Resolution (RR). The full histogram of the IOPs for the two subsets can be 
observed in Figure 12 and Figure 13 and the spatial distribution can be observed 
in Figure 14. For RR, the 𝑎𝑎𝑛𝑛𝑤𝑤  value at 443 nm ranges between 0.0153 and 3.15 
m-1 with a median value of 0.16 m-1. The 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) value range between 0.0034 
and 0.718 m-1 with a median value of 0.07 m-1. The 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) value range 
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between 0.0085 and 1.817 m-1 with a median value of 0.06 m-1. The 𝑏𝑏𝑏𝑏𝑝𝑝 (490) 
value range between 0.0001 and 0.172 m-1 with a median value of 0.002 m-1. 

 

Figure 12: Histogram of the IOPs distribution for the MERIS Reduced resolution data 
set. 

 

Figure 13: Histogram of the IOPs distribution for the MERIS Full resolution data set. 
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Figure 14: Distribution of the data sets containing concomitant any in situ IOP at 443 
nm and Rrs from the MERIS reduced resolution data set. 

 

4.3 The bio-argo data set 

The Bio- geochemical Argo data set will be used to considerably increase the number 
of match-up data set for the validation of bbp (bio-geochemical argo measures 𝑏𝑏𝑏𝑏𝑝𝑝 at 
700 nm). These data have been provided by the International Argo Program and the 
national programs that contribute to it: (http://www.argo.ucsd.edu, 
http://argo.jcommops.org). The 𝑏𝑏𝑏𝑏𝑝𝑝 ranged between 0.0001 and 0.0169 m-1, with a 
median of 0.0006. The full histogram of the IOPs can be observed in Figure 15 and the 
spatial distribution can be observed in Figure 16. 

 

Figure 15: Histogram of the 𝑏𝑏𝑏𝑏𝑝𝑝 distribution at 700 nm for the Bio Argos data set. 
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Figure 16: Distribution of the data sets containing 𝑏𝑏𝑏𝑏𝑝𝑝 at 700 nm from Bio Argos and 
valid OLCI image. 

 

5 Statistical metric used for the validation 

5.1 Statistical Indicators of model performance 

To assess model performance, we use scatterplots of model predictions and 
observations as well as quantitative statistical metrics of differences between the 
corresponding model predictions and observations. We calculated several 
statistical indicators that are typically utilized in the assessment of invers models. 
These indicators include the root-mean-square deviation, RMSDlog and RMSD, 
calculated in the logarithmic and linear space, respectively: 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑙𝑙𝑐𝑐𝑙𝑙 = �
∑ (log10 (𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑐𝑐𝑐𝑐𝑑𝑑) − (log10 (𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑐𝑐𝑏𝑏𝑠𝑠))2𝑁𝑁
𝑖𝑖=1

𝑁𝑁 − 𝑅𝑅𝐷𝐷
�
0.5

 

 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �
∑ ((𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑐𝑐𝑐𝑐𝑑𝑑) − ((𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑐𝑐𝑏𝑏𝑠𝑠))2𝑁𝑁
𝑖𝑖=1

𝑁𝑁 − 𝑅𝑅𝐷𝐷
�
0.5

 

where N is the number of data points, DF is the degrees of freedom, 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑐𝑐𝑐𝑐𝑑𝑑 is 
the model-derived value of IOP, and 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑐𝑐𝑏𝑏𝑠𝑠 is the known IOP value that was 
either measured in situ (e.g. open and coastal waters data set, lakes or matchup). 

We also report the mean bias value, MB, representing the difference between the 
means of the two data sets, i.e., untransformed model-derived data and 
corresponding untransformed measured data. MB is a component of total RMSD. 
Other indicators reported for untransformed data sets include the Pearson 
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correlation coefficient, r, the median ratio of model-derived to measured values, 
MR, which provides a non-dimensional measure of bias including its sign, the 
median absolute percent difference, MAPD, calculated as the median of the 
individual absolute percent differences between the modeled and measured data 
and the MPD, calculated as the median of the individual percent differences 
between the modeled and measured data, maintaining the sign.  

5.2 Classification 

A class based analysis was also included for the in situ data sets. For this case, 
the same statistical methodology described in section 5.1 was applied. The data 
sets were separated in 17 distinct radiometric classes, based on the Mélin & 
Vantrepotte (2015) classification (see ATBD) and the statistical parameters were 
calculated for each class. This additional step was done during the validation 
process as an additional parameter used to assess the IOPs uncertainties. For 
any given pixel on the OLCI image, the uncertainty of the IOP retrieval will be 
calculated from this process. 

 

6 Validation of IOPs 

This section will be divided based on the data sets used. The data sets were 
divided based on the sources (Synthetic, in situ or matchup). The synthetic and 
in situ data sets were used during the development and calibration of the 
algorithm, meanwhile the matchup data sets (Remote Sensing images and 
Floats) were used to assess the performance using the available platforms. From 
the 2SAA different outputs, first, the outputs from LS2 will be provided (𝑎𝑎𝑛𝑛𝑤𝑤 and 
𝑏𝑏𝑏𝑏𝑝𝑝), followed by the outputs from Zhang et al., 2015 (𝑎𝑎𝑝𝑝ℎ𝑦𝑦 and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐) and Loisel 
et al., 2014 (𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐). 

6.1 Validation over the synthetic data sets 

For both the IOCCG and CCRR data sets the model performance is consistent 
over the entire dynamic range and spectral range of the particulate backscattering 
values, with however a better performance over the IOCCG than CCRR data set 
(Figure 19, Figure 20, and Table 3, Table 4).  The retrieval accuracy is slightly 
deteriorated for points belonging to Class 1 (Figure 21). 𝑎𝑎𝑛𝑛𝑤𝑤(𝜆𝜆) (as well as 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 
and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐) is also well estimated over the whole range of variability, and especially 
in the blue part of the spectrum (Figure 17, Figure 18). The model performance 
for 𝑎𝑎𝑛𝑛𝑤𝑤(𝜆𝜆) deteriorates significantly for wavelengths of 555 and 670 nm. As 
already discussed in Loisel et al. (2018), the retrieval of 𝑎𝑎𝑛𝑛𝑤𝑤 in the green and 
mainly in the red part of the spectrum is very challenging. This result is associated 
primarily with relatively poor performance of the model in clear ocean waters 
where molecular water is the dominant absorbing component and 𝑎𝑎𝑛𝑛𝑤𝑤(𝜆𝜆) has 
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small contribution to 𝑎𝑎(𝜆𝜆) within the long-wavelength portion of the spectrum. 
Except for this part of the spectrum the retrieval of 𝑎𝑎𝑛𝑛𝑤𝑤 at other bands, and 
especially at 443 nm, is excellent. One may note a slight over-estimation of 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 
(443) for complex optical classes 1 and 2  (Figure 22, Figure 25 and  Table 3, 
Table 4). In contrast to 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443), the retrieval of 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) is excellent for both 
IOCCG and CCRR data sets (Figure 23, Figure 26 and Table 3, Table 4). The 
retrieval of 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 (412) is performed with a relatively good accuracy (MAPD of 
23%) with a slight under (over)-estimation at higher(lower) values. A shift can 
also be observed for classes >=15, in which 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 is underestimated and 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 is 
overestimated.  

