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1 Introduction 

This Technical Memorandum presents the results of the “GRAS Level 1 Validation” 
study started by EUMETSAT with the Met Office in March 2003. The objectives of this 
study were to define a prototype algorithm for operational validation of the GRAS level 
1 products, produce a prototype software package to test the algorithm, and demostrate 
the validation results. The study was completed in July 2004. The results of the study 
were used to produce the GRAS Calibration and Validation Plan for the operational 
validation of the GRAS level 1b data products (EUM, 2004). 

One of the main interests in the “GRAS Level 1 validation study” was to assess whether 
it would be feasible to use 1D-Var retrieval to validate the bending angle profiles mea­
sured by the GRAS instrument. Because it was also considered important to verify 
the assessment with real RO data, a prototype 1D-Var software tool was developed as 
part of the study. This prototype was used to validate data from the CHAMP satellite 
mission. The validation study also indetified other possible validation methods (e.g. 
analysis of noise levels, direct intercomparisons) for GRAS products. The objective 
was to address a large number of methods without immediately screening out appar­
ently difficult, expensive, or otherwise inconvenient techniques or data sources. The 
basis for later selection of the most promising methods is provided in the discussion in 
the memorandum. Finally, the study defined an overall approach for the GRAS level 
1b product validation. 

Section 2 this memorandum outlines the potential use of 1D-Var for the validation of 
Gras level 1b measurements. This section starts with a short introduction into the 1D­
Var retrieval. However, the main purpose of this section is to describe the “diagnostics” 
provided by 1D-Var that are used in the product validation. This section also contains 
some discussion about the practical use of 1D-Var in data quality control and a concise 
description of the implementation of 1D-Var for RO bending angles. The main benefits 
of the 1D-Var retrieval in validation are: 

•	 1D-Var provides mathematically well defined “diagnostics” for identification of 
potential measurement or data processing errors; 

•	 1D-Var can be made fully automatic for operational use; 

•	 Global NWP background allows validation of every GRAS measurement and 
rapid generation of validation statistics; 

•	 1D-Var allows verification of the GRAS product error characteristics; 

•	 1D-Var generates geophysical products that can be used in intercomparison with 
other measurement data. 

The overall GRAS level 1b validation validation strategy outlined in Section 3 contains 
a stepwise approach for the validation activities during the pre-launch, commissioning, 
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and operations phases of the mission. A key to successful validation is to establish a 
traceability chain for the data that is to be validated. In the case of GRAS, this means 
tracing the error characteristics from all elements of the GRAS measurement system 
to the level 1b products. Similar traceability must be established to the geophysical 
products if they are to be used in the validation (e.g. intercomparison with other remote 
sensing data). During the pre–launch phase of the EPS GRAS mission, emphasis in the 
validation activities is put on deriving a full error characterisation of calibrated and pre– 
processed GRAS level 1b data, and on testing the implemented software for consistency 
with the derived error characteristics. For the validation during the commissioning and 
operational phase of the GRAS instrument, the error characteristics of excess phase 
delays and bending angles should be assessed by statistical methods, and compared to 
the expected error characteristics. If consistency cannot be achieved, the theoretical 
error models may require revision. 

Section 3 of the memorandum also discusses other validation methods that potentially 
can be used for the validation of both the level 1b products and the geophysical prod­
ucts retrieved from GRAS measurements. The techniques assessed here include direct 
intercomparison of independent RO measurements, noise level estimation, and inter-
comparisons of geophysical products from different sources. The key points in the 
assessment of these methods are the additional information provided by these methods 
on top of the 1D-Var based validation and the correct handling of the measurement er­
ror characteristics in the validation. It is also noted, that if it is necessary to compare 
temperature and humidity information derived from the RO measurements with NWP 
analyses and/or other measurements, a 1D-Var retrieval is the best way to derive the 
geophysical information (Marquardt et al., 2003a). 

Finally, Appendix A provides an Overview, User Guide and Reference Manual for the 
bending angle 1D–Var software developed within the framework of the study. The 
purpose of the Appendix is to provide additional information about the 1D-Var retrieval 
described in Section 2. The software tool described in Appendix A was used during the 
study to validate one month of bending angle measurements from the CHAMP mission. 
The results from the validation are presented in Section 3.8. The bending angle 1D-Var 
software described in Appendix A is available from the authors on request. 
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2 The Use of 1D-Var for Validation 

The one dimensional variational (1D-Var) method is widely used for estimating at­
mospheric information from satellite measurements. It has a clear theoretical basis, 
formally producing the most probable atmospheric state, given prior information on 
the state and the measurements. It also provides solution error estimates. The 1D–Var 
approach was also used to pre-process (’retrieve’) satellite measurements prior to assim­
ilation (e.g., Eyre1993a), but now with the advent of 3D/4D-Var assimilation systems 
it is more routinely used for monitoring and quality control (QC) purposes. Fundamen­
tally, the 1D-Var approach relies on accurate error estimates for the a priori atmospheric 
state, forward model and the measurements in order to find the most probable solution. 
However, it also provides a number of diagnostics which indicate whether the error es­
timates assumed in the calculation are consistent with the actual errors. Given that the 
purpose of validation is to “confirm that the theoretical characterisation and error anal­
ysis actually represent the properties of the real data” (Rodgers, 2000) these diagnostics 
may be useful and 1D-Var could potentially be an important component in a validation 
strategy, similar to that outlined in Section 3. 

The aim of this work is to demonstrate how 1D-Var retrievals can be used as part of the 
validation of GRAS level 1b measurements, whilst at the same time illustrating some 
practical difficulties that can arise through limited understanding of other error sources. 
We will outline an implementation of the method that uses profiles of ionospheric cor­
rected bending angles, α, as a function of impact parameter a, but in principle the 
technique could also be applied to uncorrected (L1 and L2) bending angles, Doppler 
shifts and excess phase delays. The main difference with these approaches is that the 
“forward models” used to simulate the observed quantities from the NWP forecast in­
formation will be more complex, and require an ionospheric model. In section 2.1, the 
1D-Var retrieval method will be outlined and the diagnostics useful for validation will 
be described. In section 2.2, we will outline some practical difficulties that arise when 
using 1D-Var for these purposes. In section 2.3 we will present an implementation for 
corrected bending angles, and a summary will be given in Section 2.4. 

2.1 1D-Var retrievals 

A major difficulty encountered in the validation of GRAS level 1b data is that other in­
struments, with the exception of other co-located RO observations, do not measure the 
same quantities. As a result it is necessary to forward model geophysical parameters 
(temperatures and humidities) to observation space and/or map the level 1b information 
to geophysical parameters, using a suitable inverse (retrieval) method. The 1D-Var re­
trieval technique essentially combines both of these approaches, because it is an inverse 
method that relies on forward modelling to the observation space. Consequently, many 
of the outputs routinely produced may be used for validation. 

The 1D-Var retrieval method is based on a Bayesian statistical approach. The aim is 
to find the most probable atmospheric state vector, x̂, given the a priori (background) 
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estimate, xb, with error covariance B, and the observation vector, yo, with error covari­
ance matrix E. The method is simply a generalised, weighted least-squares approach, 
which attempts to find a solution that simultaneously fits both the a priori/background 
and measurement vectors to within their respective errors. If we assume the background 
and observation errors are unbiased and Gaussian, it can be shown that the most proba­
ble state, or best fit, is found by minimising the quadratic cost function, J(x), 

J(x) =  
1
(x − xb)T B−1(x − xb)+  

1
(yo − H(x))T (E + F)−1(yo − H(x)). (1)

2 2

Here, H is the forward model and H(x) is the simulated observation that would result 
for a given atmospheric state x; the forward model error covariance matrix is F. The 
forward model errors are usually estimated from simulations, and will be discussed in 
more detail in section 3. The method also provides an estimate of the solution error 
covariance matrix for x̂. In the linear limit this is given by, 

P � (B−1 + HT (E + F)−1H)−1 (2) 

where H is the gradient of the forward model, evaluated for the solution vector. The 
solution error covariance can be useful when comparing retrieval results with other 
measurements because it provides an estimate of the measurement errors mapped into 
geophysical parameter space. 

Note that unlike 3D/4D-Var problems the relatively small vector dimensions of the 1D­
Var problem mean that a Newtonian iteration can usually be implemented to minimise 
the cost function. If the problem is linear (the elements of H are independent of state 
vector) the solution will be found with one iteration. 

2.1.1 “O-B” statistics 

The differences between the observed values and those simulated with the background 
estimate, xb, are a result of the background errors mapped into observation space and 
the combined observation and forward model errors. Strictly, it is not necessary to use 
a 1D-Var retrieval to perform this test but we need the gradient of the forward model 
(i.e., a component of the 1D-Var) in order to estimate the background errors mapped 
into observation space. 

In the linear limit, the consistency between the entire observation and model derived 
vectors can be analysed with the scalar value, 

χ2 = (yo − H(xb))T (HBHT + E + F)−1(yo − H(xb)) (3) 

Ideally, χ2 should have the theoretical chi-squared distribution with, m, the number of 
elements in the observation vector equalling the degrees of freedom. The expected, 
ensemble-averaged value of χ2 � m with a standard deviation of 

√ 
2m. If  χ2 is much 
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smaller than m this indicates that the assumed errors are too large. Conversely, if χ2 is 
much larger than m, this indicates that the assumed errors are too small. More gener­
ally, the chi-squared distribution can be used to determine the probability that the vector 
of differences, yo − H(xb), belongs to the distribution defined by the covariance matri­
ces. Rodgers (2000) notes that the chi-squared distribution can be used to determine 
what fraction of members of the distribution have a probability density less than the ob­
served vector difference. However, in practice it is unlikely that the background error 
covariance matrix is known to sufficient accuracy to interpret these results so strictly, 
as discussed in section 3. 

In addition to looking at the “O” and “B” vectors overall consistency, it is also useful 
to look at comparisons on an individual measurement value basis. This is because the 
degree of O-B agreement may vary with observation height. It also enables a gross 
error check prior to use in the 1D-Var retrieval. If the absolute difference exceeds a pre-
specified limit, the value is removed from the measurement vector (see Section 3.8.2). 
Rodgers (2000) also notes that individual difference values should also have a chi-
squared distribution, but once again the uncertainties in the background error estimates 
can cause practical difficulties. 

Mean “O-B” vectors are used in bias correction schemes for passive sounder measure­
ments. It is also interesting to note that ECMWF use the O-B method operationally for 
estimating and monitoring satellite measurement errors: 

E + F = (yo − H(xb))(yo − H(xb))T − HBHT (4) 

This approach could be used to estimate the combined observation/forward error co­
variance matrix as part of a validation exercise. 

In practical terms, the measurements should be interpolated to a fixed “impact height” 
vertical grid to derive the covariance of the differences. The impact height is defined as 
the impact parameter value minus the radius of curvature at the measurement location. 

2.1.2 Cost at convergence 

The cost function value at convergence, J(x̂), is also a useful scalar parameter which 
indicates whether the assumed errors are consistent with the actual errors in the a priori 
and observations. Similarly to the O-B test, the expected cost at convergence value is √ 
2J(x̂) � m with a standard deviation of 2m. Strictly, the cost at convergence test is 
only valid for linear retrievals, but simulation studies with non-linear retrievals (Healy 
and Eyre, 2000; Palmer et al., 2000) suggest it is applicable for RO problems. More 
generally, this approach is also used for investigating the consistency of error estimates 
used in 3D/4D-Var assimilation systems, although it is sometimes called the “Bennett-
Talagrand ratio” in that context. 

Note that if an observation vector has reasonable O-B statistics, but has a large cost at 
convergence, it indicates that the 1D-Var retrieval has converged to the wrong solution 

5
 



(Rodgers, 2000). This consistency check can be useful for removing poor retrievals 
from validation statistics. Clearly, the number of profiles converging to the incorrect 
solution is of interest and should be monitored. 

2.1.3 Validation of retrievals 

This is discussed in more detail in Section 3. Briefly, it is often necessary to map level1b 
data to geophysical parameters for comparison against other measurement types and/or 
NWP information. Clearly, it is important to use the most accurate retrieval method 
available. We have found that the “traditional” RO temperature retrieval can be ex­
tremely sensitive to noise at altitudes greater than around 30 km. It also requires tro­
pospheric a priori, but does not make any allowance for errors in this information. In 
contrast, the 1D-Var method provides the statistically optimal estimates of the geophys­
ical variables in the state vector, given the measurements and a priori information. We 
can monitor the statistics of the 1D-Var increments, x̂− xb, because these should be 
unbiased and have a standard deviation given by the background error estimates. More 
generally, the 1D-Var retrievals can be compared with radiosondes and other measure­
ments. 

2.2 Practical experiences with 1D-Var 

2.2.1 Uncertainty in other error estimates 

It must be emphasised that we believe that 1D-Var retrievals with RO data are clearly 
superior to alternative inversion methods (which make no allowance for a priori and 
measurement errors!) even when the required error covariance matrices are not known 
precisely (Marquardt et al., 2003b). A particular advantage in using a 1D-Var retrieval 
method is that it provides diagnostics that are related to the quality of the retrieval. 
These indicate whether the error covariance matrices used in the retrieval are a good 
representation of the actual errors. If the diagnostics show that overall the errors esti­
mates are incorrect, and we have good confidence in the background and forward model 
error estimates, then it seems reasonable to attribute the difficulties to poorly specified 
observation errors. However, it is rarely quite so straightforward and it is sometimes 
necessary to be pragmatic. For example, although broadly speaking the magnitude of 
NWP errors are understood, determining how the errors are vertically and horizontally 
correlated is a challenging problem and the generation of B matrices for retrieval and 
assimilation is an area of active research (e.g., Ingleby2001). Many operational centres 
(e.g., Met Office, NCEP) currently derive background error estimates with the “NMC 
method” (Parrish and Derber, 1992). Global estimates of errors in a six hour forecast 
are derived from differences in 24 and 48 hour NWP forecasts, valid at the same time. 
The theoretical reasoning behind such an approach is not obvious, but in practice it ap­
pears to give reasonable results. Nevertheless, the fact that background error estimates 
are being continually updated and refined should be noted. 
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Fig. 1: The normalised cost-at-convergence as a function of time (seconds). Green NH, 
red Tropics and blue SH. 

The forward model errors can also be difficult to characterise. They arise because: 

1. the forward models used in variational retrievals contain approximations that sim­
plify the physics and speed up the calculation. These approximations are usually 
investigated with simulation studies, by comparing the forward model perfor­
mance with more sophisticated simulation tools. For example, Saunders et al. 
(1999) have tested the performance of the “RTTOV” fast radiative transfer code 
with a line-by-line model. Similarly, Healy and Eyre (2003) have compared an 
RO bending angle forward model against a 3D ray tracing code. 

2.	 “Representation errors”. These arise because the measurement may be sensitive 
to horizontal and vertical variations in the real atmosphere that cannot be repre­
sented by the NWP model. Representation errors are not measurement errors, 
because they arise as a result of limitations in the NWP, but they are effectively 
treated as measurement errors in the 1D-Var retrieval. Representation errors mean 
that some structures that can be measured correctly cannot be validated by com­
paring with NWP information. 

2.2.2 1D-Var for QC: an example 

A 1D-Var refractivity code is used at the Met Office to QC RO refractivity measure­
ments made with the CHAMP satellite, prior to being passed to the 3D-Var system in 
a recent impact trial experiment. The observation error estimates used in the 1D-Var 
and 3D-Var were based on the values derived by Kursinski et al. (1997a), but included 
vertical correlations, modelled with a simple exponential form (Healy and Eyre, 2000). 
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Representation errors were neglected. The cost at convergence test was used to iden­
tify profile vectors that contained gross-errors and these profiles were subsequently as­
signed zero weight in the assimilation process. The residuals of the observations minus 
the values simulated with the 1D-Var solution were also used to set a “probability of 
gross error” (PGE) on an individual element by element basis within the measurement 
vector. If the absolute difference was greater than four times the expected observation 
error, the measured refractivity value was given zero weight in the 3D-Var assimilation. 

Fig. 1 illustrates the normalised 2J(x̂)/m cost at convergence as a function of time 
for 2213 retrievals, taken between May 21 and June 11, 2001. Ideally, the normalised 
value should be around unity, but this is not the case. This means the error estimates 
we are using are not optimal and should be re-assessed. However, we must be prag­
matic when applying some aspects of the theory outlined above. Rigorously applying 
a PGE for a profile based on the chi-squared approach outlined by Rodgers (2000) 
to these data would result in the rejection of an unacceptably high number of profiles 
that contain useful information. In fact, we only rejected profiles outright if they were 
extreme outliers, defined as 2J(x̂)/m ≥ 20. Note that we found that removing the ver­
tical correlations from the observation errors reduced all the cost at convergence values 
by a factor of 3. The results show a latitudinal variation; the cost at convergence in 
the tropics (coloured red) have systematically higher values. Further analysis of these 
results indicated that refractivity representation errors are greater in the tropics than 
extra-tropics, (see Fig. 16 and Section 3.8.3 for more detailed discussion). In fact, rep­
resentation errors in the tropics exceed assumed observation errors between 15-20 km, 
probably as a result of gravity waves which are not simulated by the NWP model. 

