

Validation of Copernicus SLSTR SSTs with HRSST drifters

Gary Corlett, Anne O'Carroll, Igor Tomazic 35th DBCP Session: S&T Workshop

Conclusions

- HRSST drifters (TRUSTED and non-TRUSTED) evaluated using SLSTR for February 2019 to September 2019
- Preliminary results show
 - TRUSTED drifters compare very well with heritage platforms (analogue sensor)
 - No notable difference between analogue and digital sensor results (TRUSTED)
- In general, the quality of the drifting buoy network is much improved in 2019 compared to previous
- Future work
 - Include more TRUSTED matchups
 - Include depth (pressure) provided with TRUSTED measurements
 - Look in more detail at other drifter manufacturers

Copernicus Sentinel 3: SLSTR

- The first Sea and Land Surface Temperature Radiometer (SLSTR) was launched on Sentinel 3A on 16th February 2016.
- S3B launched on 26 April 2018
- Dual-view selfcalibrating radiometer following the ATSR class of sensors

Nominal Channel Centre	Primary Application
S7: 3.7 μm	SST Retrieval
S8: 11 μm	SST/LST Retrieval
S9: 12 μm	SST/LST Retrieval

• SST Retrievals by radiative transfer modelling of the form:

$$a_0 + \sum_{1}^{n} a_n BT_n$$

where n is the number of channels

For SLSTR we use 2 channels during day and 3 during night

•

- 3.7 µm not used during day owing to solar contamination
- We have two views, so we have four SST retrievals in total

Methodology... the validation uncertainty budget

$$\sigma_{Total} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2 + \sigma_5^2}$$

- Satellite (σ₁)
 - Varies pixel by pixel
- Reference (σ_2)
 - Generally unknown; Estimate of O(0.1 K) for GTMBA moorings and radiometers; O(0.2 K) for drifters; negligible for Argo
- Geophysical: spatial surface (σ_3)
 - Systematic for single match-up; pseudo-random for large dataset
 - Can be reduced through pixel averaging (e.g. sample 11 by 11 instead of 1 by 1)
 - Includes uncertainty in geolocation (may be systematic even for large numbers)
- Geophysical: spatial depth (σ_4)
 - Systematic for single match-up for different depths; pseudorandom for large dataset at different depths (with diurnal & skin model)
- Geophysical: temporal (σ₅)
 - Systematic for single match-up; may be reduced for large dataset (if match-up window small enough)
 - Can be reduced with diurnal & skin model

Fairall et al.1996; Kantha and Clayson 1994

Results

- Match-up results are shown on the subsequent slides
- Results are shown for TRUSTED and non-TRUSTED drifters (in similar spatial and temporal location)

Four types of results

- Dependence of differences
 - Day time results in red, night time in blue (2-channel) and green (3-channel); single view in dashed line dual-view in solid line
- Spatial variability of differences
 - N2 (daytime), N3 (nighttime), D2 (daytime), D3 (nighttime)
- Histograms of differences
 - N2 (daytime), N3 (nighttime), D2 (daytime), D3 (nighttime)
- Uncertainty validation

TRUSTED

Sea Surface Temperature Validation Results

This page contains analysis results from the EUMETSAT Felyx Matchup Databases.

● EUMETSAT SLSTR-A ○ EUMETSAT SLSTR-B ○ OSI-SAF METOP-B AVHRR ○ OSI-SAF METOP-B IASI

● WCT ○ WST

● dependence ○ spatial ○ histogram/uncertainty

e X 5 **⊡** X P

^ 🍐 📾 🕎 ଏ× 🛄 20/09/2019

Non-TRUSTED

📲 🔎 🛱 🔚 🥭 🥃 🔣 💁 🔀 😰

ヘ 🍝 🕾 🖫 ጚ× ENG 16:04 🖓

🥐 EUMETSAT

(opernicus

TRUSTED

Sea Surface Temperature Validation Results

This page contains analysis results from the EUMETSAT Felyx Matchup Databases.

● EUMETSAT SLSTR-A ○ EUMETSAT SLSTR-B ○ OSI-SAF METOP-B AVHRR ○ OSI-SAF METOP-B IASI

●WCT ○WST

🔳 🔎 🛱 📄 🧲 🤤 🔣 🔯 🔀 😰

へ 🍐 📾 🖫 ಛ× ENG 16:14 🖓

Non-TRUSTED

Sea Surface Temperature Validation Results

This page contains analysis results from the EUMETSAT Felyx Matchup Databases.

● EUMETSAT SLSTR-A ○ EUMETSAT SLSTR-B ○ OSI-SAF METOP-B AVHRR ○ OSI-SAF METOP-B IASI

●WCT ○WST

📲 A 時 🚍 🩋 🤮 🔣 💁 🗙 😰

へ 🍐 🗁 🖫 む× ENG 16:04 🖓

TRUSTED

Sea Surface Temperature Validation Results

This page contains analysis results from the EUMETSAT Felyx Matchup Databases.

● EUMETSAT SLSTR-A ○ EUMETSAT SLSTR-B ○ OSI-SAF METOP-B AVHRR ○ OSI-SAF METOP-B IASI

● WCT ○ WST

○ dependence ○ spatial ● histogram/uncertainty

● drifters ○ Argo ○ moorings ○ radiometer ○ saildrone

● skin vs. depth \bigcirc skin vs. skin \bigcirc 'OSTIA' vs. depth \bigcirc QL = all \bigcirc QL = 2 \bigcirc QL = 3 \bigcirc QL = 4 \bigcirc QL = 5

Apply SSES

📲 P Ħ 🚍 健 🤮 🔣 🧟 🔯 🔀

へ 🌰 🖙 🖓 d× 🛛 🖓 16:15

Non-TRUSTED

Sea Surface Temperature Validation Results

This page contains analysis results from the EUMETSAT Felyx Matchup Databases.

● EUMETSAT SLSTR-A ○ EUMETSAT SLSTR-B ○ OSI-SAF METOP-B AVHRR ○ OSI-SAF METOP-B IASI

● WCT ○ WST

○ dependence ○ spatial ● histogram/uncertainty

● drifters ○ Argo ○ moorings ○ radiometer ○ saildrone

● skin vs. depth ○ skin vs. skin ○ 'OSTIA' vs. depth \bigcirc QL = all \bigcirc QL = 2 \bigcirc QL = 3 \bigcirc QL = 4 O QL = 5

Apply SSES

-4.0

e X 5 **⊡** X Ξi PB

ENG 16:05 ^ 🍐 🔄 🎞 ឋ× 20/09/2019

EUMETSAT

opernicus

Conclusions

- HRSST drifters (TRUSTED and non-TRUSTED) evaluated using SLSTR for February 2019 to September 2019
- Preliminary results show
 - TRUSTED drifters compare very well with heritage platforms (analogue sensor)
 - No notable difference between analogue and digital sensor results (TRUSTED)
- In general, the quality of the drifting buoy network is much improved in 2019 compared to previous
- Future work
 - Include more TRUSTED matchups
 - Include depth (pressure) provided with TRUSTED measurements
 - Look in more detail at other drifter manufacturers