Table 3: Statistic parameters obtained during the validation exercise performed on the 
IOCCG data set. RMSD is Root Mean Square Deviation, RMSD_log is Root Mean 
Square Deviation from two logarithmic distributions, MB is the Mean Bias, MR is the 
Median Ratio, MAPD is the Mean Absolute Percentage Difference and r is the 
coefficient of correlation from two logarithmic distributions.   

RMSD RMSD_log MB MR MAPD r 

𝑎𝑎𝑛𝑛𝑤𝑤 (443) 0.235 0.082 0.112 1.074 9.899 0.998 

𝑏𝑏𝑏𝑏𝑝𝑝 (443) 0.010 0.074 0.004 1.095 12.427 0.994 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) 0.118 0.206 0.028 1.32 37.049 0.955 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) 0.236 0.235 0.105 1.119 21.416 0.974 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 (443) 0.155 0.153 -0.045 1.145 23.079 0.98 

 

Table 4: Statistic parameters obtained during the validation exercise performed on the 
CCRR data set. RMSD is Root Mean Square Deviation, RMSD_log is Root Mean 
Square Deviation from two logarithmic distributions, MB is the Mean Bias, MR is the 
Median Ratio, MAPD is the Mean Absolute Percentage Difference and r is the 
coefficient of correlation from two logarithmic distributions.  

RMSD RMSD_log MB MR MAPD r 

𝑎𝑎𝑛𝑛𝑤𝑤 (443) 0.358 0.099 0.097 1.243 24.663 0.995 

𝑏𝑏𝑏𝑏𝑝𝑝 (443) 0.063 0.102 0.009 1.244 24.665 0.995 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) 0.327 0.224 0.028 0.992 29.509 0.775 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) 0.504 0.193 0.07 1.399 38.684 0.966 
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Figure 17: Distribution of the measured 𝑎𝑎𝑛𝑛𝑤𝑤  vs the estimated 𝑎𝑎𝑛𝑛𝑤𝑤  using the proposed 
algorithm for the IOCCG data set. The different colors stand for different sun zenith 
angles used as input during the simulation.  

 

Figure 18: Distribution of the measured 𝑎𝑎𝑛𝑛𝑤𝑤  vs the estimated 𝑎𝑎𝑛𝑛𝑤𝑤  using the proposed 
algorithm for the CCRR data set. The different colors stand for different sun zenith 
angles used as input during the simulation. 
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Figure 19: Distribution of the measured 𝑏𝑏𝑏𝑏𝑝𝑝 vs the estimated 𝑏𝑏𝑏𝑏𝑝𝑝 using the proposed 
algorithm for the IOCCG data set. The different colors stand for different sun zenith 
angles used as input during the simulation. 

 

Figure 20: Distribution of the measured 𝑏𝑏𝑏𝑏𝑝𝑝 vs the estimated 𝑏𝑏𝑏𝑏𝑝𝑝 using the proposed 
algorithm for the CCRR data set. The different colors stand for different sun zenith 
angles used as input during the simulation. 
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Figure 21: Distribution of the measured 𝑏𝑏𝑏𝑏𝑝𝑝 vs the estimated 𝑏𝑏𝑏𝑏𝑝𝑝 using the proposed 
algorithm for the IOCCG data set. The colors (7 different) and symbols (3 different) are 
due to the different water classes obtained during the inversion. The spectra from 
classes 1 to 17 can be observed in the ATBD. 
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Figure 22: Distribution of the measured 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 vs the estimated 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 using the proposed 
algorithm for the IOCCG data set. The different colors are due to the different water 
classes obtained during the inversion. 

 

Figure 23: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐, using the 
proposed algorithm for the IOCCG data set. The different colors and symbols are due 
to the different water classes obtained during the inversion. 
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Figure 24: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 using the 
proposed algorithm for the IOCCG data set.  

 
Figure 25: Distribution of the measured 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 vs the estimated 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 using the proposed 
algorithm for the CCRR data set. The different colors and symbols are due to the 
different water classes obtained during the inversion. 
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Figure 26: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 using the 
proposed algorithm for the CCRR data set. The different colors and symbols are due to 
the different water classes obtained during the inversion. 

6.2 Validation over the in situ data sets 

6.2.1 Open and coastal waters 

For this section, another parameter will be included, the class based statistics. It 
is important to note that not all subsets have measurements at all wavelengths, 
so we can expect a higher difference in N for each wavelength. As can be 
observed in Figure 27 and Figure 28, the accuracy is high for both 𝑎𝑎𝑛𝑛𝑤𝑤 and 𝑏𝑏𝑏𝑏𝑝𝑝, 
with a higher dispersion for the wavelengths in the red (r>0.85 at 443). Another 
aspect is the higher failure rate at 620 and 665 nm, in which the algorithm 
retrieved negative values for 𝑎𝑎𝑛𝑛𝑤𝑤, especially for clear waters, and was 
subsequently flagged as a failure. This issue, due to the strong contribution of aw 
into a at these bands, was also identified in Loisel et al., (2018). The statistic 
parameters obtained for each IOP at the reference wavelength are provided in 
Table 5. 

Table 5: Statistic parameters obtained during the validation exercise performed on the 
open and coastal waters data set. RMSD is Root Mean Square Deviation, RMSD_log 
is Root Mean Square Deviation from two logarithmic distributions, MB is the Mean 
Bias, MR is the Median Ratio, MAPD is the Mean Absolute Percentage Difference and 
r is the coefficient of correlation from two logarithmic distributions.   

RMSD RMSD_log MB MR MAPD r Slope 

𝑎𝑎𝑛𝑛𝑤𝑤 (443) 0.26 0.20 -0.0612 0.823 22.70 0.96 1.05 

𝑏𝑏𝑏𝑏𝑝𝑝 (443) 0.001 0.09 0.0002 1.09 13.26 0.85 1.11 
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𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) 0.44 0.27 -0.024 0.89 34.17 0.89 1.05 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) 0.235 0.266 -0.28 0.65 34.53 0.89 0.91 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 (443) 0.853 0.491 0.256 1.33 54.56 0.79 1.18 

 

 

Figure 27: Distribution of the measured 𝑎𝑎𝑛𝑛𝑤𝑤 vs the estimated 𝑎𝑎𝑛𝑛𝑤𝑤 using the proposed 
algorithm for the open and coastal waters data set. The different colors are due to the 
subsets used to compose the data set. 