This example illustrates a number of points. Firstly, the diagnostics indicate that we do 
not completely understand the errors, and therefore we must reconsider how they are 
derived. The results also suggest that the measurements are sensitive to scales that can­
not be represented by the NWP model. Therefore, we cannot validate the measurement 
on these scales with NWP. 

2.2.3 Gross errors in the observation vector and “automatic” QC 

In some cases observations contain large errors that are extremely unlikely to occur if 
the Gaussian statistics associated with the E + F matrix are correct. These are usu­
ally termed “gross errors”. Gross errors can affect the performance of the 1D-Var 
code, often increasing the number of iterations required to minimise the cost function 
and degrading the quality of the geophysical retrieval. Ideally, gross errors should be 
“screened out” of the observation vector before the data is passed to the 1D-Var routine. 
A simple and effective screening approach is to reject data if the “O-B” difference ex­
ceeds a pre-determined factor multiplied by the combined observation and background 
errors mapped to observation space. For example, an observed bending angle value, 
yo

i , might be rejected if the absolute difference from the simulated value fails the “10 
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Fig. 2: The normalised cost-at-convergence for 1 day of CHAMP data (day 135, from 
2001) determined with the bending angle 1D-Var code. The values greater than 1000 are 
a clear indication of gross-errors in the data. 

Fig. 3: As figure 4, but with QC on. 

sigma” test whereby, 

i i|y − yb| ≥ 10 × ((σi )2 +(σb
i )2)1/2 (5)o o
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given yb
i is the bending angle simulated from the background state and σi and σb

i areo 
the observation (+ forward model) error and background error mapped to observation 
space, respectively. It should be emphasised that screening of the observations prior 
to passing the data to the 1D-Var is an important step and we advise that it should be 
implemented. However, note that in the context of a validation exercise it is essential to 
monitor the number of bending angles that fail the screening. 

In addition to the screening, we can assign a probability of gross error (PGE) to each 
bending angle using a Bayesian approach. The method we have used is well established 
in NWP and is based on the work by Ingleby and Lorenc (1993) and Andersson and 
Jarvinen (1998). As with the screening step, the PGE is derived from the “O-B” dif­
ferences. Broadly speaking, if the “O-B” is large when compared with the combined 
observation error and background error mapped to observation space, then the PGE is 
high. Ingleby and Lorenc (1993) and Andersson and Jarvinen (1998) assume that good 
observations (no gross error) have a Gaussian distribution and bad observations (con­
taining gross errors) have a uniform distribution. The Bayesian estimate of the PGE 
value is found by evaluating the probability of finding the “O-B” difference when there 
is a gross error, divided by the total probability of finding the “O-B”. Mathematically, 
the PGE for the ith observation can be written as, 

PGEi = 1 − 
1 

(6)
γexp(u)+1 

given, 

1 (y i )2i − y
u = o b (7)

2 (σi )2 +(σi )2 
o b

where the tunable parameter γ is given by eq. (11) in Andersson and Jarvinen (1998). 
It is related to the assumed characteristics of the a priori gross error probability density 
function. Note that in the limit u → 0 then PGE i → γ. The 1D-Var code provides a 
PGE value for each bending angle in the profile. The profile of PGE values can be 
useful for identifying the individual bending angle values that produce a high cost-at­
convergence. It may also be useful to monitor the number of bending angles with a 
PGE greater than a pre-determined threshold value. As with the screening step, the 
percentage of observed bending angles thought to contain a gross error will be a useful 
output of any validation exercise. 

The PGE value can also be used to define a “QC weighting factor” given by, 

W i 
qc = 1 − PGEi = 

1 
(8)

γexp(u)+1 

which is used to effectively1 inflate the observation errors if the PGE estimate is high. 

1In fact, the vector of observed minus simulated differences are multiplied by the corresponding ele­
ments of the Wqc vector. 
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This “automatic” QC within the 1D-Var routine is useful for ensuring reasonable re­
trieval results – particularly in the absence of a screening step – but it can lead to some 
difficulties in the context of a validation exercise. For example, Fig. 4 shows the nor­
malised cost-at-convergence, 2J(x̂)/m, for 1 day of CHAMP data processed with the 
1D-Var bending angle code. These calculations were performed without the QC weight­
ing (or screening) of the observation values outlined above, and it is apparent that in 
a number of cases 2J(x̂)/m > 1000, clearly indicating that there is a problem with the 
retrieval. On examination, it was found that these observation vectors contained gross 
errors because of a processing error, which was straightforward to correct. In contrast, 
Fig. 5 shows the 2J(x̂)/m values when the QC weighting has been implemented. The 
values are greater than unity, but they are reasonable because the QC has reduced the 
weight given to the observed values that are not consistent with the assumed errors. 
Although the automatic QC works well, it actually obscures the processing error. This 
may not be desirable during a validation exercise. Therefore, we would argue that 
initially the 1D-Var should be run without this form of QC if validation is the prime 
purpose of the 1D–Var (see Section 3.8.2). 

2.3 1D-Var implementation for bending angle 

The forward model and minimisation routine represent the two major components of 
a stand-alone 1D-Var package. Details of the implementation of the bending angle 
1D-Var can be found in Appendix A. 

2.3.1 The forward model 

The forward model, H, used in the 1D-Var code will simulate level 1b ionospheric 
corrected bending angle values, α, as a function of impact parameter a. The model 
assumes spherical symmetry, because we are only using an NWP profile (rather than 
planar) information. 

The forward model must evaluate the “bending angle integral” for each observed impact 
parameter, 

Z d lnn∞ 
dxα(a) = −2a dx (9)

(x2 − a2)1/2a 

where n is the refractive index derived from the model, r is the radius value and x = nr 
(x is the conventional notation used in the GPS literature for this product. It should not 
be confused with the 1D-Var state vector). 

If we assume that the NWP model data is given on a set of fixed pressure levels the 
forward model must perform the following operations: 

1. Calculate the geopotential height of the fixed pressure levels. 

11 



2. Calculate the geometric height and then radius values, r, by adding on the “radius 
of curvature” used in the evaluation of the bending angle and impact parameter 
values. (We should also consider the height difference between reference ellip­
soid and geoid at the surface.) 

3. Evaluate the refractivity values, N, on the pressure levels. 

4. Evaluate x = (1 +10−6N)r on the pressure levels. 

5. Find the tangent point height using the impact parameter, where x = a. 

6. Evaluate the bending angle integral for x ≥ a (i.e., at all heights above that cor­
responding to the impact parameter). We will assume that d lnn/dx varies expo­
nentially with x between the model levels for evaluating the integral. 

2.3.2 Minimisation routine 

The Levenberg-Marquardt minimisation approach (Press et al., 1992) has proved suc­
cessful for refractivity (Healy and Eyre, 2000) and bending angle (Palmer et al., 2000) 
1D-Var retrievals. This method is easily developed in f90 and is implemented here. 
Matrix inversion and solution of matrix equations are be performed with Cholesky de­
composition routines. For details, see the User Guide of the prototype 1D–Var package 
in Appendix A. 

2.4 1D-Var Summary 

We have illustrated the ways in which 1D-Var retrievals may be useful in the valida­
tion of level 1b information. These arise because the method provides a number of 
diagnostics that indicate whether the assumed observation errors are consistent with the 
actual errors. However, practical experience suggests that some probability of gross er­
ror estimates, based on chi-squared tests, need to be “tuned”, otherwise too much data 
is rejected. 

Above all, if it is considered necessary to compare temperature and humidity infor­
mation derived from the RO measurements with NWP analyses and/or other measure­
ments, we would argue that a 1D-Var approach is the best way to derive the geophysical 
information (Marquardt et al., 2003b). 

Finally, we have also outlined a possible implementation of 1D-Var using ionospheric-
corrected bending angles. A similar approach could be applied to uncorrected bending 
angles, Doppler shifts or excess phases, but the forward models will be more complex 
and an ionospheric model will be required. 
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3 A Strategy for the Validation of GRAS Level 1b Data 

A measurement should always be accompanied with an estimate of the uncertainty in 
it. The uncertainty conveys the degree of confidence we have in the quoted value and 
enables potential users to assess whether it is good enough for their application. This is 
why Rodgers (2000) states: 

“The purpose of a validation in this general sense is to confirm that the the­
oretical characterisation and error analysis actually represent the properties 
of the real data”. 

Therefore, the fundamental aim of validation is to demonstrate that we understand the 
measurement errors, because we cannot claim to truly understand the measurement 
unless this is the case. 

Validation is performed by comparison with independent quantities, which should have 
well characterised uncertainty. Ideally, the uncertainty in the quantities that are being 
validated against should have a clear “traceability”. Traceability means that a mea­
surement can be related to stated reference standards, through an unbroken chain of 
comparisons, each having a stated measurement uncertainty. Having established the 
traceablity of the independent measurement, a statistical analysis of the comparisons 
can be performed, establishing the traceability of the measurements being validated. 
The results of this validation exercise may lead in statements of the form: 

“The statistics of the differences are consistent with the assumed error lev­
els, suggesting that the error model provides a reasonable representation of 
the actual errors.” 

or, 

“The statistics of the differences are inconsistent. The error modelling / 
propagation exercises must be revisited.” 

In practice, the validation of remotely sensed measurements is rarely as simple, for a 
number of reasons. Firstly, we do not validate the “raw measurements” made on board 
the satellite; they have usually been pre–processed to some degree. We define the term 
“observing system” to mean the instrument on board the satellite combined with any 
(pre–) processing steps. Thus, when validating pre–processed measurements (like ex­
cess phase delays; L1, L2 or ionospheric corrected bending angles, we are actually 
validating the full observing system, rather than just the instrument on board the satel­
lite. Furthermore, the error propagation in the pre–processing steps can be complex and 
difficult to characterise in some cases. For example, errors associated with the assump­
tion of local spherical symmetry in radio occultation (RO) measurements will depend 
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on the atmospheric conditions. In such cases, numerical simulations might be the only 
way to estimate the errors. 

A second problem often arises because new satellites produce information that is com­
plementary to the existing observation network. This means that finding something to 
compare against directly is either impossible (e.g., finding an independent source for 
excess path delays in case of RO), or at least not a trivial problem (like finding an in­
dependent source of bending angles). Statistical methods may then have to be used to 
validate theoretical error characterisations. Another approach is to derive geophysical 
parameters, such as temperature and humidity. Validation statistics for retrieved geo­
physical parameters might be used to infer indirectly about possible problems in the 
level 1b data. However, in doing so we extend the scope and complexity of the observ­
ing system. We are then validating the instruments used to collect the raw measure­
ments, combined with the pre–processing and the retrieval used to map to geophysical 
space. In order to be able to identify the most likely source of a possible problem, 
it is vital that the error propagation characteristics of pre–processing and retrieval are 
sufficiently well understood. To a large degree, this can be accomplished by numeri­
cal simulation studies, which are therefore a crucial part in any validation strategy of 
remotely sensed data. 

The validation of retrieved geophysical quantities is usually achieved through direct 
comparison with in situ observations obtained from, e.g., radiosondes or aircraft mea­
surements; with observations obtained from ground based (like lidar) or satellite borne 
remote sensing instruments; or even with profiles interpolated from meteorological 
fields obtained from Numerical Weather Prediction (NWP) fields. This seems to be 
a straightforward task, only requiring temporal and spatial coincidences. 

However, producing accurate error estimates and establishing a clear traceability for 
each of the individual measurements is often difficult. Error characteristics of NWP 
data, for example, are complicated and depend on location and season. The intercom­
parison of satellite “measurements” is also not straightforward: Remote sensing instru­
ments do not directly measure geophysical parameters, but require a retrieval. Since 
retrieval (or “inverse”) problems are often under–determined and ill–conditioned, their 
solution requires the use a priori data or assumptions. This contributes to the retrieval 
error. In regions where the information content of satellite measurements is low, re­
trieved geophysical parameters will be dominated by a priori rather than represent a 
true measurement. A priori used in different observing systems might be based on the 
same sources (like the same climatology, radiosonde statistics or NWP data). Thus, 
retrieved atmospheric parameters from different observing systems may not be truly 
independent. 

The difficulty in establishing accurate and definitive error estimates for the indepen­
dent data used in validation exercises leads to the pragmatic approach often adopted in 
satellite meteorology: we look at the consistency (or otherwise) of a number of inter– 
comparisons, making use of experience and expertise with the various independent data. 
Individually each intercomparison may have significant limitations, but these can be 
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partially overcome by analysing the results from a number of comparisons. Many or 
all validation studies, therefore, try to use synergistic observations including as many 
relevant parameters as possible to compensate for the missing or unclear traceability of 
some of the involved measurements. 

This approach works well as long as the retrieved atmospheric parameters agree well 
with the various auxiliary data sets, i.e. within their respective expected error estimates. 
Larger deviations, however, pose a problem: They may be related to problems in the raw 
measurements; or the calibration, pre–processing and retrieval steps might contribute 
more than expected to the errors of the full observing system; or some of the auxiliary 
data sets might be flawed. The only way to exclude the possibility that the cause for 
unexpected large deviations lies within the observing system itself is to go through each 
individual processing step and check that the error propagation is indeed as expected ­
in other words, to establish the traceability of the observing system. 

GRAS measurements pose another problem: With not more than 250 to 500 daily ob­
servations which are globally distributed, the number of coincidences with observations 
taken at a single site will necessarily be small. This practically excludes single–site 
based measurements (or even a dedicated validation campaign) from the available op­
tions for the validation of GRAS level1b data. The number of co–located measurements 
that can be obtained in a short period of time (like a month) will simply be too small 
to provide meaningful validation statistics. Especially during the commisioning phase, 
the validation of GRAS level1b data has therefore to be based on other means. 

In this paper, we propose a validation strategy based on the above considerations for 
level 1b data obtained from the GRAS instrument. In order to ensure traceability, our 
proposal contains a stepwise validation procedure, which is outlined in section 3.1. 
Details of specific tasks are given in the following sections: Benefits of conducting 
pre–launch numerical simulation studies are discussed in section 3.2, while statistical 
methods to estimate noise from actual calibrated (e.g., excess phase delays) and level 1b 
data are introduced in section 3.3. The direct comparison of co–located bending angle 
profiles (both ionospheric corrected and uncorrected) obtained from other radio occul­
tation measurements is discussed in section 3.4. Forward modelling of bending angles 
from NWP fields or other measurements of meteorological parameters, and the use of 
of 1D–Var diagnostics are summarised in section 3.5; we note that a detailed descrip­
tion of the theory and its application in the validation context has already been provided 
in Section 2. The comparison of retrieved meteorological profiles against NWP fields 
and co–located measurements is discussed in section 3.6. This section also deals with 
the formally correct treatment of intercomparing remote sensing retrievals. Advantages 
and disadvantages of a possible field campaign aiming at the validation of GRAS level 
1b data are discussed in section 3.7. Practical experiences and a demonstration of the 
usefulness of the proposed tools using CHAMP data form section 3.8. Conclusions in 
section 4 close the paper. 

We finally note that in contrast to purely “physical” retrieval schemes such as the tradi­
tional dry temperature retrieval for radio occultation soundings, variational (or “optimal 
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estimation”) retrievals offer a plethora of diagnostics which are not available in other 
retrieval methods. These diagnostics can be used in a validation context and are, in 
fact, one of the core components of our proposed strategy. In addition, tools required 
in the variational retrieval context are also useful for validation. While their use does 
not require a variational retrieval to be actually performed, they are readily available 
if a variational retrieval is implemented, and have no counterpart in non–optimal re­
trievals. For the rest of this paper, we will therefore assume that the retrieval procedure 
is an implementation of a 1D–Var retrieval as outlined in Section 2. However, any other 
retrieval method which provides a similar set of retrieval diagnostics is equally well 
suited for the purpose of validation. 

3.1 Validation strategy 

Fig. 4 shows what we regard as the “GRAS observing system”: The raw GPS measure­
ments taken by the GRAS receiver will first be calibrated in order to correct for clock 
errors by single or double differencing, which includes the use of data from a global 
network of fiducial GPS ground stations. The calibration of the GPS data may include 
fixing of cycle slips or smoothing of data. Orbit information for METOP and the oc­
culting GPS satellite will be utilised in order to calculate excess phase delays. These, 
along with Signal–to–Noise Ratio (SNR), or amplitude, data form a calibrated data set. 
In a further preprocessing step, precise orbit data and a priori information (like the as­
sumption of spherical symmetry) are utilised to calculate excess doppler shift, L1 and 
L2 as well as ionospheric corrected bending angles. These form the level 1b data set. 
Calculating the various bending angles may consist of the basic phase–only retrieval of 
bending angles, or more complicated algorithms like the Canonical Transform or Full 
Spectral Inversion. Finally, level 1b data are used in a retrieval procedure to calculate 
geophysical parameters like refractivity, temperature, moisture and surface pressure. 

It is already apparent from the above description that level 1b data has to be regarded 
as some processed form of the initial raw measurements provided by the GRAS instru­
ment. Obviously, the error characteristics of the calibrated and preprocessed data will 
depend on the details of the calibration and preprocessing applied. As validation aims 
at checking if the actual error characteristics of the data are consistent with the theo­
retical estimates, or at least with prelaunch requirements, we require a comprehensive 
error model for the level 1b data. It will include an error covariance matrix for the cal­
ibrated measurements and each step of the preprocessing chain, e.g., the excess phase 
and amplitude (or SNR), doppler shift and bending angle step. 

Provision of such an error model requires the computation of the error propagation 
through the calibration and preprocessing chain. The results of the error propagation 
can be used to test individual components of the preprocessing chain by letting them 
process simulated data with added random noise; the latter should exhibit the expected 
error characteristics. By this, we validate the preprocessing and retrieval software. 
These tasks can already be undertaken during the prelaunch phase of GRAS. 
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Fig. 4: The GRAS observing system. 

Once a complete theoretical error characterisation of the GRAS observing system has 
been obtained and the implementation has been tested, validation of GRAS level 1b 
data shall proceed stepwise: For each step within the processing, it needs to be checked 
if the error estimates obtained from the respective error model are consistent with an 
independent estimate of the error characteristics of the actual data. If they are, the same 
procedure might be applied to the following step in the processing chain. If inconsis­
tencies surface, these indicate a problem in the error model, the processing software for 
this specific step, the physical assumptions underlying both of them, or a problem of 
the validation data set. In either case, some revision is required. 

Using this procedure, we effectively establish a traceability chain for GRAS data, be­
ginning from the raw data to level 1b products. Applying the same strategy to the 
retrieval of geophysical parameters will establish a complete traceability chain for the 
GRAS observing system. 

For the different processing steps within the GRAS observing system, different meth­
ods will obviously be required. To validate calibrated data (excess path delays and 
amplitudes), we will mainly have to rely on statistical methods estimating the noise 
component of the actual data, and compare it with the available error models. Well es­
tablished statistical methods can be modified to work with correlated errors, but require 
some parameterised form of the underlying error characteristics and their correlations. 
For level1b data (excess doppler, uncorrected and corrected bending angles), the ap­
plication of such statistical methods might also be useful. In addition, bending angles 
(both uncorrected and corrected) might be directly compared with co–located bending 
angles derived from other radio occultation experiments, if available. These compar­
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isons will provide an independent check for the results of the statistical methods of 
noise estimation mentioned before. 

1D–Var diagnostics and forward modelled Numerical Weather Prediction (NWP) data 
will then be used to validate (ionospheric corrected) bending angles. As a by–product, 
retrieved geophysical parameters become available. Because the 1D–Var framework 
allows for the calculation of the retrieval error based on the errors of observations and 
a priori, the complete traceability chain for the GRAS operating system will have been 
established. 

Finally, geophysical parameters might be validated against data interpolated from NWP 
fields as well as against against co–located meteorological measurements, both from in-
situ as well as from remote sensing instruments. The latter will especially be useful to 
validate aspects of the level 1b data which are not accessible by the forward modelling 
approach, e.g. due to errors of representativeness. 

3.2 Numerical simulation studies 

The aim of numerical simulation studies, which should be carried out before the launch 
of the METOP spacecraft, is twofold: First, theoretical estimates of the error character­
istics of the various processing steps of the GRAS observing system will be provided. 
These will include error covariance matrices, which will later be validated by compar­
ison against independent information. Further numerical simulations may be carried 
out to assess the contribution of physical assumptions made in the preprocessing and 
retrieval software (like spherical symmetry, the role of the ionosphere under strongly 
disturbed conditions, etc.) to the error budget. Second, the implemented software per­
forming these processing steps will be tested (by Monte–Carlo type simulations) for 
being consistent with the theoretical error estimates. This will ensure that the software 
used for the calibration, preprocessing and retrieval of GRAS data has been imple­
mented correctly. 

3.2.1 Error propagation 

The statistical error characteristics of the output of an individual processing step is 
composed of two parts: noise already present in the input data, propagated through the 
processing algorithm (which can be estimated by linearising the algorithm); and errors 
contained in external data or related to physical assumptions. 

As an example, consider the preprocessing required to derive ionospheric corrected 
bending angles from excess phase delays. In a phase based retrieval of bending angles, 
excess L1 and L2 phase delays are first smoothed and then numerically differentiated, 
to provide L1 and L2 Doppler shifts. L1 and L2 bending angles are derived from the 
Doppler shifts, using orbit data for both satellites involved in the measurement. Finally, 
an ionospheric correction is applied. The error in the Doppler shifts ∆d, to  first order, 
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can formally be written as 

∆d = Kd∆p + εd (10) 

where Kd a linearised matrix representation of the code that derives Doppler values 
from phase delays p. Note that the matrix Kd includes smoothing and numerical differ­
entiation; both will introduce error correlations. ∆p is a vector containing the errors on 
the phase delays and εd denotes any additional errors introduced by the algorithm, e.g. 
by the finite difference numerical differentiation. Thus, errors in the Doppler shifts are 
a result of phase errors mapped to Doppler space, plus a new error term. If the errors 
in the excess path delays are characterised by an error covariance matrix Op, and the 
newly introduced error by a covariance matrix Oεd , the covariance matrix Od of the 
doppler shift errors is given by 

Od = KdOpKd
T + Oεd , (11) 

provided that the various errors (∆p and εd) are statistically independent from each 
other. Additional complications will arise if errors are correlated. 

Similar expressions can be written down for the L1 and L2 bending angles, i.e. 

∆α = Kα∆d + εα , (12) 

and for corrected bending angles: 

∆αc = Kαc ∆α + εαc . (13) 

εα will be caused by, e.g., assuming spherical symmetry. εαc will arise because of 
limitations in the ionospheric correction. While some of these error terms might be 
negligible in practice (e.g., εd), others may only be investigated by numerical simu­
lations. Fig. 5 shows estimates for ionospheric corrected bending angle error and its 
covariance structure for a randomly selected CHAMP profile. The calculation, similar 
Syndergaard (1999), assumes uncorrelated Gaussian noise εp with a standard deviation 
of 1.5 mm for L1 and L2 excess phase delays. Errors due to the numerical differen­
tiation (εd ) and of the spherical symmetry assumption (εα) have been neglected; the 
standard deviation of εαc has been set to to a value of 1.5 × 10−7rad. This represents 
a conservative estimate of the error in the ionospheric correction for altitudes of up to 
80 km for standard ionospheric conditions (Vorob’ev and Krasil’nikova, 1994). Note 
the sync–like vertical structure in the error covariances; their vertical extent is deter­
mined by the width of a filter applied to the excess phase delays during the processing. 
Error correlation lengths decrease at lower altitudes, because the downward propaga­
tion of the tangential point of the radio occultation is slowed down in the troposphere. 
The increase of the bending angle errors in the troposphere is related to the defocusing 
which is incorporated in the error estimate. We note that similar qualitative results were 
obtained by Syndergaard (1999); the results shown here differ quantitatively, however, 
because more realistic assumptions on the error characteristics of the excess path delays 
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Fig. 5: Estimated standard deviation (smoothed, left) and vertical error correlations (right) 
of ionospheric corrected bending angles for a CHAMP occultation. The dashed line in the 
right figure denotes the squared standard deviation for comparison. Calculations are based 
on a phase only retrieval of bending angles, assuming a Gaussian uncorrelated excess 
phase delay noise of 1.5 mm for L1 and L2 phase delay data. 

were made. Our estimate of 1.6 × 10−6 rad for the random error of upper stratospheric 
bending angles is also consistent with other error estimates in the literature. 

Contributions of horizontal gradients (which are thought to cause the main contribu­
tion to bending angle errors in the lower stratosphere and upper troposphere; see, e.g., 
Kursinski et al., 1997b) on the error budgets are missing in the above study. They may 
be investigated by exploiting 3D ray-tracing codes, which are able to simulate excess 
L1 and L2 observable phase delays and signal amplitudes through relatively smooth 
atmospheres and ionospheres with sub–mm accuracy (Healy and Eyre, 2003). More 
importantly, they also provide the “true” Doppler shifts and bending angles that are 
consistent with phase delays. For example, the latter are simply given by the angle 
between the ray vectors at the start and end of the ray-path, without having to assume 
spherical symmetry. Alternatively, analytic expressions for estimated errors due to hor­
izontal gradients given by Healy (2001) might be applied. 

Similar procedures have to be followed when investigating the error propagation through 
advanced preprocessing algorithms like the Canonical Transform (Gorbunov, 2002b,c,a) 
or Full Spectral Inversion (Jensen et al., 2003). This will not only require error mod­
els for excess phase, but also for the amplitude (or SNR) data provided by the GRAS 
receiver. In addition, the error propagation will probably be more complicated than in 
the above example. The use of automated source code differentiation tools like TAPE­
NADE2 or TAF3 (or it’s freely usable predecessor TAMC) might ease the tedious pro­
cess of coding the linearised versions of these algorithms. It must be kept in mind, 

2See http://www-sop.inria.fr/tropics/tapenade.html
 
3See http://www.fastopt.de
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though, that such tools are not free of errors, and usually require manual tuning and 
testing of the generated code. Restrictions on the use of code derived using these tools 
may apply for commercial applications. 

For the retrieval of geophysical parameters, error characteristics of the solution obtained 
from a 1D–Var retrieval are well known from the literature (e.g., Rodgers, 1976, 1990, 
2000), given that error covariances are available for both the preprocessed observations 
and the a priori data used. They are discussed in Section 2. If a non–variational retrieval 
is implemented instead, error estimates have to be obtained by procedures similar to the 
ones outlined above. 

3.2.2 Monte–Carlo simulations 

Once theoretical estimates of the expected error characteristics are available, the soft­
ware implemented for the various calibration and preprocessing steps can be tested 
using simulated raw, calibrated and preprocessed measurements. Testing will usually 
be carried out by adding random noise to the respective simulated data set; the added 
noise will be consistent with the expected error characteristics of the respective mea­
surements. In a Monte–Carlo type setup, the response of each software component can 
then be evaluated, and the statistics obtained from a sufficiently large ensemble of sim­
ulations may be compared with the theoretical error estimates for that processing step. 
Further simulations may be carried out to assess the sensitivity of statistical diagnostics 
(see section 3.3) to assumptions on error characteristics, and on how relevant deviations 
of the raw data’s error characteristics are for the practical application of these tools. 

Simulated data sets should be generated prior to launch, e.g. (for simulated level 1b 
data) by ray–tracing through 3 dimensional high resolution NWP fields. Apart from 
idealised atmospheric conditions which are consistent with physical assumptions made 
in the preprocessing and retrieval software (like spherical homogeneity), these sim­
ulations should also cover a wide range of atmospheric conditions, e.g. conditions of 
tropospheric multi-path or super-refraction as well as large horizontal gradients. Strato­
spheric measurements should be simulated not only for average, but also for strongly 
disturbed conditions like major stratospheric warmings. This will ensure that a possible 
degrading influence of a priori obtained from some climatology on the performance of 
the observing system under unusual conditions can be detected early. 

3.3 Statistical methods for noise estimation 

Because no independent measurements of excess phase delays (and possibly also for 
excess doppler and bending angles) will be available, the only way to compare theo­
retical error estimates with the error characteristics of actual data is to use statistical 
methods. One method of separating noise from signal is to fit a smooth function to the 
noisy data, and to calculate a noise estimate from the residuals. 
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A well established method for the objective estimation of parameters for smoothing 
splines is known as Generalised Cross Validation (GCV; Craven and Wahba, 1979). 
Using GCV estimates of uncorrelated random noise on simulated excess phase data 
provides surprisingly accurate estimates of the noise (see below). This suggests that 
GCV (or a generalised form of objectively fitting smoothing splines to noisy data, tak­
ing correlated errors into account if necessary), may be a promising technique for val­
idating theoretical error estimates of calibrated and level 1b GRAS data. Alternative 
algorithms, for example those based on Generalised Least Squares fitting procedures, 
might also be considered. 

In the following, we discuss the basic idea behind smoothing splines and GCV, and 
review a generalisation of the method for correlated errors. 

3.3.1 Smoothing splines for noise estimates with uncorrelated errors 

When trying to fit a smooth curve through a given set of discrete noisy “measurements” 
yi = y(ti) for times ti, a noise model of the following form 

yi = g(ti)+ ε(ti) , i = 1 . . .n (14) 

is usually assumed, where gi represents the discrete counterpart of a “smooth” function. 
ε(t) denotes a white (i.e., uncorrelated) noise process with standard deviation σ. A pop­
ular estimate for the underlying smooth function g is the function gn,λ which minimises 
the cost function 

Zn tn 

J = 
1 ∑( f (ti)− yi)2 +λ ( f (m)(t))2 dt . (15) 
n t1i=1 

The minimisation is carried out over the space of sufficiently differentiable functions 
f . It is well known (e.g. Reinsch, 1967, 1971; Wahba, 1975) that gn,λ is a polynomial 
smoothing spline of degree 2m − 1. Note that the solution gn,λ is a linear function 
of the observations, i.e. with y = (y1, . . . ,yn)T and gn,λ = (gn,λ(t1), . . . ,gn,λ(tn))T , the 
influence matrix A(λ) with 

gn,λ = A(λ)y (16) 

can be calculated. 

The parameter λ controls the tradeoff between the roughness of the smoothing spline 
(as measured by the second term in (15)) and the goodness–of–fit to the observations, 
as measured by the first term in (15), and needs to be chosen somehow. Reinsch (1967) 
suggests, roughly, that if σ is known, λ should be chosen so that the goodness–of–fit 
satisfies 

n
1 ∑( f (ti)− yi)2 = σ2 .
 
n i=1 

22
 



Wahba (1975), however, indicated that Reinsch’s suggestion leads to systematic over-
smoothing, and showed that λ should actually be chosen so that the goodness–of–fit is  
slightly smaller than σ2. The value of this “true mean square error” can be estimated if 
σ is known. 

For the case of unknown σ, Craven and Wahba (1979) applied the idea of “cross val­
idation” to the fitting problem (hence the name of the method): If gn

[k
,
] 
λ denotes the 

smoothing spline for all but the kth observation, the ability of gn
[k
,
] 
λ to predict the missing 

value yk is taken as a measure for the goodness of λ. Craven and Wahba then showed 
that for n → ∞, a  λ minimising the generalised cross validation function 

1 ||(I − A(λ))y||2 
nV (λ) =  � �2 , (17)
1 Tr(I − A(λ))n 

will also minimise the estimated true mean square error. Here, Tr(·) denotes the trace 
of a matrix, and || · ||  the usual L2–Norm over the n–dimensional Euclidean space. 

Thus, by minimising (17) and calculating a smoothing spline with λ as smoothing pa­
rameter, an objective method is available to calculate a smoothing spline fitting the data 
in an optimal (cross validation) sense without prior knowledge of the noise in the mea­
surement set. We note that GCV in the form presented here assumes both uncorrelated 
and stationary noise. 

3.3.2 Application to simulated excess phase delay noise 

To illustrate the possible benefits of using objectively determined smoothing splines 
within the GRAS level 1b validation, we have conducted a Monte-Carlo study. 1000 
realisations of uncorrelated Gaussian noise with a standard deviation of σ = 1 mm  have  
been added to a simulated time series of L1 excess phases, and were analysed using the 
GCV algorithm. Fluctuations in excess phases are dominated by measurement noise 
during the first few seconds of an individual occultation; in the lower stratosphere and 
upper troposphere, the level of fluctuations might be increased due to the atmosphere’s 
signal in the measurements. GCV, assuming a stationary noise, can therefore be ex­
pected to overestimate the noise when being applied to tropospheric data. Fig. 6 shows 
the mean noise estimate obtained by GCV, as function of the length of the data window 
subject to the GCV analysis. Note that after about 40 s, when the occultation ray en­
ters the lower atmosphere, noise estimates do indeed increase. Also note the excellent 
agreement between the mean noise estimate provided by the GCV and the true noise. 
We have found similar good agreements over a wide range of σ’s. 

For comparison, Fig. 6 also shows noise estimates obtained from calculating the stan­
dard deviation of residuals obtained from a sliding polynomial fit to the simulated data, 
for different lengths of the filter window. This is a standard way of smoothing raw 
excess phase data in a preprocessing chain for radio occultation data, and filter widths 
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Fig. 6: Mean phase delay noise estimated by GCV as function of data window length 
subject to the GCV analysis (measured from the beginning of the occultation), for an en­
semble of 100 realisations of uncorrelated Gaussian noise with σ = 1mm. The additional 
lines show similar noise estimates, which are based on various 3rd order polynomial fits 
to the simulated phase delay data. Times in the legend refer to the window width of the 
polynomial filter. 

correspond to parameters used in, e.g., GFZ’s CHAMP retrieval (Wickert, pers. comm.; 
also see Tsuda and Hocke, 2002, for another set of filter widths published in the litera­
ture); in all cases, the true noise is underestimated. 