 

Figure 28: Distribution of the measured 𝑏𝑏𝑏𝑏𝑝𝑝 vs the estimated 𝑏𝑏𝑏𝑏𝑝𝑝 using the proposed 
algorithm for the open and coastal waters data set. The different colors are due to the 
subsets used to compose the data set. 
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For the second step of the IOPs retrieval an emphasis will be given to the results 
at the nominal wavelength (443 nm) For the three IOPs, we observed high 
correlation between the estimated and measured in situ data (Figure 29, Figure 
30 and Figure 31; Table 5). 𝑏𝑏𝑏𝑏𝑝𝑝 is the best estimated parameters (MAPD=13%), 
and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (MAPD=35%), 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (MAPD=36%), and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 (MAPD=38%) are 
retrieved with nearly the same accuracy. 

 

Figure 29: Distribution of the measured 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 vs the estimated 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 using the proposed 
algorithm for the open and coastal waters data set. The different colors and symbols 
are due to the different water classes obtained during the inversion. 

 

Figure 30: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 using the 
proposed algorithm for the open and coastal waters data set. The different colors and 
symbols are due to the different water classes obtained during the inversion. 
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Figure 31: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 using the 
proposed algorithm for the open and coastal waters data set.  

 

To give an overview of the optical properties of the in situ data for each class 
used during the validation, Table 6-10, shows the minimum, maximum, median, 
standard deviation and number of samples for each class and IOP. 

 
  
Table 6: Non water absorption coefficient minimum, maximum, median, standard 
deviation and number of sampling points for each class at 443 nm. 

443 nm 𝑎𝑎𝑛𝑛𝑤𝑤 min 𝑎𝑎𝑛𝑛𝑤𝑤 median 𝑎𝑎𝑛𝑛𝑤𝑤 max 𝑎𝑎𝑛𝑛𝑤𝑤 std N 

Class 1 0,095 0,832 5,268 0,565 416 
Class 2 0,066 0,210 0,711 0,112 150 
Class 3 0,012 0,120 0,368 0,042 77 
Class 4 0,103 0,142 0,400 0,063 52 
Class 5 0,035 0,076 0,178 0,026 71 
Class 6 0,075 0,107 0,180 0,023 44 
Class 7 0,022 0,059 0,188 0,026 86 
Class 8 0,054 0,096 0,148 0,028 12 
Class 9 0,045 0,058 0,117 0,017 35 
Class 10 0,008 0,039 0,211 0,028 101 
Class 11 0,023 0,045 0,074 0,019 6 
Class 12 0,012 0,034 0,125 0,019 83 
Class 13 0,021 0,032 0,182 0,033 24 
Class 14 0,009 0,027 0,086 0,016 44 
Class 15 0,014 0,029 0,055 0,009 32 
Class 16 0,005 0,016 0,057 0,010 40 
Class 17 0,002 0,007 0,092 0,028 10 
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Table 7: Particle backscattering coefficient minimum, maximum, median, standard 
deviation and number of sampling points for each class at 443 nm. 

443 nm 𝑏𝑏𝑏𝑏𝑝𝑝 min 𝑏𝑏𝑏𝑏𝑝𝑝 median 𝑏𝑏𝑏𝑏𝑝𝑝 max 𝑏𝑏𝑏𝑏𝑝𝑝 std N 

Class 1 0,0017 0,0078 0,0546 0,0125 41 
Class 2 0,0018 0,0059 0,0148 0,0040 23 
Class 3 0,0018 0,0029 0,0078 0,0014 47 
Class 4 0,0021 0,0045 0,0147 0,0024 103 
Class 5 0,0010 0,0023 0,0047 0,0007 80 
Class 6 0,0006 0,0037 0,0047 0,0006 365 
Class 7 0,0009 0,0021 0,0040 0,0008 636 
Class 8 0,0011 0,0021 0,0036 0,0005 394 
Class 9 0,0010 0,0014 0,0034 0,0006 2069 
Class 10 0,0006 0,0014 0,0030 0,0005 1120 
Class 11 0,0009 0,0012 0,0026 0,0004 281 
Class 12 0,0006 0,0015 0,0027 0,0004 3091 
Class 13 0,0008 0,0016 0,0025 0,0003 2327 
Class 14 0,0006 0,0015 0,0021 0,0003 693 
Class 15 0,0007 0,0011 0,0015 0,0003 7 
Class 16 0,0006 0,0007 0,0011 0,0002 19 
Class 17 0,0006 0,0006 0,0006 0,0000 2 

 
 

  
Table 8: Phytoplankton absorption coefficient minimum, maximum, median, standard 
deviation and number of sampling points for each class at 443 nm. 

 443 nm 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 min 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 
median 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦 max 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 std N 

Class 1 0,012 0,287 10,942 0,730 306 
Class 2 0,006 0,093 0,381 0,059 153 
Class 3 0,004 0,047 0,128 0,029 75 
Class 4 0,019 0,053 0,144 0,033 50 
Class 5 0,004 0,027 0,094 0,019 79 
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Class 6 0,022 0,050 0,108 0,021 55 
Class 7 0,004 0,027 0,092 0,014 94 
Class 8 0,036 0,044 0,121 0,031 11 
Class 9 0,012 0,029 0,068 0,013 42 

Class 10 0,002 0,018 0,043 0,008 107 
Class 11 0,015 0,032 0,049 0,017 4 
Class 12 0,006 0,015 0,042 0,006 97 
Class 13 0,005 0,012 0,021 0,004 27 
Class 14 0,003 0,009 0,021 0,004 68 
Class 15 0,003 0,009 0,022 0,005 43 
Class 16 0,002 0,005 0,010 0,002 45 
Class 17 0,001 0,002 0,006 0,001 13 

 
 

 
Table 9: Colored detritus matter absorption coefficient minimum, maximum, median, 
standard deviation and number of sampling points for each class at 443 nm. 