Real excess phase delay data, however, already has undergone some preprocessing, 
and may therefore exhibit significant error correlations. The GCV method may fail 
when this is the case (see, e.g., Wang, 1998, and refererences therein). For monitoring 
purposes, residuals obtained by a standard GCV therefore should undergo an autocor­
relation analysis. Numerical simulations like the one described above, but using more 
complex error models for the excess phase delay noise, might give some indication what 
level of autocorrelation is acceptable for the applicability of GCV, or if more elaborate 
statistical methods have to be applied. Other standard time series analysis methods, 
like estimators of power spectra and the like, might also prove useful in identifying 
certain error characteristics of GRAS data during the commissioning phase, and should 
be provided accordingly. 

3.3.3 Noise estimates for correlated errors 

If error correlations of excess phase delays should turn out to be a problem, a gen­
eralised form of the GCV approach might be applied. Wang (1998) writes the cost 
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function for a smoothing spline in the case of correlated errors as 

Z tn 

J = 
1
(y − f)T W(y − f)+  λ ( f (m)(t))2 dt , (18) 

n t1 

where W is related to the error covariance matrix of the observations. y and f denote 
arrays containing the values of yi and f (ti), respectively. The corresponding GCV func­
tion is then given as 

1 ||W(I − A(λ))y||2 
nV (λ) =  2 . (19)
1 Tr(W(I − A(λ)))n

Assuming that W can be represented by a fixed amount of parameters τ, Wang proposes 
to construct the smoothing spline based on a parameter set (λ,τ) which minimises (19). 
Alternatively, the original spline cost function might be utilised directly by minimising 
(18) with respect to the spline coefficients and the parameter set (λ,τ) simultaneously4. 
This is usually referred to as “Generalised Least Squares” approach. 

The objective estimation of a smoothing spline for, e.g., excess path delay data, might 
provide a technique to validate the structure of theoretical error characterisations. How 
well this works in practice is currently unclear, but deserves further research. We also 
note the similarity of (15) and (18), respectively, to the regularisation approach intro­
duced by Twomey and Tichonow, which is well known in the the retrieval literature. 

If the error covariance matrix is thought to be known sufficiently well, a simpler ap­
proach might be to calculate a symmetric square root of the assumed error covariance 
matrix (e.g., see Appendix A in Rodgers, 2000), and then transform the observation 
vectors according to 

ŷ = O−1/2y . (20) 

If the assumed errors are correct, the transformed observation vector will exhibit un­
correlated errors with standard deviation of unity. A GCV estimator for uncorrelated 
noise can be used to check this, if the correlation structure of the noise has indeed been 
removed successfully. 

We would like to stress that all methods described require some knowledge on the error 
covariance of the observations. Thus, the numerical simulation of the expected error 
characterstics of the raw GRAS measurements and simulations assessing the usefulness 
and limits of the proposed statistical methods are important task to be performed during 
the prelaunch phase of GRAS. 

4Wang (1998) actually provides some evidence that the latter might be advantageous in practice. 
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3.3.4 Noise estimates for bending angles 

Statistical estimates of the noise associated in bending angles may be estimated by ap­
plying the same methods as described above. A bending angle profile obtained from 
forward modelling a representative atmospheric state or NWP information may be used 
as an alternative to the smoothing spline, and statistics may be calculated from the resid­
uals between retrieved and forward modelled bending angle over the first few seconds 
/ upper impact altitude range of an individual sounding. This approach is similar to 
the noise estimation of corrected bending angles as proposed by Sokolovskiy and Hunt 
(1996). We note that, based on the error propagation results presented in Fig. 5, bending 
angle errors will exhibit correlations as soon as some form of filtering is applied. Thus, 
methods allowing for error correlations are probably required. 

3.4 Direct comparisons of bending angles 

Atmospheric bending angles like those obtained from GRAS are only observed by radio 
occultation instruments. The only way to validate bending angle profiles with indepen­
dent data directly, therefore, is to compare GRAS bending angle profiles with other 
radio occultation measurements. This could be done by comparing co–located bending 
angles obtained from either GRAS itself (if sufficiently many close–by occultations oc­
cur within a short period of time), or from a different GPS radio occultation receiver on 
another satellite (like CHAMP, SAC-C, COSMIC or EQUARS). Comparisons between 
GRAS bending angles and co–located airborne or mountain based radio occultations 
could also be made if such measurements are available or provided within a dedicated 
validation campaign. We will first discuss some general aspects of a direct comparison, 
and then the different options in turn. 

3.4.1 General aspects 

Some insight into what can be gained by direct comparisons of bending angle profiles 
from identical or reasonable similar instruments can be obtained as follows: We assume 
that a retrieved (vector of) bending angle(s) x̂ differs from its true value x by 

x̂ = x + b ± ε . (21) 

Here, b describes a systematic bias of the observation system, while ε denotes an unbi­
ased random (or noise) error (in the remote sensing literature, these are sometimes re­
ferred to as “accuracy” and “precision”, respectively). Alternatively, b may be viewed 
as describing errors on a time scale which is long compared to the period over which 
measurements are taken, while ε denotes a random error component varying from mea­
surement to measurement. In Rodger’s (2000) notation, ε refers to the “retrieval error” 
associated to the actual instrumental noise, propagated by the processing, while b sum­
marises the smoothing error and any bias possibly introduced by the retrieval. 
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If two “measurements” x̂1 and x̂2 of (nearly) the same air mass are taken by the same 
instrument, their difference 

x̂2 − x̂1 = (b2 −b1)± ε1 ± ε2	 (22) 

will follow the covariance statistics 

Ox̂2−x̂1 = Ob2−b1 +Oε1 +Oε2 .	 (23) 

In the most simple case in which the the two measurements exhibit identical error char­
acteristics, i.e. b1 = b2 = b and Oε1 = Oε2 = Oε, this becomes particularly simple, 
i.e. 

Ox̂2−x̂1 = 2Oε .	 (24) 

In the case of uncorrelated errors, this may further be reduced to 

〈x̂2 − x̂1〉2 

σε =	 (25)
2 

where σε denotes a vector of standard deviations of the noise component of the mea­
surements. < · · · > denotes the mean over a sufficiently large ensemble of such in­
tercomparisons. Note that the b–term cancels out: the intercomparison of retrievals 
from two nearly identical observing systems does not provide information on possible 
systematic errors, but only on the random part of the measurement noise. This has 
implications for the interpretation of the obtained random error statistics: 

•	 If two raw measurements have been obtained by the same instrument, and have 
been processed by the same processing software, the comparison will provide 
an estimate of the random noise error of the instrument, as propagated through 
the software components of the observing system. This provides a possibility 
to validate the previously discussed statistical methods for noise estimation with 
independent data. 

•	 If the raw measurements stem from different (though still very similar) instru­
ments, but have undergone the same processing, the estimated random error char­
acteristics will reflect the combined random error characteristics of the different 
instruments, each one independently propagated through the preprocessing. In 
this case, Oε1 and Oε1 will be different, but b2 −b1 might still be neglible, only 
reflecting instrumental biases (this has to be checked, though). Otherwise, the 
full eq. (23) needs to be considered. 

•	 If the raw measurements stem from different instruments, and have been pro­
cessed by different processing systems, the estimated error characteristics will 
also reflect differences between the processing components of the two observing 
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systems. As any use of a priori contributes to the errors (Eyre, 1987), differences 
in a priori use in the two processing systems might cause an additional increase 
in the errors. Again, the full eq. (23) needs to be exploited. Because some phys­
ical assumptions or a priori data used in the systems will be similar, common 
systematic errors might still be present and will remain undetected. 

Thus, the direct comparison of bending angle profiles will provide useful information 
on the random error component of the measurement, but is not suited for estimating the 
“true” error of bending angle profiles. 

An additional complication arises because the profiles to be compared will not be ex­
actly co–located, but exhibit a certain spread in both time and location. The estimated 
random error will therefore contain a component related to the temporal and spatial 
variability of the atmosphere, which, strictly speaking, has to be subtracted. Statis­
tics describing the atmospheric variability on appropriate spatial and temporal scales 
may be obtained from NWP fields. Since atmospheric variability strongly depends on 
season and location, care must be taken that the ensemble of profiles to be compared 
stems from a period and region with sufficiently homogeneous atmospheric variabil­
ity. It is not useful, for example, to calculate a single statistic from both tropical and 
extra-tropical tropospheric bending angle comparisons, or from extra-tropical strato­
spheric comparisons obtained on both hemispheres during, e.g., NH winter. In both 
cases, the atmospheric variability differs significantly between parts of the data set, and 
can therefore not be subtracted properly. 

The same methodology may also be applied to retrieved vertical profiles of refractiv­
ity, temperature and humidity, obtained from different radio occultation experiments. 
Similar limitations apply. 

3.4.2 Space borne radio occultation measurements 

Comparing retrieved profiles of atmospheric variables and constituents taken at nearly 
the same location by the same instrument, but separated in time by about 90 minutes, 
was extensively used in the validation of Upper Atmosphere Research Satellite (UARS) 
data (for temperature profiles see, e.g., Dudhia and Livesey, 1996; Fishbein et al., 1996; 
Gille et al., 1996). This was possible because the orbital configuration of the UARS 
satellite caused the limb viewing tracks of some of its instruments to intersect them­
selves at 80◦N and 32◦S (or 80◦S and 32◦N, depending of the phase of the spacecraft 
yaw cycle). Limitations of this approach were clearly recognised. 

For the validation of GRAS level 1b data, bending angle profiles obtained from GPS 
receivers onboard radio occultation satellites can be intercompared. Possible candidates 
are profiles obtained from CHAMP and SAC-C (if they still provide data when METOP 
is launched), the COSMIC constellation (scheduled to be launched in 2005), or the 
EQUARS mission (scheduled for early 2006). If data from COSMIC is available, a 
sufficiently large amount of matches can be obtained within a short period of time. 
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This will also allow the stratification of matches according to season and region, in 
order to avoid the co–location / variability problem. The aim of these comparisons is 
to get an independent estimate of the instrumental noise, as propagated through the 
preprocessing software. Thus, raw data should be processed by the same processing 
system, in order to avoid complicating the interpretation of the obtained statistics. 

3.4.3 Airborne radio occultation measurements 

Zuffada et al. (1999) were the first to illustrate that a “space-based equivalent” bending 
angle profile between the surface and the receiver’s altitude can be derived from a GPS 
receiver within the Earth’s atmosphere. A straightforward application is to mount a 
GPS receiver on a research airplane and take tropospheric bending angle observations. 
Because the time and approximate location of individual radio occultations only depend 
on the orbit parameters of the spacecrafts involved, they can be predicted for a few days 
in advance. Accordingly, flights can be scheduled and directed to match GRAS occulta­
tions, and possibly even aligned with their viewing directions. Thus, a sufficient number 
of matching observations can probably be obtained within a comparatively short period 
(one month) over a sufficiently large region like Europe. 

In order to obtain the best possible characterisation of the atmospheric states at the 
time of the measurements, matching GRAS and airborne occultations should be ac­
companied by additional correlative measurements, e.g. from radiosondes and lidars, 
if available. Because of the irregular distribution of occultations, however, the num­
ber of such correlative measurements will be limited. The most cost effective solution 
to this problem, at least when it comes to radiosondes, is to ask operational weather 
stations to launch additional radiosondes when a matching GRAS occultation occurs 
close to their site. Met Services involved in such a validation campaign might provide 
improved mesoscale data assimilation products, using the research data along with the 
operationally available data. 

Matching bending angle measurements accompanied with a complete characterisation 
of the atmosphere along the line of sight(s) of the occultations would in particular be 
useful for checking the GRAS receiver’s operation under (confirmed) atmospheric mul­
tipath and/or ducting conditions. It could also be checked if both the airborne and the 
space borne receiver’s switching from phase locked to open loop tracking occurs ac­
cording to the atmospheric conditions, and if the preprocessing / retrieval system is 
able to interpret the raw data accordingly. 

On the other hand, it has not yet been demonstrated in practice that airborne radio occul­
tations do indeed work; the errors of airborne radio occultations are currently not well 
understood. The major obstacle probably is the exact determination of the airplane’s 
position, especially under turbulent atmospheric conditions along the flight path. The 
errors of airborne radio occultations could well be larger than the expected errors on 
the GRAS measurements. This would limit their usefulness for validation. Another 
disadvantage is that measurements are potentially very costly. However, it is also pos­
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sible that the airborne technique itself could be more thoroughly investigated before the 
METOP launch in 2005. For example, Prof. Toshitaka Tsuda at the University of Kyoto 
is planning a first airborne occultation experiment for 2003 or 2004; Dr. Jennifer Haase 
at the University of Purdue is seeking funding for a similar experiment. 

3.4.4 Mountain based radio occultation measurements 

Mountain based radio occultation measurements, also inspired by the work of Zuffada 
et al. (1999), have successfully been carried out by scientists at the University of Kyoto 
and the Japanese Met Agency. It has also been demonstrated that such measurements 
can indeed be taken and processed. The calculated partial bending angles can be con­
verted towards the “space-based equivalent” bending angle, as described in Zuffada 
et al. (1999). 

Measurements co–located to GRAS occultations might give bending angle estimates 
with similar benefits as those obtained from airborne radio occultations. Because the 
location and probably also viewing direction of the mountain based GPS receiver are 
fixed, the launch of dedicated radiosondes in the viewing direction of the mountain 
based receiver and/or the space based occultation can be more easily accomplished 
than in the airborne case. The fixed position of the receiver on a mountain top certainly 
solves the problem of precise positioning inherent in the airborne radio, although no 
work has yet been done on the error characteristics of such measurements. 

However, the fixed location of the GPS receiver also restricts the number of possible 
matches, or requires the comparison of profiles being further apart in both distance and 
time. The latter would render the interpretation of the statistical results more difficult 
because of the increased role of atmospheric variability. Based on our experiences 
with radiosonde matches for CHAMP, we would not expect more than one to four 
matches per month between radio occultations and a single location with a mountain 
based GPS receiver for a single radio occultation satellite like METOP. As airborne 
radio occultations, mountain based measurements are limited to altitudes below the 
receivers height, i.e. to the lower tropophere. 

Based on the rare occurance of matches for an individual site, we believe that a single 
(or even a few) mountain based GPS receiver(s) may not contribute significantly to the 
direct validation of GRAS bending angles in the troposphere. 

3.5 Forward modelling and 1D–Var diagnostics 

If no or only few direct comparisons of bending angle profiles are available, “mea­
sured” bending angle profiles can be compared with NWP fields or conventional me­
teorological measurements by forward modelling these measurements towards bending 
angles. The appropriate tools, i.e. a forward model for the calculation of bending an­
gles, and its linearised version for the forward propagation of the background errors into 
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bending angle space will be readily available if a 1D–Var based on bending angles has 
been implemented. Apart from comparing the observed bending angle measurements 
with those calculated from the background directly, or by calculating the appropriate χ2 

statistics or probabilities of gross error (PGE), the variational retrieval framework offers 
additional diagnostic tools. Examples are the value of the cost function at convergence, 
or χ2 statistics regarding deviations between retrieval and background or retrieval and 
observations. The details of these diagnostics are discussed in Section 2, and will not be 
repeated here. We would like to stress (as in Section 2), that the theoretical behaviour of 
these diagnostics can only be achieved in practice if correct error estimates for both the 
background and the observations are available. Even if this is not the case, however, as 
it might happen in the beginning of a new instrument’s lifetime, the variational diagnos­
tics may still be applied for validation and quality control purposes. Then, heuristically 
derived thresholds may be used instead of the strict theoretical ones. We demonstrate 
the usefullness of this approach in section 3.8. 

Because of the limited options for directly validating GRAS level1b products with in­
dependent measurements of, e.g., bending angles, the validation using 1D–Var diag­
nostics, together with establishing reliable error models by the methods described in 
the previous sections, is the core component of our validation strategy. This implies 
that our proposed strategy heavily relies on NWP data used as background in the actual 
1D–Var calculations. Therefore, our approach may raise concerns about the quality and 
reliability of NWP “model” data compared to “real” observations (like those obtained 
from other remote sensing measurements) which are used in more traditional validation 
approaches. 

We note, however, that today’s NWP products (like analyses or short range forecasts) 
are usually generated using variational data assimilation methods. The mathematical 
theory is identical to the one used in the usual 1D–Var (or “statistically optimal”; see, 
e.g., Rodgers, 1976, 1990, 2000) retrievals. Thus, variational data assimilation products 
can be understood as a global retrieval of the atmospheric state using all available con­
ventional and remote sensing data simultaneously. Compared to, say, a vertical profile 
obtained from a remote sensing measurement, a NWP analysis at the same location and 
time using the same raw remote sensing measurement is based on significantly more 
data. NWP products also use (at least a simplified representation of) the physical laws 
governing the atmospheric flow. From that point of view, it is not immediately clear 
why a single retrieval from a given remote sensing instrument should give any addi­
tional information compared to the use of an NWP profile, assuming that the same data 
has been assimilated. Furthermore, the theory of variational data assimilation predicts 
that, at least in data rich regions, the actual error in the analysis and short range forecast 
is smaller than that of the individual observations. This has recently been confirmed in 
practice for the leading data assimilation systems like those implemented at ECMWF 
or the Met Office (Simmons and Hollingsworth, 2002). Meteorological analyses are 
also constantly monitored and validated against, e.g., radiosondes; traceability is given 
to a large degree. Over data void regions, of course, NWP analysis (or short range fore­
casts) provide the only available information on the state of the atmosphere. In some 
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sense, therefore, it can be argued that NWP data provides the most accurate information 
available at any arbitrary point on the globe. 

On the other hand, it must also be noted that NWP analyses and short range forecasts 
exhibit complicated error characteristics, which are not always well understood. Using 
meteorological analysis data for the validation of a new observation system can, there­
fore, be misleading, if systematic problems of the analyses or the seasonal characteris­
tics of the uncertainties in various parts of the atmosphere are not properly addressed. 
We present an example in the following section. 

We would also like to repeat (as in Section 2) that errors of representativeness in the 
NWP background may limit the applicability of variational diagnostics to the validation 
of GRAS level 1b data. An example are tropical small vertical scale waves including 
gravity waves which might be resolved by GRAS soundings, but which are not repre­
sented in NWP products. In this case, the comparison of (sufficiently well resolved) 
retrievals of geophysical parameters with co-located in-situ or remote sensing data may 
be the only way to validate small scale structures in the observed data. We provide an 
example in section 3.8. 

Thus, even if the use of 1D–Var diagnostics provides the core component of our val­
idation strategy, the intercomparison of geophysical parameters retrieved from GRAS 
level1b data with other data may be important, and therefore has its place in the strat­
egy. The data sets chosen, however, should be carefully selected to make sure it is 
indeed providing the relevant information. For example, in the gravity wave scenario 
discussed above, co–located high resolution radiosonde data will give useful additional 
information. Comparisons with co–located retrievals from nadir sounding instruments 
like AMSU will not, as their vertical resolution is too poor. 

3.6 Validation of retrieved atmospheric parameters 

It is common practice in the literature for all types of remote sensing instrumentation to 
compare retrieved geophysical quantities with other co–located “measurements” of the 
respective quantities. These may include NWP products, ground based and air borne 
in-situ and remote sensing data, as well as retrievals obtained from satellite instruments. 
NWP products are also commonly used as transfer reference, by comparing the analyses 
with other measurements. In the following, we discuss a number of options relevant for 
GRAS products, along with possible limitations and interpretation caveats. We will 
specifically address the particularities involved in comparing retrievals of one remote 
sensing instrument with retrievals from another. 

3.6.1 Comparisons with NWP products 

The intercomparison of retrieved atmospheric parameters with data interpolated from 
NWP fields is the easiest way (in technical terms) of validating remote sensing products. 
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Because NWP data can be interpolated to any location and time, their use (superficially) 
also avoids the problem of imperfect co–locations, mentioned in section 3.4. As dis­
cussed in the previous section, NWP analyses and short range forcasts do provide a 
thouroughly quality checked data set to compare with. 

As also discussed above, NWP analyses and short range forecasts exhibit complicated 
error characteristics. Positioning and timing errors for synoptic events, for example, 
re–introduce the issue of the co–location problem in a slightly different way, at least 
over data poor regions of the Earth. Systematic errors in NWP data, which may depend 
on season, and the seasonal variability in the random error characteristics need to be 
taken into account, especially if a validation exercise only covers a short period. 

An example for the complexities of NWP based validation can be found in the interpre­
tation of early GPS/MET comparisons with meteorological analyses in the stratosphere. 
Kursinski et al. (1996), by comparing a small number of profiles against ECMWF anal­
yses on the Southern Hemisphere, found larger (mean) deviations than normal in the 
tropopause region over the Southern East Pacific. In a careful analysis, the authors 
attributed these to systematic deficiencies in the ECMWF’s analyses tropopause repre­
sentation in this particular region and during this period of time, related to the small 
amount of observational data in this part of the world. 

The argument was then extended by Rocken et al. (1997), who found a better agree­
ment (both in terms of bias and standard deviations) between GPS/MET and NCEP 
stratospheric analyses over data rich (Europe and the US) than over data poor region 
(South Pacific) for GPS/MET data during October 1995. “Because there is no reason 
to believe that GPS/MET data quality is different for the two regions”, the authors con­
cluded that the larger deviations are due to deficiencies in the analysis, and that radio 
occultation data would therefore be able to improve global NWP analyses. The argu­
ment was repeated by Steiner et al. (1999), based on a comparison of 2 days’ worth of 
data during the same period, but with ECMWF analyses. 

While we do not question the results of Kursinski et al. (1996), we do believe that later 
interpretations like those from Rocken et al. and Steiner et al. are somewhat over­
simplified. To begin with, Marquardt et al. (2001) demonstrated that the distribution 
of both biases and standard deviations between GPS/MET and NWP analysis data do 
not solely depend on region, but also on season. Fig. 7 shows the meridional distribu­
tion of latitudinally binned root–mean–square (RMS) temperature deviations between 
GPS/MET and ECMWF analyses for the prime times in October 1995 and February 
1997, respectively5. The RMS deviations during October 1995 certainly support the in­
terpretation of Rocken et al. and Steiner et al., as they clearly show a better agreement 
between GPS/MET and ECMWF analyses in the lower and mid stratosphere on the data 
rich NH compared to the data poor SH. During February 1997, however, the situation 
is more or less reversed: In the stratosphere, RMS deviations smaller than, say, 1.5 K, 

5The increase in both tropical mean and RMS deviations towards the lower boundary of the plotted 
data is related to the increase in tropospheric water vapour, which has not been corrected for in the 
plots. 
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Fig. 7: Root–Mean–Square (RMS) deviations between GPS/MET dry and ECMWF anal­
ysed temperatures during October 1995 (left) and February 1997 (right). Light (dark) 
shading indicates RMS deviations above 1.5 (3) K. The contour line interval is 0.5 K 
(after Marquardt et al., 2001). 

actually cover a larger area / altitude range on the SH compared to the NH. Based on the 
February distribution of RMS deviations, and repeating the argument of Rocken et al. 
and Steiner et al., one would have to conclude that the data poor SH stratosphere is at 
least as well, if not better represented in the ECMWF analysis than the data rich NH 
stratosphere. 

A possible explanation for the RMS deviations in the SH stratosphere during SH sum­
mer (February 1997) being as small as those in the NH summer and autumn (Octo­
ber 1995) is that, because of the more complex stratospheric wintertime dynamics, 
stratospheric analyses exhibit larger errors during the respective winter seasons. The 
comparison of the two RMS deviations would then suggest that the seasonally related 
variability in analysis uncertainty is actually larger than the uncertaintainty caused by 
data spareseness in the summertime stratospheric circulation. On the other hand, the 
statistical optimisation applied to radio occultation bending angles as well as the initial­
isation of the temperature profile at some high altitude require a priori assumptions, e.g. 
the use of a climatology. Marquardt et al. (2001) argued that the climatological a priori 
may not sufficiently represent the true variability of the wintertime stratosphere. This, 
too, would cause an increase in the standard deviations between radio occultation tem­
perature soundings and analyses data on the respective winter hemisphere. Clearly, the 
issue cannot be decided without additional, independent auxiliary data against which 
both the retrievals and the NWP analyses have to be validated. 

In a more recent study undertaken in the context of validation activities for CHAMP, 
Schöllhammer et al. (2003a,b) compared three different stratospheric analyses. Based 
on RMS differences between different analyses, the authors argue that, for present day 
stratospheric analyses, there is actually little difference in the agreement between the 
hemispheres in the lower stratosphere (up to 30 hPa) during both a NH winter and sum­
mer month. This is different at the 10 hPa level, where the enhanced variability of the 
stratospheric flow in the NH winter may even more than compensate issues related to 
the data sparesity on the SH. The finding for the lower stratosphere is consistent with 
Simmons et al. (2003), who concluded that the analyses error in the lower stratosphere 
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of the ECMWF data assimilation system is below the error of radiosonde observations, 
and comparable to the accuracy of the analyses in the NH. Thus, for present NWP prod­
ucts, and therefore for the validation of GRAS products, the data quality of analyses in 
the lower stratosphere is not affected by the density of conventional meteorological 
observations. We note that the improvement of the quality in SH stratospheric analy­
ses became possible through advances in the use of satellite data, which has improved 
significantly over the last few years. Thus, a seasonal hemispheric difference in the 
NWP product quality is probably likely to have contributed to the observed behaviour 
in the meridional distribution of the RMS deviations between GPS/MET and ECMWF 
temperatures. 

The role of the use of a priori data in radio occultation retrievals of stratospheric tem­
peratures is dicussed by Marquardt et al. (2003c), who showed how a change in its 
use may affect both mean and RMS deviations of CHAMP vs. ECMWF data. Fur­
thermore, (Schöllhammer et al., 2003b) and Marquardt et al. (2003b) show statistics of 
CHAMP data vs. co–located radiosonde data for the months of January and May 2002, 
respectively. While the comparison was global, the majority of radiosonde stations is 
located in the NH. It therefore is effectively a comparison for the NH. Dry temperature 
retrievals were obtained from GFZ Potsdam. At the time when the comparison was 
performed, the setup of the GFZ retrieval was very similar with respect to using clima­
tology to the GPS/MET retrieval. Thus, the comparison may have some relevance for 
the GPS/MET problem. The results in Schöllhammer et al. and Marquardt et al. show 
significantly larger standard deviations between CHAMP and radiosondes for all lev­
els in the stratosphere. Temperature profiles obtained from a 1D–Var retrieval (which 
makes a statistical optimal use of a priori data) showed considerably less variability in 
the standard deviations during the two months. This suggests that the larger standard 
deviations of dry temperature CHAMP data - and possibly GPS/MET data as well – 
during NH winter are in fact related to the use of a priori in the retrieval. In contrast 
to the assumption of Rocken et al. (1997) and Steiner et al. (1999), therefore, it is very 
well possible that the accuracy of radio occultation retrievals does depend on hemi­
sphere or season, simply due to the use of a priori. In order to reach this conclusion, 
however, validation against NWP data needed to be carried out during two seasons (to 
identify the problem), and comparisons with other datasets were required to find out 
what factors contribute to it. 

Having these difficulties in mind, we do suggest that the validation of retrieved at­
mospheric parameters against NWP analyses and/or short range forecasts will play an 
important part in any validation exercise. However, statistics need to be calculated over 
sufficiently long periods (i.e., over more than just a few days), and should cover at least 
two different seasons. If possible, several different analyses should be used for inter-
comparison, if only to identify systematic differences between the analyses. If system­
atic deviations between retrieved geophysical parameters and analyses are found, addi­
tional comparisons against independent meteorological data sets are probably required 
in order to understand which differences have to be attributed to a particular analysis, to 
a priori used in the retrieval of the geophysical parameters, or to the raw measurements 

35
 



themselves. Atmospheric variability needs to be taken into account properly. 

3.6.2 Comparisons with ground based and airborne co–located measurements 

Similar to NWP products, routinely used meteorological measurement systems like ra­
diosondes usually undergo periodic validation exercises themselves, and therefore have 
some traceability chain established. In contrast to NWP analyses, however, conven­
tional meteorological observations are often only available over certain regions, or in 
few selected locations. One problem for a validation exercise using these data sets is to 
obtain a sufficiently large number of coincident measurements within a reasonably short 
period; otherwise, seasonal variations in atmospheric variability may mask seasonally 
dependent systematic problems in the parameters to be validated. This is especially 
important for activities within the commisioning phase for the GRAS instrument. The 
previously mentioned co–location / variability problem, of course, also applies. 

We note that only those measurements which exhibit a significant overlap in terms of in­
formation content with the observations to be validated can contribute to the validation. 
For example, measurements of integrated water vapour (which is largely determined 
by boundary layer humidity) can hardly add useful information for the validation of 
radio occultation measurements, because the latter provide little or no information on 
boundary layer moisture abundance. 

3.6.2.1 Radiosondes Radiosondes still form the backbone of the global meteorolog­
ical observation network. They are subject to regular and extensive comparison tests, 
both coordinated by WMO (e.g., in 1984, 1985, 1989, 1995, and 2001) as well as un­
dertaken by national meteorological services. Thus, radiosondes probably exhibit the 
best traceability chain for atmospheric observations that can reasonably be expected. 
Modern sensors like the Vaisalla RS80 radiosonde may provide temperature soundings 
with errors in the order of 0.5 K, even at stratospheric altitudes, and relative humidities 
with errors in the order of 5. . . 10% throughout the troposphere (Nash, pers. comm.). 

Nevertheless, large geographical differences in the data quality of radiosondes do exist. 
This is mainly related to poor handling practices and to the use of out–of–date equip­
ment and sensors. National meteorological services as well as the ECMWF maintain 
lists of reliable radiosonde stations with a proven record of high quality measurements, 
and monitor the performance of the radiosonde network. We recommend to restrict 
the validation of GRAS retrieval products to high quality radiosonde data; the required 
quality information is readily available from Met Services. 

Because of the nearly global coverage of radiosonde observations, a reasonably large 
number of matches can be obtained within a sufficiently short period of time. The num­
ber of matches will, of course, depend on the collocation criteria. CHAMP, for exam­
ple, regularly provides between 300 and 500 matches each month for distances below 
300 km and 3 hours between occultation and radiosonde launch site. This is sufficient 
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CHAMP radiosonde matches between 01 Jul 2002 and 31 Jul 2002 
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Fig. 8: Distribution of matches between radiosondes (blue) and CHAMP occultations 
(red) during July (left) and September 2002 (right). 

to calculate monthly global statistics. Fig. 8 shows the distribution of matches during 
July and September 2002. Note that the details of the distribution will depend on the or­
bit geometry of the satellite. In case of CHAMP, because of its drifting orbit, the global 
distribution changes over time. In July 2002, a large number of matches was obtained 
over Asia and Australia, while there were only few co–located observations over Asia 
and none over Australia during September 2002. Also note that even in mid–latitudes 
where the data density of occultations is highest, an individual radiosonde site is usually 
not involved in more than 4 or 5 matches per month. In many cases, no matches occur 
at all. Thus, for a single satellite radio occultation mission like GRAS, the operational 
radiosonde network will provide sufficiently many matches to perform routine valida­
tion tasks. Validation measurements undertaken at a single site, however, will require 
long periods of data gathering before meaningful statistics can be calculated, and will 
therefore suffer from the seasonality problem mentioned earlier. 

Radiosonde data obtained via the Global Telecommunication System (GTS) is avail­
able on a vertical grid of standard (“mandatory”) pressure levels. Additionally data 
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on “significant” levels, in principle, allows the reconstruction of somewhat higher re­
solved vertical profiles, and will also give information on the tropopause as seen in 
the radiosonde ascent. However, even significant levels will not provide the complete 
information as is available from a fully resolved radiosonde ascent, where the vertical 
resolution is in the order of 50 m. Some national meteorological services like the Met 
Office have recently started to archive the full resolution radiosonde data for ascents 
undertaken at their own sites. This type of data could be used to validate small vertical 
scale variation as caused by atmospheric gravity waves; signatures of the latter have 
been found in radio occultation data (e.g., Steiner and Kirchengast, 2000; Tsuda et al., 
2000). Note, however, that the retrieval of atmospheric parameters from GRAS level 1b 
data needs to be sufficiently well resolved in order to represent these small scale types 
of atmospheric fluctuations. As we pointed out in section 3.5 (and will demonstrate in 
section 3.8), a 1D–Var using a standard NWP vertical level structure does not provide a 
sufficient resolution; the exploitation of fully resolved radiosonde data would therefore 
require a high resolution 1D–Var retrieval. 

Also note that gravity waves occur predominatly within the tropics and subtropics. 
Thus, the validation of the small scale features of GRAS level1b data should primar­
ily be undertaken using tropical and subtropical radiosonde data. Unfortunately, fully 
resolved radiosonde data is not usually available from these regions. Because of the 
small number of matches between radio occultations and radiosonde ascents for an in­
dividual site, however, we recommend against a dedicated tropical validation campaign 
for GRAS. Instead, a network of tropical and subtropical radiosonde stations willing to 
launch radiosondes on demand whenever a GRAS occultation is located near to their 
site might be established for the purpose of GRAS level1b validation, at least during 
the commissioning phase, provided that the full resolution radiosonde is passed back to 
EUMETSAT. This would require the ability to predict the locations of GRAS occulta­
tions several days ahead (which is probably possible). Data from tropical measurement 
campaigns run for other scientific reasons, if available, might also be utilised. It should 
be kept in mind, though, that the number of co–located measurements will still be small 
compared to the amount of comparison data obtained from the operational, but less well 
resolved radiosonde network. 