443 nm 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 min 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 
median 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 max 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 std N 

Class 1 0,041 0,561 2,720 0,368 299 
Class 2 0,031 0,126 0,441 0,077 141 
Class 3 0,021 0,066 0,153 0,031 67 
Class 4 0,028 0,103 0,257 0,041 47 
Class 5 0,012 0,051 0,120 0,020 70 
Class 6 0,028 0,050 0,108 0,015 45 
Class 7 0,007 0,031 0,096 0,019 83 
Class 8 0,019 0,032 0,080 0,017 10 
Class 9 0,012 0,030 0,102 0,016 35 

Class 10 0,003 0,024 0,179 0,026 93 
Class 11 0,018 0,024 0,031 0,006 4 
Class 12 0,003 0,018 0,112 0,017 81 
Class 13 0,005 0,021 0,172 0,034 24 
Class 14 0,003 0,017 0,078 0,016 44 
Class 15 0,007 0,018 0,040 0,008 32 



44 
 

Class 16 0,003 0,011 0,052 0,010 40 
Class 17 0,000 0,005 0,086 0,026 10 

 
 

Table 10: Colored dissolved organic matter absorption coefficient minimum, maximum, 
median, standard deviation and number of sampling points for each class at 412 nm. 

412 nm 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 min 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 
median 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 max 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 std N 

Class 1 0,002 0,188 7,844 0,547 275 
Class 2 0,014 0,075 0,334 0,061 70 
Class 3 0,019 0,057 0,178 0,035 48 
Class 4 0,031 0,058 0,144 0,027 19 
Class 5 0,010 0,045 0,080 0,014 42 
Class 6 0,014 0,040 0,212 0,046 24 
Class 7 0,007 0,024 0,082 0,015 23 
Class 8 0,013 0,070 0,171 0,048 12 
Class 9 0,009 0,027 0,035 0,007 10 

Class 10 0,010 0,022 0,039 0,007 34 
Class 11 0,001 0,015 0,027 0,013 3 
Class 12 0,012 0,015 0,056 0,012 13 
Class 13 0,009 0,011 0,012 0,001 4 
Class 14 0,006 0,008 0,010 0,002 5 
Class 15 0,006 0,008 0,016 0,004 5 
Class 16 0,002 0,009 0,015 0,003 15 
Class 17 0,000 0,002 0,008 0,003 9 

 
 

6.2.2 Inland waters 

A higher uncertainty is expected for the inland waters data set, due to their 
expected higher optical complexity and to the fact that the algorithms (especially 
the second step, as well as the retrieval of Kd) were initially not developed for 
these waters (Table 11). However, the results for 𝑎𝑎𝑛𝑛𝑤𝑤 (Figure 32) and 𝑏𝑏𝑏𝑏𝑝𝑝 
(Figure 33) are in agreement with the ones obtained for the coastal and open 
ocean in situ data set. A higher dispersion was observed for 𝑏𝑏𝑏𝑏𝑝𝑝 at 443 and 510 
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nm for the Mamiraua-Lakes data set, which most likely due to the extremely high 
attenuation of those lakes, which complicates the in situ measurement of 
𝑏𝑏𝑏𝑏𝑝𝑝 (related to the pathlength correction). 

Table 11: Statistic parameters obtained during the validation exercise performed on 
the inland waters data set. RMSD is Root Mean Square Deviation, RMSD_log is Root 
Mean Square Deviation from two logarithmic distributions, MB is the Mean Bias, MR is 
the Median Ratio, MAPD is the Mean Absolute Percentage Difference and r is the 
coefficient of correlation from two logarithmic distributions. 

 
RMSD RMSD_log MB MR MAPD r Slope 

𝑎𝑎𝑛𝑛𝑤𝑤 (443) 1.43 0.29 -0.55 0.835 30.27 0.88 0.9 

𝑏𝑏𝑏𝑏𝑝𝑝 (620) 0.09 0.24 -0.02 0.813 26.32 0.89 0.92 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) 1.22 0.49 0.008 0.90 51.89 0.54 1.15 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) 0.49 0.26 -0.379 0.66 42.27 0.85 0.88 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 (443) 1.03 0.34 -0.66 0.59 41.17 0.78 0.84 

 

 

Figure 32: Distribution of the measured 𝑎𝑎𝑛𝑛𝑤𝑤 vs the estimated 𝑎𝑎𝑛𝑛𝑤𝑤 using the proposed 
algorithm for the lakes data set. The different colors are due to the subsets used to 
compose the data set. 
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Figure 33: Distribution of the measured 𝑏𝑏𝑏𝑏𝑝𝑝 vs the estimated 𝑏𝑏𝑏𝑏𝑝𝑝 using the proposed 
algorithm for the lakes data set. The different colors are due to the subsets used to 
compose the data set. 

For 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (Figure 34) and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (Figure 35) at 443 nm, the correlation coefficient 
was slightly lower (r>0.74), with an overestimation of 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 for high absorption 
values and an underestimation of 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐  under the same conditions. The highest 
MAPD values are observed for 𝑎𝑎𝑝𝑝ℎ𝑦𝑦. 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐, is estimated with a MAPD of 41%, 
and is slightly under-estimated, especially for high acdom values, a pattern which 
is not observed over the synthetic data set. (Figure 36). 

 

Figure 34: Distribution of the measured 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 vs the estimated 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 using the proposed 
algorithm for the lakes data set. The different colors are due to the different water 
classes obtained during the inversion. 
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Figure 35: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 using the 
proposed algorithm for the lakes data set. The different colors and symbols are due to 
the different water classes obtained during the inversion. 

 

Figure 36: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 using the 
proposed algorithm for the lakes data set.  

 
An overview of the in situ IOPs values for each class used during the validation 
of the algorithms for Inland waters is provided in Table 12-16. 

Table 12: Non water absorption coefficient minimum, maximum, median, standard 
deviation and number of sampling points for each class. 

443 nm  𝑎𝑎𝑛𝑛𝑤𝑤 min 𝑎𝑎𝑛𝑛𝑤𝑤 median 𝑎𝑎𝑛𝑛𝑤𝑤 max 𝑎𝑎𝑛𝑛𝑤𝑤 std N 

Class 1 0,14 2,09 8,81 2,16 275 
Class 2 0,04 0,15 0,49 0,12 29 

 
 

Table 13: Particle backscattering coefficient minimum, maximum, median, standard 
deviation and number of sampling points for each class. 
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443 nm  𝑏𝑏𝑏𝑏𝑝𝑝 min 𝑏𝑏𝑏𝑏𝑝𝑝 median 𝑏𝑏𝑏𝑏𝑝𝑝 max 𝑏𝑏𝑏𝑏𝑝𝑝 std N 

Class 1 0,005 0,069 0,535 0,089 144 
Class 2 0,005 0,009 0,092 0,017 28 

 
Table 14: Phytoplankton absorption coefficient minimum, maximum, median, standard 
deviation and number of sampling points for each class. 

443 nm   𝑎𝑎𝑝𝑝ℎ𝑦𝑦 min 𝑎𝑎𝑝𝑝ℎ𝑦𝑦  𝑎𝑎𝑝𝑝ℎ𝑦𝑦 max 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 std N 

Class 1 0,02 0,32 3,59 0,47 252 
Class 2 0,01 0,07 0,19 0,04 29 

 
 

Table 15: Colored detritus matter absorption coefficient minimum, maximum, median, 
standard deviation and number of sampling points for each class. 