3.6.2.2 Lidars Lidar (Light detection and ranging) instruments emit a beam of light 
(from a laser), and determine properties of the atmosphere by analysing the backscat­
tered signal. Rayleigh lidars (e.g., Hauchecorne and Chanin, 1980) measure upper air 
temperature in the altitude range between (typically) 25 and 100 km. Temperature lidars 
exhibit theoretical temperature errors being below 1-2 K below 50 km, especially after 
temporal averaging; their vertical resolutions vary between 75 and 300 m, depending 
on operating modes. Lidar systems for tropospheric humidity (Raman lidars) as well as 
for trace gas species (ozone, aerosol) are also frequently used. 

Lidar measurements have been successfully used for satellite validation in the past, 
although the number of co–located measurements is usually small (typically several 
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tens). It should also be kept in mind that Lidars, as all remote sensing instruments, do 
not provide in situ measurements of geophysical quantities. Processing software may 
add errors and require some “optimisation” (e.g., Leblanc et al., 1998). Thus, only data 
from lidar sites that undergo regular validation and intercomparison efforts themselves 
should be considered for validation of GRAS products. 

A group of sites that does untertake regular validations is the Network for the Detection 
of Stratospheric Change (NDSC). Currently, the NDSC network consists of 11 primary 
and complementary stations providing stratospheric temperature measurements by li­
dar. An additional mobile temperature lidar is available for measurement campaigns6. 
Note, however, that not all of these instruments are operated all year round. Similar to 
radiosondes, lidar measurements undertaken at a single site only will not produce many 
co–located measurements over a short period like a month. Lidars also only operate at 
nighttime and under clear sky conditions. This further limits the number of available 
co–located observations. Thus, it is possible that only a few co–located measurements 
can reasonably be expected over a period of a month. We therefore believe that the use­
fulness of Lidar observations for the validation of GRAS products is limited, especially 
during the commissioning phase. In the long term, Lidar measurements will provide 
an additional data set to compare GRAS data with, provided the problem of seasonally 
varying atmospheric conditions can be solved or shown to be negligible. 

3.6.3 AMDAR 

The AMDAR (Aircraft Meteorological Data Reporting) system consists of automated 
wind, temperature and pressure measurements along with the aircrafts position and a 
measure of turbulence, obtained from a large fleet of civilian commercial passenger air-
crafts, predominantly from Europe, the US and Japan. Data is transmitted via satellite 
links to national Met Services and routinely used in today’s data assimilation systems. 
Although the data processing involved it quite complex, errors in reported wind and 
temperatures are comparable with those of radiosonde systems. Thus, AMDAR ob­
servations can provide high quality single level data in cruise and detailed profile data 
up to cruise levels near airports. Because of the distribution of the major flight tracks 
(mainly over the US, Europe, and the Northern Atlantic), data coverage is restricted 
to these areas. The European AMDAR project (E-AMDAR) aims at providing ascent 
and descent measurements as a complement and potential substitute for radiosondes on 
the territory of European members at over 140 European airports, 35 of which should 
provide at least three profiles per hour during the day time. The programme also works 
on optimising the data collection process and addressing the need for humidity mea­
surements as soon as practicable. Similar activities are undertaken in other countries. 
Unfortunately, it is not clear when large numbers of humidity measurements will be­
come available on a routine basis due to the technical difficulties in developing a robust, 

6Source: NDSC web page, http://www.ndsc.ncep.noaa.gov 
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reliable and accurate sensor7. 

Vertical AMDAR profiles would certainly provide a useful comparison set for GRAS 
tropospheric refractivity, temperature and moisture retrievals if a sufficiently large num­
ber of humidity measurements become available during the GRAS commissioning 
phase. The large number of the routinely undertaken ascent and descent measurements 
over major airports should be sufficient to gather several ten to hundred matches over 
periods of a few weeks or a month. It should be noted, however, that the data is re­
stricted to altitudes below ≈ 200 hPa. If no, or only few humidity measurements, are 
available at the time, therefore, their value for the validation of GRAS retrievals might 
be limited as water vapour might contribute significantly to GRAS observations for the 
largest part of this altitude range. 

3.6.3.1 MOZAIC MOZAIC (Measurement of Ozone and Water Vapour by Airbus 
In–service Aircraft, see Marenco et al., 1998; Helten et al., 1998) provide in-situ mea­
surements of relative humidity and temperature (among others) along the flight path 
of five commercial aircraft. Of special interest for the validation GRAS are the vertical 
profiles of these quantities which are obtained during ascent and descent near about 200 
cities. However, data is collected from the respective aircraft only once a month, and 
becomes available to the research community even later. Because of the small number 
of aircrafts involved, only few coincident measurements with GRAS occultations can 
be expected. We therefore do not expect that MOZAIC measurements will provide a 
useful source of validation data for GRAS. 

3.6.3.2 GPS ground stations GPS ground stations measuring total zenith path delay 
or slanted path delay exploit the same signals as radio occultations do, but are mainly 
sensitive to humidity in the boundary layer of the Earth’s atmosphere. Radio occulta­
tions, however, exhibit the largest errors in the lowest few kilometres of the atmosphere, 
and may not be able to provide information on the atmospheric boundary layer at all. 
Thus, the regions of the atmosphere which are covered by GPS ground and space based 
soundings have little or no overlap, and an intercomparison between these will not pro­
vide additional information for the validation of GRAS data. 

3.6.4 Comparisons with other types of space based remote sensing instruments 

Compared to, e.g., radiosondes, the number of vertical temperature and humidity pro­
files retrieved from remote sensing instruments like those from ATOVS package is 
huge. Therefore, many co–located measurements can potentially be compared in an 
validation exercise. However, remote sensing instruments do not provide true “mea­
surements” of atmospheric parameters. Instead, retrieved atmospheric profiles contain 

7Sources: EUMETNET web page, http://www.eumetnet.eu.org, and E-AMDAR web page, 
http://www.metoffice.com/research/interproj/amdar/index.html. 
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a priori data. An intercomparison of retrievals from different sources may therefore be, 
at least partially, a comparison of the a priori data used within these retrievals. They 
also differ in terms of resolution, and usually exhibit complicated error statistics. If 
retrievals of two different observing systems are to be compared with each other, these 
issues have to be taken into account. 

A framework for a comparison of retrievals from different remote sensing instruments 
was given by Rodgers (2000) and Rodgers and Connor (2004), and is partially based 
on Eyre (1987). It is, of course, obvious that only those instruments can be reasonably 
compared with each other if they are sensitive to the same atmospheric variables, e.g. 
humidity and temperature. In the following, we initially assume that the state vectors 
used in both retrievals are identical. We will also assume that the same a priori infor­
mation xb has been used in both retrievals. A formal treatment for different a prioris, 
only partially overlapping state vectors, and for the comparison of derived quantities 
(like layer means, thicknesses or values interpolated from different state vectors) will 
be given in later sections. Another approach, namely to use the result of one retrieval 
as a priori in the other, will also be discussed briefly. 

3.6.4.1 Comparing retrieved quantities We begin by writing down a linearised ver­
sion of the retrieval procedure Eyre (1987); Rodgers and Connor (2004): 

x̂− xb = A(x − xb)+ ε . (26) 

Here, xb and x̂ denote the background (or a priori) data used within the retrieval and 
its solution, respectively; ε describes the retrieval error originating from the measure­
ment errors, and x represents the “true” state of the atmosphere. The linear operator A 
is usually called the “averaging kernel” (Backus and Gilbert, 1970) or “model resolu­
tion matrix” (Menke, 1989); “state resolution matrix” and “resolving kernel” are also 
common names. 

In principle, any retrieval can be linearised and written in the above way; the same 
framework may therefore be applied to both variational and non–variational retrievals. 
In practice, however, the linearised forms of non–variational retrievals are not often 
available; the use of a priori data complicates the derivation of the appropriate linearised 
expression. Within the variational framework, however, averaging kernels are readily 
available, and given by 

� �−1
A = HT (E +F)−1H +B−1 HT (E +F)−1H . (27) 

We therefore believe that the application of the framework developed in this and the 
following section will, in practice, be restricted to cases where the retrieved atmospheric 
products of both remote sensing instruments are obtained within a variational (1D–Var) 
context. 

Once the averaging kernels A1 and A2 of the two observing systems are known, the 
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difference of two retrievals x̂1 and x̂1 is given (in linear approximation) as 

x̂2 − x̂1 = (A2 − A1)(x − xb)+ ε2 − ε1 . (28) 

The corresponding covariance matrix of the difference is then given by 

Px̂2−x̂1 = (A2 − A1)T (x − xb)(A2 − A1)+P1 +P2 , (29) 

and the corresponding χ2 by 

χ2 = (x̂2 − x̂1)T Px̂2−ˆ (x̂2 − x̂1) . (30)x1 

In theory, two retrievals from different observing systems, sharing the same a priori and 
state vectors, may be compared by calculating χ2 as given by eq. (30), with the degrees 
of freedom being the number of elements of the state vector. If the two retrievals fail 
this test, it may be concluded the retrievals are inconsistent with each other. 

In practice, however, the error estimates for both the background and the observations 
(and therefore the averaging kernels) may not be known sufficiently well. Similar to the 
use of 1D–Var diagnostics, some tuning of critical threshold values might be required. 

3.6.4.2 Removing a priori In case that the two retrievals do not share the same a 
priori information, it is possible to formally “remove” the a priori information if the 
latter is known for each individual retrieval. If xc is a state vector drawn from a “com­
parison ensemble” (which may well be identical with one of the two a prioris used in 
the retrievals), transformed retrievals may be calculated as 

x̃i = x̂i +(Ai − I)(xb,i − xc) , (31) 

where xb,i denote the individual retrieval’s a priori state vectors. Inserting the linearised 
retrieval (26) yields 

x̃i − xc = Ai(x − xc)+ εi . (32) 

Thus, x̃i is, within the validity of the linear approximation, the retrieval for observing 
system i, but corrected for the new xc as (joint) a priori. The comparison of the two 
retrievals may then proceed as in the previous section, but using x̃i instead of x̂i, and xc 

instead of the xb,i. 

3.6.4.3 State vectors only overlapping partially If the state vectors of the observing 
systems overlap only partially, eq. (26) needs to be generalised slightly. If s denotes the 
full state vector, x the common and e the extra elements, the linearised retrieval equation 
can be written as 

x̂− xb Axx Axe x − xb εxŝ− sb = = + (33)
ê− eb Aex Aee e − eb εe 
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The state vector part which is to be compared with the retrieval from the second ob­
serving system, therefore, is 

x̂− xb = Axx(x − xb)+Axe(e − eb)+ εx . (34) 

Rearranging gives the error of x̂ as 

x̂− x = (Axx − I)(x − xb)+Axe(e − eb)+ εx . (35) 

Thus, the error in x̂ now contains an additional part due the interrelation between the 
common part of the state vector and its extra terms. The covariance of the the common 
part of the state is therefore given by 

Px = AxePebAT +Pεx (36)xe 

where Peb is the error covariance of the a priori of e; Rodgers and Connor denote the 
contribution of the term Axe(e − eb) as “interference error”. If the common part of the 
state vectors have been identified and their covariance matrices been corrected for the 
interference error, the comparison may proceed as described in section 3.6.4.1. 

3.6.4.4 Derived quantities Let us assume we are interested in the estimate of a linear 
function of the true state vector x, e.g. a layer mean, a column or a profile linearly 
interpolated onto a new set of levels. This may be written as 

z = zb +B(x − xb) . (37) 

Given we have an estimate x̂ of the true state vector - how can we obtain an optimal (in 
the sense of Rodgers) estimate of z? Assuming that we formally know the probability 
of the state given the measurements, i.e. P(x|y), the expected value (i.e., the most likely 
estimate) of z is given by 

Z 
ẑ = P(x|y)[zb +B(x − xb)]dx . (38) 

If the linear transform does not depend on x, the equation can be rearranged to give 
Z 

ẑ = zb +B P(x|y)(x − xb)dx . (39) 

R 
Thus, if x̂ is an optimal retrieval, i.e. if x̂ = P(x|y)xdx, an optimal estimate of z can 
be obtained via 

ẑ = zb +B(x̂− xb)dx . (40) 

Clearly, the averaging kernel and error covariance matrix of ẑ are then given by 

Az = BA (41) 
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and 

Pz = BPBT , (42) 

respectively. 

If x̂ is not a statistically optimal retrieval, or was obtained using a different a priori, a 
procedure similar to the one outlined in section 3.6.4.2 may be applied. We refer to 
section 4.2 of Rodgers and Connor (2004) for details. 

Again, after correcting averaging kernels and error covariance matrices for each re­
trieval, the intercomparison may proceed as described in section 3.6.4.1. 

3.6.4.5 Var–in–Var A slightly simpler method might be to use a retrieval from one 
(say the second) observing system as a priori in the retrieval of the other (say the first). 
Because the retrieved profile of system 2 exhibits smaller errors than the a priori, the 
1D–Var for the first instrument will be more constricted. Note that the higher resolution 
retrieval would be expected to reproduce the lower resolution measurement better than 
the other way round. With respect to the order of the retrievals, therefore, the method 
will not be symmetric. 

If the Var–in–Var cannot be implemented, it is possible to simulate this approach if, 
as in the previous sections, the averaging kernels and a comparison ensemble for both 
retrievals are available. If x̂12 denotes the first retrieval, using the second as a priori, the 
linearised retrieval gives 

x̂12 = xc +A1(x̂2 − xc) (43) 

and it’s averaging kernel is apparently 

A12 = A1A2 . (44) 

The difference between x̂12 and the usual retrieval solution x̂1 is given by 

δ12 = x̂1 − x̂12 = (A1 − A1A2)(x − xc)+ ε1 − A1ε2 (45) 

with covariance 

= (A1 − A1A2)Pc(A1 − A1A2)T +P1 − A1P2AT . (46)Pδ12 1 

3.6.4.6 Practical application In practice, one might set up a 1D–Var retrieval for 
both GRAS bending angles and, say, co–located ATOVS soundings, using identical 
a prioris and the same vertical level structure (e.g., on the 43 RTTOV standard pres­
sure levels). Because a priori and state vector are identical, the simplified procedure 
described in section 3.6.4.1 can be applied directly. This involves calculating the aver­
aging kernels of both observing systems, of Px̂2−ˆ , and finally of the χ2 given by (30). x1 
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Comparing the actual value with the theoretically expected one finally gives an indica­
tion if the two measurements are consistent with each other (within their uncertainty, 
and within limits of the different measurement characteristics). 

If retrievals from observing systems which are are not handled inhouse shall also be 
compared with GRAS data, data providers of the external retrievals need to provide 
their averaging kernels and any a priori along with the retrievals. Some data providers, 
e.g. for MIPAS, are aware of the problem and interested in comparing data within the 
above framework (Stiller et al., 2003). As the two state vectors of the retrievals are 
likely to differ, and may be based on different vertical level structures, a procedure as 
outlined in sections 3.6.4.3 and 3.6.4.4 will be required. 

The above demonstrates that the intercomparison of retrievals from different remote 
sensing instruments is a complicated task. As a result, we get information if two re­
trieved profiles are consistent within the errors of the raw measurements, or not. We 
do not yet know which of the two retrievals is in error. It can be argued that the same 
information can already be obtained from the 1D–Var diagnostics: here, we get infor­
mation whether a specific GRAS (or ATOVS) measurement is consistent with the NWP 
a priori. If the raw data from the second instrument to be compared with has been as­
similated into the NWP product, little or no additional information can obviously be 
expected from a comparison of two retrievals. 

We therefore recommend that the additional work associated with the intercomparison 
of different remote sensing instruments is only undertaken if an additional benefit can 
be expected. One example would be the comparison of GRAS retrievals with retrievals 
from a remote sensing instrument which provides a higher vertical resolution than NWP 
products. This might help in the validation of small scale vertical structures in the lower 
tropical stratosphere. Note, however, that this requires retrievals with a sufficiently high 
vertical resolution for both observing systems. There is no point in undertaking this 
comparison with retrievals on, say, the 43 pressure levels from the RTTOV setup. 

3.7 Validation campaigns 

In theory, dedicated validation campaigns for a remote sensing instrument like GRAS 
have several advantages: More co–located measurements from a multitude of differ­
ent ground based and possibly airborne instruments may become available in a com­
paratively short amount of time than otherwise possible. Standard instruments (like 
radiosondes) may provide improved research quality data and higher vertical and tem­
poral sampling than usual. Data from additional research instruments may also be avail­
able, and campaigns may involve experience from academia. Measurements taken from 
research aircraft will be able to circumvent the co–location problem, because flights 
can be directed towards the expected location of a GRAS occultation. Airborne radio 
occultation soundings could be of special interest, provided that “space–based equiva­
lent bending angles” with error characteristics comparable or better than those obtained 
from space borne radio occultations can indeed be derived. 
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The main disadvantage of dedicated measurement campaigns was already pointed out 
in section 3.6.2.1: Ground based measurements at a single or only few sites will not 
provide enough matches with observations obtained from a single satellite radio oc­
cultation mission like GRAS within a short period of time. Both groundbased and 
airborne measurements are highly weather dependent. Validation campaigns are also 
expensive. If airborne radio occultation measurements should not be available with a 
bending angle quality comparable to space based radio occultations, we recommend 
against a dedicated validation campaign for GRAS. If they are available, it should be 
carefully considered if the small number of co–located bending angle profiles that can 
be obtained during a measurement campaign are indeed worth the effort. In particular, 
it should be considered which additional information can realistically be obtained from 
a validation campaign compared to what’s already available from 1D–Var diagnostics 
and the comparison with conventional operational data sets. 