443 nm  𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 min 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐  𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 max 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 std N 

Class 1 0,30 3,46 8,19 1,78 152 
Class 2 0,21 0,36 0,40 0,08 6 

 
 

Table 16: Colored dissolved organic matter absorption coefficient minimum, maximum, 
median, standard deviation and number of sampling points for each class. 

443 nm   𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 min 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 median 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 max 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 std N 

Class 1 0,24 1,14 4,58 1,02 84 
Class 2 0,20 0,29 0,36 0,05 6 

 
6.2.3 Class based analysis performance for each IOP 

A combined class based analysis was performed for the open and coastal waters 
and inland data sets (Figure 37). The 17 initial OWC were divided in four groups, 
class 1 and 2, class 3 to 9, class 10 to 14 and class 15 to 17. In the case of inland 
waters, a single group was formed since all points belong to either class 1 or 2. 
As can be observed, there are significant differences in the number of data points 
for each IOP and class, so, for classes with a lower amount of sampling points, 
or with a lower dynamic range, the statistical parameters may be biased.  In 
general, the highest variability in RMSD and RMSD_log can be observed for the 
classes 1 to 2 (optically complex waters), due to the higher magnitude of all the 
IOPs. For the MR the uncertainty is relatively similar for the classes between 3 
and 9, getting higher for the class 1 and 2 and 15 to 17 (around +- 0.5), but that 
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may be due to the higher absolute value of the IOPS for classes 1 and 2 and 
lower number of sampling points for this class. The MAPD showed a distribution 
similar to the MR, with an uncertainty under 50% in most cases. Although we can 
observe a spike in MAPD for 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 of clear waters, that is most likely 
due to the low amount of sampling points for this class. The determination 
coefficient showed a broad range of variability, having the lowest precision for the 
classes 10 to 14.
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Figure 37: Class based analysis for each IOP (colours),  class (-1 to 17) and statistical parameter selected for the lakes data set.  𝑎𝑎𝑛𝑛𝑤𝑤 is 

the non-water absorption coefficient (m-1), 𝑏𝑏𝑏𝑏𝑝𝑝 is the particulate backscattering coefficient, 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 is the phytoplankton absorption coefficient  
m-1), 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 is the colored dissolved matter absorption coefficient (m-1),  𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 is the colored dissolved organic matter absorption 

coefficient (m-1). RMSD is the root mean squared deviation, RMSD log is the root mean squared deviation from the distribution using 
logarithmic scale, MB is the mean bias, MR is the median ratio, MAPD is the mean absolute percentage difference and N (log) is the 
number of sampling points for each class (in log10 scale). For the plots with 2 axis, the second axis in blue was used to show the 𝑏𝑏𝑏𝑏𝑝𝑝 

values for that statistical parameter.
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6.3 Validation over the match-up data sets 

6.3.1 The Globcolour-merged data set 

The first matchup data set was derived from MERIS, SeaWiFS, MODIS and 
VIIRS images, in which a combined product was generated. A good agreement 
was found for 𝑎𝑎𝑛𝑛𝑤𝑤 (Figure 38), 𝑏𝑏𝑏𝑏𝑝𝑝 (Figure 39) and 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (Figure 40) at the 
reference wavelength (Table 17). The highest uncertainty is found for 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐, 
(Table 17), with an overall underestimation of 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (Figure 41). For 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 a lower 
correlation coefficient was observed (r=0.312), but that may be due to the low 
dynamic range of the in situ measurements (Figure 42 and Table 17). 

Table 17: Statistic parameters obtained during the validation exercise performed on 
the Globcolour-merged data set. RMSD is Root Mean Square Deviation, RMSD_log is 
Root Mean Square Deviation from two logarithmic distributions, MB is the Mean Bias, 
MR is the Median Ratio, MAPD is the Mean Absolute Percentage Difference and r is 
the coefficient of correlation from two logarithmic distributions. 

 
RMSD RMSD_log MB MR MAPD r Slope 

𝑎𝑎𝑛𝑛𝑤𝑤 (443) 0.165 0.209 0.008 0.921 27.85 0.888 1.14 

𝑏𝑏𝑏𝑏𝑝𝑝 (443) 0.001 0.204 0.000 1.122 26.142 0.736 0.83 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) 0.068 0.256 -0.012 0.627 38.354 0.788 0.98 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) 0.109 0.451 -0.008 1.046 52.778 0.598 1.3 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 (443) 0.360 0.342 0.055 1.168 41.510 0.312 1.57 
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Figure 38: Distribution of the measured 𝑎𝑎𝑛𝑛𝑤𝑤 vs the estimated 𝑎𝑎𝑛𝑛𝑤𝑤 using the proposed 
algorithm for the GlobColour matchup data set.  

 

Figure 39: Distribution of the measured 𝑏𝑏𝑏𝑏𝑝𝑝 vs the estimated 𝑏𝑏𝑏𝑏𝑝𝑝 using the proposed 
algorithm for the GlobColour matchup data set. 
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Figure 40: Distribution of the measured 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 vs the estimated 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 using the proposed 
algorithm for the GlobColour matchup data set. 

 

Figure 41: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 using the 
proposed algorithm for the GlobColour matchup data set. 
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Figure 42: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 using the 
proposed algorithm for the GlobColour matchup data set. 

 

6.3.2 The MERIS (ESA process) data set (FR and RR) 

The second matchup data set was build using only the MERIS FR and RR images 
provided by ESA. The validation results using the FR and RR are provided in 
Figure 43-46 and Figures 47-50, Table 18. 
Table 18: Statistic parameters obtained during the validation exercise performed on 
the MERIS (ESA process) data set. RMSD is Root Mean Square Deviation, RMSD_log 
is Root Mean Square Deviation from two logarithmic distributions, MB is the Mean 
Bias, MR is the Median Ratio, MAPD is the Mean Absolute Percentage Difference and 
r is the coefficient of correlation from two logarithmic distributions. 

 
RMSD RMSD_log MB MR MAPD r Slope 

𝑎𝑎𝑛𝑛𝑤𝑤 (443) 0.104 0.209 -0.091 0.81 36.44 0.84 1.24 

𝑏𝑏𝑏𝑏𝑝𝑝 (443) 0.0016 0.225 -0.0005 1.04 22.38 0.66 0.99 

𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) 0.059 0.359 -0.045 0.74 40.70 0.69 0.74 

𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) 0.146 0.48 0.057 2.18 117.63 0.50 2.76 
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Figure 43: Distribution of the measured 𝑎𝑎𝑛𝑛𝑤𝑤 vs the estimated 𝑎𝑎𝑛𝑛𝑤𝑤 using the proposed 
algorithm for the MERIS full resolution data set. The different colors are due to the 
subsets used to compose the data set. 