3.8 Practical experience 

For the purpose of illustration, we have applied some of the proposed methods to data 
obtained from a preliminary version of the Met Office’s Radio Occultation Processing 
Package (ROPP). The system uses CHAMP excess phase delay data as available from 
GFZ Potsdam or UCAR in order to calculate ionospheric corrected bending angle pro­
files. Calculations are based on the standard geometrical optics approach (Vorob’ev 
and Krasil’nikova, 1994); no advanced retrieval methods like the Canonical Transform 
(Gorbunov, 2002b,c,a) or the Full Spectral Inversion (Jensen et al., 2003) are applied. 
Results of the error propagation for the error correlation structure were already pre­
sented in Fig. 5. In the current processing scheme, ionospheric corrected bending angles 
are downsampled to a 247 level vertical grid between the surface and 60 km altitude. 
The grid roughly samples one Fresnel diameter with four data points. 

3.8.1 Statistical methods for noise estimation 

Fig. 9 shows the global statistics of GCV estimates of the CHAMP L1 excess phase 
delay noise during September 2002 in a similar fashion as in the Monte–Carlo simulated 
Fig. 6. The qualitative behaviour (i.e., an increase in the estimated noise levels towards 
longer window lengths) is the same as in the simulated case. The transition towards 
higher noise estimates (again as function of window length) is less well pronounced 
in the real data, probably due to the fact that the 50 Hz tracking of the GPS signal 
at the beginning of an occultation occures at a different altitude for each event in the 
real data. A surpring effect is the large variability of estimated excess phase delay 
noise, indicated by the large standard deviations. This suggests that individual profiles 
may vary significantly with respect to their noise level. Fig. 10 shows the meridional 
distribution of the estimated excess phase noise of the L1 channel as well as in the 
standard deviation of the estimate, grouped into 10◦ wide latitude bins for three different 
months. The figures suggest that there seems to be a generally enhanced noise level in 
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Fig. 9: Mean L1 phase delay noise estimated by GCV as function of data window length 
subject to the GCV analysis (measured from the beginning of the occultation) for all 
CHAMP data during September 2002. The error bars denote the 1 σ standard deviation 
of the estimated values. 

tropical and subtropical occultations. Variability is largest in the mid latitudes of the 
NH, although a secondary maximum appears in the SH subtropics. To our knowledge, 
this is the first indication of geographically varying noise levels in (relatively) little 
processed radio occultation data; it is currently not known what causes the meridional 
variability in the mean noise levels, or their seasonal and longitudinal variability. One 
possible reason is ionospheric activity seen on the excess phase delay data; different 
error characteristics of ground station data used in the double differencing applied for 
clock correction is another. Thermal changes of the spacecraft due to day/night effects 
might also be relevant. More research is certainly required. 

CHAMP data is known to exhibit 1 and 2 Hz “spikes” in the raw phase data (Wickert, 
pers. comm.); in double differenced data, these become visible in a smoothed form 
with the naked eye in ionospheric corrected excess phases. Despite the usually applied 
smoothing of the excess phase delays, these spikes show up in ionospheric corrected 
bending angles as wave–like structures with vertical wavelengths of a few km. Ampli­
tudes can reach several few microradians. Applying a GCV noise estimator for uncorre­
lated noise to a signal with such highly correlated noise fails (in that the estimated noise 
is too small)8; a Sokolovskiy and Hunt (1996) like approach systematically estimates 
larger noise levels. These are typically in the order of several microradians, which is 
by a factor of two or more larger than which is expected from the error propagation 

8Similarly, we assume that spike-related structures in the excess phases are not taken into account 
when the noise is estimated by GCV . This conclusion is based on the width of the smoothing win­
dows generated by the GCV algorithm as well as on our analysis of the GCV residuals. As a con­
sequence, the meridional distribution of the noise levels in Fig. 10 is likely not to be related to the 
spikes. 
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Fig. 10: Estimated L1 excess phase delay noise as function of latitude for three 4 week 
periods during May/June 2002, September 2002, and May/June 2003. 

presented in section 3.2. We note that this example illustrates how the inconsistency 
between noise estimates of the real data and theoretically expected noise levels may 
indicate a potential problem in the data (in this case the existence of the 1 Hz and 2 Hz 
spikes). 

3.8.2 1D–Var statistics and forward modelling 

The thinned bending angle data are used in a prototype implementation of the bending 
angle 1D–Var (see Appendix A). The main difference of the 1D–Var implemented in 
the Met Office processing scheme is that it uses ECMWF’s operational 60 vertical levels 
rather than the fixed pressure levels as in the prototype software. As background data, 
short range forecasts from ECMWF have been interpolated from a 3 hourly / 0.5◦×0.5◦ 

resolution onto the occultation’s position. 

For the purpose of this section, we have chosen to let observational errors follow a sim­
ple model which is similar to a refractivity error model originally proposed by Kursinski 
et al. (1997b). In the lower stratosphere, bending angle errors are set to a fixed relative 
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Fig. 11: Assumed errors in bending angle (relative, in %; left), background temperature 
(in K, middle) and specific humidity (in g/kg; right) for the CHAMP profile shown in 
Fig. 14. Note the different vertical scales. 

value of 1%; below the tropopause, the error increases linearly to 10% at the surface. 
Note that the tropospheric error estimate uses some background information on the lo­
cation of the tropopause. In the mid and upper stratosphere, the minimum value of the 
bending angle error is set to 3µrad, a heuristically set value which takes into account 
our results from the bending angle noise estimation discussed above. For simplicity, the 
errors are assumed to be uncorrelated in the vertical. The vertical profile of the relative 
bending angle error for a tropical observation taken by CHAMP in May 2001 is shown 
in Fig. 11. We note that this particular CHAMP observation is close to the radiosonde 
station of Nairobi, and will be used for a number of illustrations in the following. 

Background errors are based on the operationally available error estimates provided by 
ECMWF (Fisher and Courtier, 1995; Andersson et al., 2000) for the initial state of a 
forecast. Errors are inflated according to the length of the forecast period assuming an 
exponential error growth with an error doubling time of 1.5 days (for error growth in 
NWP forecasts, see, e.g., Savijarvi, 1995). The corresponding vertical error profiles for 
temperature and specific humidity are also shown in Fig. 11. Error covariance matrices 
are constructed using globally averaged vertical error correlations for temperature and 
humidity kindly provided by M. Fisher (ECMWF). 

In the Met Office’s implementation of the bending angle 1D–Var, thinned bending angle 
values undergo a background quality control (BGQC); data points deviating by more 
then 10 expected standard deviations from the background are not used in the retrieval 
(see eq. (5) in Section 2). The BGQC typically removes the data points in the lowest 
few hundred meters at the lower end of the observed profiles. This is related to the 
well known systematic bias of bending angles for the phase–only retrieval. The BGQC 
here simply acts as limiting the amount of bias that is accepted by the system. In rare 
cases, individual data points in the mid and upper stratosphere are rejected from the 
bending bending angle profile. These are related to peaks of larger oscillatory pertur­
bations in the ionospheric corrected bending angle profiles related to the spikes in the 
raw CHAMP data. Complete profiles are rejected if more than 50% of the data points 
are rejected. 
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Fig. 12: Theoretical frequency distribution of a normalised cost function for 247 degrees 
of freedom. Note that maximum of the distribution has been normalised to 1. 

The theoretical distribution of the cost function values for 247 degrees of freedom (i.e., 
the number of observations used in a typical 1D–Var retrieval) is shown in Fig. 12. It 
exhibits its peak at a value of 0.5, and a half width of less than 0.1. A histogram of 
the actual distribution of normalised cost function values Jn for extratropical CHAMP 
profiles during September 2002 is shown in Fig. 13. As can be seen immediately, 
both the mean location (around 0.84) and the width of the cost function distribution 
are larger than theoretically expected. This suggests that the error specifications for 
either background or observations (or both) are too optimistic; they need revision. In 
the current context (where we knowingly have assumed a crude, imperfect error model 
for the observations), this is not surprising. If we would not have known about the 
imperfection of our error estimates, however, the Jn statistics would have told us so 
immediately. 

So even if the error characterisation is not perfect, cost function values provide useful 
information. Another example is the meridional distribution of the cost function, also 
shown in Fig. 13. Note the overall increase of cost function values in the subtropics and 
tropics; the same regions are also characterised by a larger number of profiles exhibiting 
unusally ’large’ cost function values compared to the extratropics. 

We already showed in Section 2 how the monitoring of values of Jn may help to identify 
profiles exhibiting gross errors in the observations. The cost function can also be used to 
implement an automated quality control. This does, of course, assume that gross errors 
do indeed occur only rarely, so that the distribution of Jn is reasonably well behaved. A 
heuristic approach to quality control could be to calculate a threshold value for Jn based 
on its actual distribution. For example, those 5% of the data with the largest Jn values 
might flagged as being of poor quality. The solid line in Fig. 13 denotes the critical 
threshold value as function of latitude if this procedure is applied to data in individual 
10◦ wide latitude bins; the threshold curve has been made symmetric with respect to 
the equator. By construction, this method rejects about 5% of the entire data set. In an 
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Fig. 13: Top: Frequency distribution of normalised cost function values for extratropical 
(poleward of 30◦) CHAMP bending angles during September 2002 (black). The solid 
red curve shows a normal distribution fitted to the actual frequency distribution. Bottom: 
Meridional distribution of all cost function values during the same period. The solid line 
denotes a heuristic critical value for a cost function based objective quality control (see 
text for details). 

operational setup, rejection limits might be based on, e.g., the last 30 days of data. 

The meridional costfunction distribution shown in Fig. 13 suggests that the fit between 
observations and background is generally poorer in the subtropics and tropics compared 
to the extratropics. A possible explanation could be that the well known problems in 
the retrieval of bending angles in the lower and mid troposphere due to atmospheric 
multipath surface in the cost function value distribution. This is, however, not the case. 
Fig. 14 shows retrieved temperature and specific humidity profiles for the occultation 
near Nairobi, along with the vertical profiles used as background. Also shown are the 
assumed background errors of humidity. Clearly, the retrieval is well within the error 
limits of the background; at least in this case, atmospheric multipath does not cause an 
increase in the cost function value. 

As a matter of fact, the value of the normalised cost function for this particular case 
is 0.55. With the overall characteristics of the cost function values in the tropics and 
subtropics in mind, this does not signal the profile in question as in any way problem­
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Fig. 14: Retrieved (solid, red) and background (dashed) temperature (left) and specific 
humidity profiles (right) for a CHAMP occultation on 15 May 2001. Note the different 
vertical scales. The error bars in the specific humidity plot denote the a priori errors 
assumed in the retrieval. 
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Fig. 15: Observed (red) and forward modelled (black) bending angles, normalised devi­
ation, and PGE (from left to right) for the CHAMP occultation shown in Fig. 14. The 
error bars in the leftmost figure denote the assumed observation and background errors, 
the latter forward modelled into bending angle space. 

atic. Nevertheless, the values of Jn restricted to tropospheric and stratospheric altitude 
ranges, being 0.38 and 0.65, respectively, indicate that the tropospheric observational 
error assumptions might actually be overly pessimistic. A potential problem, however, 
might exist in the stratosphere. In this case, the value of the cost function helps to 
narrow down the region where a possible problem in the data exists. We note that the 
increase of the stratospheric contribution to the cost at convergence is also a generic 
feature of the CHAMP data (and probably of radio occultation data in general). 

Turning to O − B statistics (Fig. 15), we find that the largest discrepancies between 
observations and background occur shortly above the tropopause, where retrieved and 
forward modelled bending angles differ by several standard deviations. The same in­
formation can also be drawn from the normalised deviation between the two (which is, 
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in refractivity. The dotted, dashed and dash-dotted lines denote relative refractivity obser­
vation errors, loosely modelled following Kursinski et al. (1997b). The estimate is based 
on CHAMP data during May and June 2001. 

√ 
up to a factor of 2, identical to the quantity u in Section 2), defined as 

(αo − αb)2 ∗ u = ,

σ2 

o + σ2 
b
 

or from the a priori probability of gross error (PGE; Fig. 15). Both the normalised 
deviation and the PGE are largest in the altitude range shown, and never exceed these 
values in other altitude regions for this specific profile. 

We note that the use of the PGE for an automated level wise quality control in the 
retrieval (as discussed in Section 2) would have led to the rejection of all data points 
between 18 and 19.5 km altitude. If the data in question is indeed subject to gross 
errors, this would be reasonable; if, however, the large PGE is related to a representation 
problem of the a priori (as will be shown in the following subsection), the levelwise QC 
would have rejected valid observational data. 

We therefore recommend that a levelwise QC based on the probability of gross error 
is only activated if the error estimates of both observations and a priori are sufficiently 
well understood and properly tuned. For the validation of GRAS level1b data, and 
specifically during the commissioning phase, the feature should not be used. However, 
we do recommend to monitor the diagnostically calculated PGE which may give hints 
where systematic problems in the error models of the observations or the background 
occur. 

3.8.3 Validation of retrieved parameters 

In the above example, it is not clear if the large deviations between CHAMP and 
ECMWF bending angles in the lower stratosphere are due to gross errors of the ob­
servation, or if an issue exists with respect to the representativity of the a priori. Fig. 16 
shows an estimate of the representativity error of a 60 level state vector compared to a 90 
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level version. The figure is based on a refractivity 1D–Var; refractivity errors modelled 
after Kursinski et al. (1997b) are also shown. In the tropics, the mean representation 
error in the lower stratosphere (around 20 km altitude) is indeed larger than the obser­
vational error. The same problem apparently does not exist in the extratropics. This 
suggests that atmospheric processes specific to the tropics cannot be represented well 
in the 60 level version (and therefore not by the 60 level background data). Bending 
angle variations like the one shown in Fig. 15 may therefore represent true atmospheric 
structures. 

Fig. 17 shows a retrieval for the same occultation, but using a refractivity 1D–Var with 
90 vertical levels. Also shown are the temperature sounding from a nearby radiosonde 
station in Nairobi (in a nominal distance of 30 km, launched about two hours after 
the occultation took place). The better resolved retrieval shows a wave like structure 
just above the tropopause which is in excellent agreement with the radiosonde data, 
suggesting that the deviation between CHAMP and ECMWF bending angles in Fig. 15 
does indeed represent a true atmospheric structure. At the same time, the agreement 
between the ECMWF background and the radiosonde is poor. 

Fig 17 also shows a physical dry temperature retrieval. The comparison with the ra­
diosonde is as good as that of the 1D–Var in the lower stratosphere, but larger devia­
tions exist above the 50 hPa level. Because dry temperature retrievals usually do not 
provide error estimates, they are not as well suited in the validation context. We there­
fore recommend against their use, as 1D–Var retrievals are likely to be able to provide 
a comparable vertical resolution, but having the benefit of better diagnostics. 

We note that the solution of the problem required the comparison of a retrieval with 
other auxiliary data than the a priori; we also stress that a sufficiently well resolved 
1D–Var had to be developed. 

4 Conclusions and recommendations 

We have proposed a validation strategy which aims at establishing a traceability chain 
for GRAS level 1b (and possibly retrieved) data. This is achieved by a stepwise ap­
proach, in which the actual and theoretically expected error characteristics are validated 
for each processing step. 

During the pre–launch phase of the GRAS instruments, emphasis is put on deriving 
a full error characterisation of calibrated and pre–processed GRAS level 1b data, and 
on testing the implemented software for consistency with the derived error characteris­
tics. Further numerical simulations might be used to assess various aspects of the error 
characteristics, like the applicability of the proposed statistical methods for the noise 
estimation in GRAS level 1b data, or the role of horizontal gradients and ionospheric 
perturbations on the error characteristics. 

For the validation during the commissioning and operational phase of the GRAS in­
strument, the error characteristics of excess phase delays and bending angles should be 
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Fig. 17: Experimental 1D–Var 90 level retrieval, based on a low resolution (L60) back­
ground. Shown are the retrieved temperature profile (red), background temperature 
(dashed), data from a radiosonde ascent in Nairobi (solid with black bullets), and a phys­
ical dry temperature retrieval (blue). See text for details. 

assessed by statistical methods, and compared to the expected error characteristics. If 
consistency cannot be achieved, the theoretical error models require revision. For mon­
itoring purposes, we recommend that these methods are applied throughout the lifetime 
of the instrument. 