 

Figure 44: Distribution of the measured 𝑏𝑏𝑏𝑏𝑝𝑝 vs the estimated 𝑏𝑏𝑏𝑏𝑝𝑝 using the proposed 
algorithm for the MERIS full resolution data set. The different colors are due to the 
subsets used to compose the data set. 
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Figure 45: Distribution of the measured 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 vs the estimated 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 using the proposed 
algorithm for the MERIS full resolution data set. The different colors are due to the 
subsets used to compose the data set. 

 

Figure 46: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 using the 
proposed algorithm for the MERIS full resolution data set. The different colors are due 
to the subsets used to compose the data set. 

The performance of the algorithm for the retrieval of IOPs is difficult to evaluate 
based on this data set, due to the relatively low number of match-up MERIS-FR 
data points. The number of data point is however sufficient for 𝑏𝑏𝑏𝑏𝑝𝑝, showing an 
excellent agreement between estimated and measured 𝑏𝑏𝑏𝑏𝑝𝑝 values. For instance, 
the MAPD, MR, and MB values are 22.38%, 1.0038, and -0.0005, respectively. 
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In contrast to MERIS-FR, the MERIS-RR match-up data points is composed by 
a much higher number of data points allowing the performance of the model to 
be evaluated. The non-water absorption coefficient, 𝑎𝑎𝑛𝑛𝑤𝑤 at 443 nm, is estimated 
with an excellent accuracy (Figure 47,Table 18). An excellent retrieval accuracy 
is also observed for 𝑏𝑏𝑏𝑏𝑝𝑝, except for some data points belonging to P&B (Yellow 
dots in Figure 48). Meanwhile, a bias was identified for 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (Figure 50), with an 
overestimation for high absorption and an underestimation for lower absorption. 
Overall, 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 was underestimated in most cases (Figure 49). 

 

Figure 47: Distribution of the measured 𝑎𝑎𝑛𝑛𝑤𝑤 vs the estimated 𝑎𝑎𝑛𝑛𝑤𝑤 using the proposed 
algorithm for the MERIS reduced resolution data set. The different colors are due to the 
subsets used to compose the data set. 



58 
 

 

Figure 48: Distribution of the measured 𝑏𝑏𝑏𝑏𝑝𝑝 vs the estimated 𝑏𝑏𝑏𝑏𝑝𝑝 using the proposed 
algorithm for the MERIS reduced resolution data set. The different colors are due to the 
subsets used to compose the data set. 

 

Figure 49: Distribution of the measured 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 vs the estimated 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 using the proposed 
algorithm for the MERIS reduced resolution data set. The different colors are due to the 
subsets used to compose the data set. 
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Figure 50: Distribution of the measured 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 vs the estimated 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 using the 
proposed algorithm for the MERIS reduced resolution data set. The different colors are 
due to the subsets used to compose the data set. 

 

6.3.3 The Bio-geochemical argo data set 

The Bioargo data set is composed of 𝑏𝑏𝑏𝑏𝑝𝑝 in situ measurements performed at 700 
nm. Meanwhile the 𝑏𝑏𝑏𝑏𝑝𝑝  was estimated at 4 OLCI bands to calculate the bbp 
spectral slope, Y (the 400 and 412 bands are not taken into account to limit the 
effect of absorption on the bbp inversion, and the red band is not considered 
because of the large uncertainty in the bbp retrieval at this band in oligotrophic 
waters). To extrapolate the satellite 𝑏𝑏𝑏𝑏𝑝𝑝 values estimated at 443 nm to 700 nm, a 
linear regression was made between 𝑏𝑏𝑏𝑏𝑝𝑝(443) estimated at 443 nm using the 
calculated bbp spectral slope. The exact wavelengths and structure of the variable 
used during this linear regression can be seen bellow: 

𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙10� 𝑏𝑏𝑏𝑏𝑝𝑝(443),  𝑏𝑏𝑏𝑏𝑝𝑝(490),  𝑏𝑏𝑏𝑏𝑝𝑝(510),  𝑏𝑏𝑏𝑏𝑝𝑝(560)� 

𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑙𝑙10 ��
443
443

� , �
490
443

� , �
510
443

� , �
560
443

�� 

 

 Then, the 𝑏𝑏𝑏𝑏𝑝𝑝 at 700 nm was calculated as follows: 

𝑏𝑏𝑏𝑏𝑝𝑝(700) = 𝑏𝑏𝑏𝑏𝑝𝑝 �
443
700

�
𝑌𝑌
 

Where 𝑌𝑌 is the slope of the linear regression between 𝑥𝑥 and 𝑦𝑦 where 𝑥𝑥  represents 
the bbp estimated from the satellite Rrs. 
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 As can be observed in the figure bellow (Figure 51), there is a good agreement 
between the measured and modelled data, with a more significant scatter around 
the 1:1 line in oligotrophic waters.  

(a) 

 

(b) 

 

Figure 51: (a) Histograms of the distribution of the 𝑏𝑏𝑏𝑏𝑝𝑝 (700 nm) measured by the Bio 
Argos floats and estimated by the 2SAA inversion. (b) Distribution of the measured 𝑏𝑏𝑏𝑏𝑝𝑝 
vs the estimated 𝑏𝑏𝑏𝑏𝑝𝑝 using the proposed algorithm for the Bio-geochemical Argos.  

 

Another aspect tested for this data set is the magnitude of Y in comparison to the 
standard Y product (Lee et al., 2002) used for most ocean colour algorithms 
(Figure 52). As can be seen, although most of the values are saturated at 2 for 
the standard algorithm, this behavior was not observed for 2SAA.  
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Figure 52: Distribution of the Y 𝑏𝑏𝑏𝑏𝑝𝑝 estimated using the proposed algorithm by 2SAA 
vs the Y 𝑏𝑏𝑏𝑏𝑝𝑝 estimated using Lee et al., (2002) for the BioArgos data set. 

 
7 Application to remote sensing images 

7.1 Level 3 Images - OLCI & VIIRS 

As an example of the algorithm performance on remote sensing images, we 
selected one monthly L3 Rrs image (May 2018). We also used 3 different products 
to evaluate the discrepancies between them. The products were: 1) Generalized 
Inherent Optical Property (GIOP) for the VIIRS image (provided by NASA); 2) 
Garver-Siegel-Maritorena (GSM) for the OLCI image (provided by Glob Colour); 
3) GIOP for the OLCI image (provided by LOG). 

For 𝑎𝑎𝑛𝑛𝑤𝑤 we can see a high agreement with all the products, except for extremely 
clear waters (MAPD<40% in general). The highest correlation was found between 
2SAA and GIOP provided by LOG (Figure 55). The difference when you compare 
2SAA results against GIOP provided by NASA (Figure 53) and LOG (Figure 55) 
are probably due to the differences in sensor (OLCI vs VIIRS) and atmospheric 
correction protocols. When comparing the density plots of 2SAA against GSM 
OLCI (Figure 54) and GIOP VIIRS (Figure 55), it is possible to identify a plateau 
at 0.01 m-1, in which the algorithm can’t successfully retrieve any absorption 
bellow this magnitude. Meanwhile for 2SAA, a saturation wasn’t observed at any 
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given magnitude. This differences can be clearly observed near the gyres, in 
which MAPD can identify a difference of over 100% 

 

Figure 53: Comparison of the 𝑎𝑎𝑛𝑛𝑤𝑤 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑎𝑎𝑛𝑛𝑤𝑤 (443) estimated by GIOP for 
VIIRS and provided by NASA (top right). On the bottom left the MAPD between the two 
products. On the bottom right, the density plot of the two images.   

 

Figure 54: Comparison of the 𝑎𝑎𝑛𝑛𝑤𝑤 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑎𝑎𝑛𝑛𝑤𝑤 (443) estimated by GSM for 
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OLCI and provided by GlobColour (top right). On the bottom left the MAPD between 
the two products. On the bottom right, the density plot of the two images.   
 

 

 

Figure 55: Comparison of the 𝑎𝑎𝑛𝑛𝑤𝑤 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑎𝑎𝑛𝑛𝑤𝑤 (443) estimated by GIOP for 
OLCI and provided by LOG (top right). On the bottom left the MAPD between the two 
products. On the bottom right, the density plot of the two images.   

For 𝑏𝑏𝑏𝑏𝑝𝑝, a higher difference was observed among the different products, 
especially in the gyres, an area in which 𝑏𝑏𝑏𝑏𝑝𝑝 uncertainty is higher. The highest 
agreement was observed between 2SAA and GSM-GC (Figure 57), followed by 
GIOP provided by LOG (Figure 58) and GIOP provided by NASA (Figure 56). 
This over-estimation of bbp observed over clear waters by GIOP and GSM (also 
from QAA, not shown) is certainly due to the formulation used in these different 
model for the bbp spectral slope, which quickly saturates, in contrast to the one 
calculated by 2SAA (see Figure 59).  



64 
 

 

Figure 56: Comparison of the 𝑏𝑏𝑏𝑏𝑝𝑝 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑏𝑏𝑏𝑏𝑝𝑝 (443) estimated by GIOP for 
VIIRS and provided by NASA (top right). On the bottom left the MAPD between the two 
products. On the bottom right, the density plot of the two images.  

 

Figure 57: Comparison of the 𝑏𝑏𝑏𝑏𝑝𝑝 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑏𝑏𝑏𝑏𝑝𝑝 (443) estimated by GSM for OLCI 
and provided by GlobColour (top right). On the bottom left the MAPD between the two 
products. On the bottom right, the density plot of the two images. 
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Figure 58: Comparison of the 𝑏𝑏𝑏𝑏𝑝𝑝 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑏𝑏𝑏𝑏𝑝𝑝 (443) estimated by GIOP for 
OLCI and provided by LOG (top right). On the bottom left the MAPD between the two 
products. On the bottom right, the density plot of the two images. 

 

To show the differences in 𝑌𝑌𝑏𝑏𝑏𝑏𝑝𝑝 estimated by different methodologies, Figure 59 
show the 𝑌𝑌𝑏𝑏𝑏𝑏𝑝𝑝 using 2SAA, Lee et al., (2002) and Morel & Maritorena (2001). The 
first clear difference is the dynamic range for each algorithm. For 2SAA, the 
magnitude is distributed between 0 and 3, with a shape similar to a normal 
distribution peaking at 1 and 1.5. Meanwhile, for the other 2 algorithms, there is 
a clear saturation. For Lee et al., (2002) the distribution follow an exponential 
curve peaking at 2, while for Morel & Maritorena (2001) the algorithm saturate at 
0.8. Considering the differences in the optical properties of the particles over the 
globe, a difference in 𝑌𝑌𝑏𝑏𝑏𝑏𝑝𝑝 is expected over different water masses. 
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Figure 59: Comparison of the  𝑌𝑌𝑏𝑏𝑏𝑏𝑝𝑝estimated using three different methodologies for one OLCI monthly image. In the first line the global 
Ybbp is displayed, and in the second line the correspondent histogram is displayed. 𝑌𝑌𝑏𝑏𝑏𝑏𝑝𝑝 3456 was calculated using the bands between 
443 and 560nm. 𝑌𝑌𝑏𝑏𝑏𝑏𝑝𝑝 QAA was calculated following Let et al., 2002.  𝑌𝑌𝑏𝑏𝑏𝑏𝑝𝑝 Morel and Maritorena, 2001 was calculated following the 
corresponding study and used the Chl-a calculated from Zhang et al., 2015.
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For 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (Figure 60, Figure 61 and Figure 62) and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (Figure 63, Figure 64, 
and Figure 65) the biggest difference between the algorithms is in the Pacific 
(near the gyres), in which it is possible to see the impact of 𝑎𝑎𝑛𝑛𝑤𝑤 in the retrieval of 
𝑎𝑎𝑝𝑝ℎ𝑦𝑦 and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐. Zhang et al., 2015 retrieved lower values for 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 for all the Pacific 
and near the gyres, meanwhile for 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 the behavior is the also similar, with a 
lower retrieval value close to the gyres. This difference is expected, due to the 
lower𝑎𝑎𝑛𝑛𝑤𝑤 retrieved values by 2SAA. 

 

Figure 60: Comparison of the 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) estimated by GIOP for 
VIIRS and provided by NASA (top right). On the bottom left the MAPD between the two 
products. On the bottom right, the density plot of the two images. 
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Figure 61: Comparison of the 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) estimated by GSM for 
OLCI and provided by GlobColour (top right). On the bottom left the MAPD between 
the two products. On the bottom right, the density plot of the two images. 

 

Figure 62: Comparison of the 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 (443) estimated by GIOP for 
OLCI and provided by LOG (top right). On the bottom left the MAPD between the two 
products. On the bottom right, the density plot of the two images. 
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Figure 63: Comparison of the 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) estimated by GIOP for 
VIIRS and provided by NASA (top right). On the bottom left the MAPD between the two 
products. On the bottom right, the density plot of the two images. 

 

Figure 64: Comparison of the 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) estimated by GSM for 
OLCI and provided by GlobColour (top right). On the bottom left the MAPD between 
the two products. On the bottom right, the density plot of the two images. 
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Figure 65: Comparison of the 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) estimated using the proposed algorithm for 
OLCI (top left) for one monthly image against the 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 (443) estimated by GIOP for 
OLCI and provided by LOG (top right). On the bottom left the MAPD between the two 
products. On the bottom right, the density plot of the two images. 

Lastly, in Figure 66 we can observe the retrieval flag used in this algorithm. It is 
clear that the algorithm has a high retrieval percentage, and could retrieve all the 
IOPs for this image. 

 

Figure 66 Retrieved flag for each IOP parameter estimated during the inversion 
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8 Sensitivity analysis in the algorithm due to uncertainty in 𝒂𝒂𝒏𝒏𝒏𝒏 

We examine here from the in situ data set how the uncertainty in anw is 
propagated throughout the second step of the algorithm.  

For the uncertainty propagation, the noise added to the 𝑎𝑎𝑛𝑛𝑤𝑤 was estimate using 
equation 1.  

𝑎𝑎𝑛𝑛𝑤𝑤∗ (𝐵𝐵𝑛𝑛) = 𝑎𝑎𝑛𝑛𝑤𝑤(𝐵𝐵𝑛𝑛) ± 𝑎𝑎𝑛𝑛𝑤𝑤(𝐵𝐵𝑛𝑛) 𝑟𝑟𝑟𝑟𝑟𝑟(0,1) 𝑁𝑁𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁 

Where 𝑎𝑎𝑛𝑛𝑤𝑤∗  is 𝑎𝑎𝑛𝑛𝑤𝑤 with the addition of the noise, 𝐵𝐵𝑛𝑛 is the band number, 𝑟𝑟𝑟𝑟𝑟𝑟(0,1) 
is a standard normal random distribution with mean 0 and standard deviation 1, 
and noise is the uncertainty in 𝑎𝑎𝑛𝑛𝑤𝑤 (between 0 and 1). For each OLCI band, one 
hundred random values were generated using a standard normal distribution 
(Total of 800 per spectrum). The same values in 𝑟𝑟𝑟𝑟𝑟𝑟(0,1) were used for all the 
spectra, so that all the variability in 𝑎𝑎𝑛𝑛𝑤𝑤∗  is due to the changes in 𝑟𝑟𝑟𝑟𝑟𝑟(0,1). For the 
𝑁𝑁𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁 values, we assumed different scenarios between 0 and 100%. In Figure 
67 we can see the expected impact of the uncertainty in 𝑎𝑎𝑛𝑛𝑤𝑤  for 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 and 
𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 estimation with an uncertainty of 0%,1%, 5%, 10% and 20%. 

 

Figure 67: Noise propagation during the Zhang et al., 2015 algorithm under different 
conditions for 𝑎𝑎𝑛𝑛𝑤𝑤 uncertainty. The uncertainties are 0%,1%, 5%, 10% and 20%. 

It is clear that as we increase the uncertainty in 𝑎𝑎𝑛𝑛𝑤𝑤, the uncertainty is propagated 
throughout the inversion algorithm, resulting in a higher dispersion. This can be 
observed by comparing the black dots dispersion between each figure, and by 
the increase in the MAPD value as we increase the uncertainty. 

The direct impact on the MAPD was also calculated by setting an uncertainty of 
0%,5%, 10%, 20%, 40%, 60%, 80% and 100%, and normalizing the MAPD by 
the MAPD on the 0% scenario. In Figure 68 we can see the results of the 
simulation, in which we identified a higher impact of the 𝑎𝑎𝑛𝑛𝑤𝑤 uncertainty in the 
𝑎𝑎𝑝𝑝ℎ𝑦𝑦 retrieval than for acdm. Another aspect is that the MAPD doesn’t increase 
linearly with the uncertainty in 𝑎𝑎𝑛𝑛𝑤𝑤. While the impact on 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 was relatively close 
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to the 1:1 line, the impact on 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 was almost 2 times higher. So, the propagation 
of the uncertainty in Rrs estimatives during the first step of the 2SAA inversion 
may induce have a negative impact in the retrieval of 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐 and 𝑎𝑎𝑝𝑝ℎ𝑦𝑦. 

 

Figure 68: Normalized MAPD for 𝑎𝑎𝑝𝑝ℎ𝑦𝑦 and 𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐  under different uncertainties (Noise) 
for 𝑎𝑎𝑛𝑛𝑤𝑤. The uncertainties described are: 0%,5%, 10%, 20%, 40%, 60%, 80% and 
100%. 

 

9 Conclusions and perspectives 

In general, the IOPs are estimated with a relatively good accuracy over inland, 
open and coastal waters. For instance, using the in situ data set which is 
impacted by Rrs and IOPs errors measurements, bbp(443), aphy(443), acdm(443), 
and acdom(443) are estimated with a MAPD of 13.26%, 34.17%, 34.53% and 
54.56% over open and coastal waters, respectively. Over inland waters, bbp(620), 
aphy(443), acdm(443), and acdom(443) are estimated with a MAPD of 26.32%, 
51.89%, 42.27% and 41.17%, respectively. Note that bbp MAPD was estimated 
at 620 nm due to the abnormal behavior of the 2SAA model over Amazon lakes 
in Brazil (most likely due to some measurement issues due to pathlength 
correction). More in situ data should be collected in inland waters to increase the 
IOPs validation range. Match-up exercise for inland waters has not been provided 
due to the rough spatial resolution of the sensors. Using classification in the 
inversion process allowed to improve the inversion of aphy and acdm in clear 
oceanic waters. From the classification method adopted in this study, it is 
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important to note that a precise estimation of the class membership probability 
associated with an unknown spectrum (fuzzy logic approach described in Moore 
et al., 2001, Mélin and Vantrepotte 2015) would provide more precise information, 
particularly useful in the objective to use OWCs for deriving class based inversion 
algorithms.  

The inter-comparison between OLCI and VIIRS IOPs products are, by essence, 
impacted by the different Rrs values. It should therefore be necessary to apply 
2SAA to Rrs-VIIRS data to complete this inter-comparison exercise.   

In general, the 2SAA was robust when compared to the two available products 
tested during the validation (GIOP and GSM). It displayed a higher dynamic 
range, especially for extremely clear waters, where those 2 algorithms show 
saturation patterns for all IOPs, most likely due to the bbp spectral behavior 
adopted in these two later models. Sensitivity analysis should be performed to 
implement the calculation for 𝑏𝑏𝑏𝑏𝑝𝑝, and consequently 𝑌𝑌𝑏𝑏𝑏𝑏𝑝𝑝, by 2SAA in the 
GIOP/GSM algorithm to estimate the two absorption parameters. Further 
performance validation should be made to check whether this change is 
significant or not. 
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