Co–located data from other spaceborne radio occultation missions like CHAMP, SAC­
C, COSMIC and EQUARS, while not allowing an estimate of the true error of GRAS 
level 1b products, will be useful in assessing the instrumental noise characteristics. 
Such comparisons may act as independent validation of the statistical noise estimates 
of level1b data. They will be especially important during the commissioning phase, 
where a rapid understanding of the actual noise characteristics of the GRAS instrument 
is desirable. We recommend that the raw radio occultation data from other satellite 
missions are processed by the same calibration and preprocessing system (as far as 
possible). Additional random–like errors introduced by the differences in the various 
processing system would thereby be avoided. Once the applicability and reliability of 
the statistical monitoring algorithms is established, i.e. after the commissioning phase, 
comparisons with level 1b data from other radio occultation instruments will not be 
required on a routine basis. 

Airborne radio occultation measurements could play a role similar to spaceborne radio 
occultations, provided that the feasibility of conducting such measurements can be es­
tablished in time. If this is the case, measurements are likely to take place within the 
framework of a dedicated measurement campaign. If airborne radio occultations turn 
out not to be feasible, or if they should have poorer error characteristics then GRAS 
radio occultations, we recommend against a validation campaign. The main reason is 
that the number of co–located measurements that can be taken during the short period 
of time a validation campaign lasts is probably too small to be of significant use, at least 
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for a single satellite radio occultation mission like GRAS. 

A central part in the ongoing validation of GRAS level 1b is the application of a bend­
ing angle based 1D–Var and its diagnostics. During the commissioning phase, the 
diagnostic output will be used to improve the observation’s error characteristics and de­
rive heuristic thresholds for the later application of the 1D–Var’s diagnostic for quality 
control purposes. The validated error statistics should be made available to data users, 
e.g.in form of bending angle error covariance matrices. After the commissioning phase, 
the 1D–Var will mainly act as a monitoring and possibly objective quality control tool 
for GRAS level 1b data. We have demonstrated the potential usefulness of 1D–Var 
diagnostics (as well as of the proposed statistical methods for noise estimation) using 
CHAMP data. 

We note that the assimilation of GRAS data into a modern data assimilation system 
will also provide useful information on the data quality of GRAS observations. For 
example, the data monitoring usually undertaken at meteorological services will aim 
at verifying if the assumed error characteristics are met by the actual data. Studying 
the impact of GRAS data in data assimilation trial runs might hint towards sytematic 
problems in either the NWP data or the observations. Thus, NWP centres should be 
involved in the validation of GRAS data as early as possible. 

Additional information on the quality of GRAS level 1b data products may be obtained 
from regular intercomparisons of retrieved atmospheric temperature and humidity pro­
files with NWP and radiosonde data. We recommend to use data from several NWP 
analyses, at least during the commissioning phase. Radiosonde data should be restricted 
to data from a set of reliable radiosonde stations. Both activities should be continued 
after the commissioning phase for monitoring purposes. 

A specific aspect of radio occultation sounding is the high vertical resolution. Validating 
small scale vertical fluctuations in, e.g., stratospheric temperature profiles may require 
high resolution data. In the tropics, where such fluctuations are regularly present due to 
the strong gravity wave activity, such data is not readily available. A possible solution is 
the organisation of a network of tropical and subtropical radiosonde stations which are 
willing to launch dedicated radiosondes on demand, i.e. if a GRAS occultation occurs 
close by. The full radiosonde data should then be provided by the radiosonde sites. It 
should be kept in mind, though, that the number of matches will still be restricted. The 
exploitation of high resolution radiosonde data also requires a high resolution retrieval; 
a 1D–Var based on a standard NWP background (i.e., 60 or less vertical levels) is not 
able to provide gravity wave information. 

With respect to other ground based measurement techniques (like Lidars), the main 
problem is the small number of co–located measurements that can be achieved in a 
short amount of time (like a month). Experience with CHAMP data suggests that not 
more than 4 or 5 monthly matches can be obtained for a single site, if at all. Therefore, 
such data will not play an important role in the validation of GRAS data during the 
commissioning phase. For the same reason, we advise against any dedicated validation 
campaign that mainly relies on ground based measurements. In the long term, however, 
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comparisons of GRAS data with these measurements might be useful for monitoring 
purposes. 

Space based remote sensing systems may provide a significant higher number of co– 
located measurements than ground based observing systems. The main problem here 
is that all remote sensing measurements require a retrieval, which includes the use of 
a priori data. Measurement characteristics also differ between the instruments. Within 
the variational framework, it is possible to take these issues into account; we have out­
lined the necessary steps. Apart from being complicated and tedious, the procedure 
uses the same information (error characteristics of observations and background) as a 
1D–Var. The diagnostics of a 1D–Var also provides similar information for each indi­
vidual profile (i.e., the consistency of the data with the assumed error characteristics, or 
otherwise). We therefore believe that only little additional information can be gained 
by intercomparing retrievals of different remote sensing instruments, especially if these 
are already assimilated into the NWP products which are used as a priori for the 1D-Var. 

Ackowledgements 

We would like to thank William Bell, Steven English, John Eyre, John Nash, Dave 
Offiler, and Roger Saunders from the Met Office for discussions and inputs for var­
ious aspects of the validation problem. We would also like to thank J. Wickert and 
T. Schmidt from GFZ Potsdam for providing CHAMP excess path delay data, and An­
drew Collard from the Met Office for providing the matrix inversion and decomposition 
routines for the prototype software. 

References 

E. Andersson, F. Fisher, R. Munro, and A. NcNally. Diagnosis of background errors for 
radiances and other observable quantities in a variational data assimilation scheme, 
and the explanation of a case of poor convergence. Quart. J. Roy. Meteorol. Soc., 
126:1455–1472, 2000. 

E. Andersson and H. Jarvinen. Variational quality control. ECMWF Technical Memo­
randum 250, ECMWF, 1998. 

G.E. Backus and J.F. Gilbert.	 Uniqueness in the inversion of inaccurate gross earth 
data. Phil. Trans. R. Soc. Lond., 266:123, 1970. 

P. Craven and G. Wahba. Smoothing noisy data with spline functions.	 Numer. Math., 
31:377–403, 1979. 

A. Dudhia and N. Livesey. Validation of temperature measurements from the improved 
stratospheric and mesospheric sounder. J. Geophys. Res., 101:9795–9809, 1996. 

57
 



GRAS Calibration and Validation Plan. EUMETSAT, Am Kavalleriesand 31, D-64295 
Darmstadt, Germany, 2004. 

J.R. Eyre. On systematic errors in satellite sounding products and their climatological 
mean values. Quart. J. Roy. Meteorol. Soc., 113:279–292, 1987. 

E.F. Fishbein, R.E. Cofield, L. Froidevaux, R.F. Jarnot, T. Lungu, W.G. Read, S. Ship-
pony, J.W. Waters, I.S. McDermid, T.J. McGee, U. Singh, M. Gross, A. Hauchecorne, 
P. Keckhut, M.E. Gelman, and R.M. Nagatani. Validation of UARS Microwave 
Limb Sounder temperature and pressure measurements. J. Geophys. Res., 101:9983– 
10016, 1996. 

M. Fisher and P. Courtier. Estimating the covariance matrices of analyses and forecast 
error in variational data assimilation. Technical memorandum 220, Europen Cetre 
for Medium–Range Weather Forecasts, Reading, 1995. 

J.C. Gille, P.L. Baily, S.T. Massie, L.V. Lyjak, D.P. Edwards, A.E. Roche, J.B. Kumer, 
J.L. Mergenthaler, M.R. Gross, A. Hauchecorne, P. Keckut, T.J. McGee, I.S. Mc-
Dermid, A.J. Miller, and U. Singh. Accuracy and precision of cryogenic limb array 
etalon spectrometer (CLAES) temperature retrievals. J. Geophys. Res., 101:9583– 
9601, 1996. 

M.E. Gorbunov.	 Canonical transform method for processing radio occultation data in 
the lower troposphere. Radio Sci., 37:10.1029/2000RS002592, 2002a. 

M.E. Gorbunov. Radio-holographic analysis and validation of Microlab-1 radio occul­
tation data in the lower troposphere. J. Geophys. Res., 107:10.1029/2001JD000889, 
2002b. 

M.E. Gorbunov. Radioholographic analysis of radio occultation data in multipath zones. 
Radio Sci., 37:10.1029/2000RS002577, 2002c. 

A. Hauchecorne and M.-L. Chanin. Density and temperature profiles obtained by Lidar 
between 35 and 70 km. Geophys. Res. Lett., 7:565–568, 1980. 

S.B. Healy.	 Radio occultation bending angle and impact parameter errors caused by 
horizontal refractive index gradients in the troposphere: A simulation study. J. Geo­
phys. Res., 106:11875–11889, 2001. 

S.B. Healy and J. Eyre. A forward model for the assimilation of GPS radio occultation 
bending angle measurements. Quart. J. Roy. Meteorol. Soc., 2003. submitted. 

S.B. Healy and J.R. Eyre.	 Retrieving temperature, water vapor and surface pressure 
information from refractive–index profiles derived by radio occultation: A simulation 
study. Quart. J. Roy. Meteorol. Soc., 126:1661–1683, 2000. 

58
 



M. Helten, H.G.J. Smit, W. Sträter, D. Kley, P. Nedelec, M. Zöger, and R. Busen. Cali­
bration and performance of automatic compact instrumentation for the measurement 
of relative humidity from passenger aircraft. J. Geophys. Res., 103:25643–25652, 
1998. 

K. Ide, P. Courtier, M. Ghil, and A.C. Lorenc. Unified notation for data assimilation: 
Operational, sequential and variational. J. Met. Soc. Jap., 75:181–189, 1997. 

N.B. Ingleby and A.C. Lorenc.	 Bayesian quality control using multivariate normal 
distributions. Quart. J. Roy. Meteorol. Soc., 119:1195–1225, 1993. 

A.S. Jensen, M.S. Lohmann, H.-H. Benzon, and A.S. Nielsen. Full Spectrum Inversion 
of radio occultation signals. Radio Sci., 38:1040, doi:10.1029/2002RS002763, 2003. 

E.R. Kursinski, G.A. Hajj, W.I. Bertiger, S.S. Leroy, T.K. Meehan, L.J. Romans, J.T. 
Schofield, D.J. McCleese, W.G. Melbourne, C.L. Thornton, T.P. Yunck, J.R. Eyre, 
and R.N. Nagatani. Initial results of radio occultation observations of earth’s atmo­
sphere using the Global Positioning System. Science, 271:1107–1110, 1996. 

E.R. Kursinski, G.A. Hajj, J.T. Schofield, R. Linfield, and K.R. Hardy. Observing 
earth’s atmosphere with radio occultation measurements using gps. Journal of Geo­
physical Research, 102:23429–23465, 1997a. 

E.R. Kursinski, G.A. Hajj, J.T. Schofield, R.P. Linfield, and K.R. Hardy. Observing 
earth’s atmosphere with radio accultation measurements using the Global Positioning 
System. J. Geophys. Res., 102:23.429–23.465, 1997b. 

T. Leblanc, I.S. McDermid, A. Hauchecorne, and P. Keckhut. Evaluation and optimiza­
tion of lidar temperature analysis algorithms using simulated data. J. Geophys. Res., 
103:6177–6187, 1998. 

A.C. Lorenc. Analysis methods for numerical weather prediction. Quart. J. Roy. Mete­
orol. Soc., 112:1177–1194, 1986. 

A. Marenco, V. Thouret, P. Nedelec, H. Smit, M. Helten, D. Kley, F. Karcher, P. Simon, 
K. Law, J. Pyle, G. Poschmann, R. von Wrede, C. Hume, and T. Cook. Measure­
ment of ozone and water vapor by Airbus in–service aircraft: The MOZAIC airborne 
program, An overview. J. Geophys. Res., 103:25631–25642, 1998. 

C. Marquardt, J. Eyre, S. Healy, A. Jupp, and D. Offiler. Use of GPS radio occultation 
data in meteorological services. NWP Forecasting Research Technical Report 403, 
Met Office, 2003a. 

C. Marquardt, J. Eyre, S. Healy, A. Jupp, and D. Offiler. Use of GPS radio occultation 
data in meteorological services. In OIST-4 Proceedings, pages 261–268. Danish 
Meteorological Institute, Copenhagen, 2003b. 

59
 



C. Marquardt, K. Labitzke, Ch. Reigber, T. Schmidt, and J. Wickert. An assessment of 
the quality of GPS/MET radio limb soundings during February 1997. Phys. Chem. 
Earth, 26:125–130, 2001. 

C. Marquardt, K. Schöllhammer, G. Beyerle, T. Schmidt, J. Wickert, and Ch. Reigber. 
Validation and data quality of CHAMP radio occultation data. In First CHAMP mis­
sion results for gravity, magnetic and atmospheric studies, pages 384–396. Springer, 
2003c. 

W. Menke. Geophysical data analysis – discrete inverse theory. Academic Press, 1989. 

P.I. Palmer, J.J. Barnett, J.E. Eyre, and S.B. Healy.	 A nonlinear optimal estimation 
inverse method for radio occultation measurements of temperature, humidity, and 
surface pressure. J. Geophys. Res., 105:17.513–17.526, 2000. 

D.F. Parrish and J.C. Derber.	 The National Meteorological Center’s spectral statistical 
interpolation analysis system. Mon. Wea. Rev., 120:1747–1763, 1992. 

W.H Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.	 Numerical recipes in 
Fortran – The art of scientific computing. Cambridge University Press, Cambridge, 
New York, 2nd edition, 1992. 

C.M. Reinsch. Smoothing by spline functions. Numer. Math., 10:177–183, 1967. 

C.M. Reinsch. Smoothing by spline functions, II. Numer. Math., 16:451–454, 1971. 

C. Rocken, R. Anthes, M. Exner, D. Hunt, S. Sokolovsky, R. Ware, M. Gorbunov, 
W. Schreiner, D. Feng, B. Herman, Y.-H. Kuo, and X. Zou. Analysis and validation 
of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102:29.849–29.866, 
1997. 

C.D. Rodgers.	 Retrieval of atmospheric temperature and composition from remote 
sounding measurements of thermal radiation. Rev. Geophys. Space Phys., 14:609– 
624, 1976. 

C.D. Rodgers.	 Characterization and error analysis of profiles retrieved from remote 
sounding measurements. J. Geophys. Res., 95:5587–5595, 1990. 

C.D. Rodgers. Inverse methods for atmospheric sounding: Theory and practice. World 
Scientific Publishing, Singapore, New Jersey, London, Hong Kong, 2000. 

C.D. Rodgers and B.J. Connor.	 Intercomparison of remote sounding instruments. J. 
Geophys. Res., 2004. in print. 

R. Saunders, M. Matricardi, and P. Brunel. An improved fast radiative transfer model 
for assimilation of satellite radiance observations. Quart. J. Roy. Meteorol. Soc., 125: 
1407–1425, 1999. 

60 



H. Savijarvi. Error growth in a large numerical forecast system.	 Mon. Wea. Rev., 123: 
212–221, 1995. 

K. Schöllhammer, C. Marquardt, and K. Labitzke. Comparison of three different meteo­
rological datasets (ECMWF, Met Office and NCEP). In First CHAMP mission results 
for gravity, magnetic and atmospheric studies, pages 528–535. Springer, 2003a. 

K. Schöllhammer, C. Marquardt, and K. Labitzke. Comparison of three different me­
teorological datasets (ECMWF, Met Office and NCEP) and CHAMP temperature 
measurements. In OIST-4 Proceedings, pages 255–260. Danish Meteorological In­
stitute, Copenhagen, 2003b. 

A. Simmons, M. Hortal, G. Kelly, A. McNally, A. Untch, and S. Uppala. Analyses and 
forecasts of stratospheric winter polar vortex break-up: September 2002 in the South­
ern Hemisphere and related events from ECMWF operations and ERA-40. ERA­
40 Project report series 5, European Centre for Medium–Range Weather Forecasts, 
2003. 

A.J. Simmons and A. Hollingsworth.	 Some aspects of the improvement in skill of 
numerical weather prediction. Quart. J. Roy. Meteorol. Soc., 128:647–677, 2002. 

S. Sokolovskiy and D. Hunt. Statistical optimization approach for GPS/MET data in­
versions. URSI GPS/MET Workshop, Tucson, Arizona, 1996. 

A. Steiner and G. Kirchengast. Gravity wave spectra from GPS/MET occultation ob­
servations. J. Atmos. Ocean. Tech., 17:495–503, 2000. 

A.K. Steiner, G. Kirchengast, and H.P. Ladreiter. Inversion, error analysis, and valida­
tion of GPS/MET occultation data. Ann. Geophys., 17:122–138, 1999. 

G.P. Stiller, T. Steck, M. Milz, T. von Clarmann, U. Grabowski, and H. Fischer.	 Ap­
proach to the cross–validation of MIPAS and CHAMP temperature and water vapour 
profiles. In First CHAMP mission results for gravity, magnetic and atmospheric 
studies, pages 551–556. Springer, 2003. 

S. Syndergaard. Retrieval analyses and methodologies in atmospheric limb sounding 
using the GNSS radio occultation technique. Scientific Report 99–6, Danish Meteo­
rological Institute, Copenhagen, 1999. 

A.T. Tarantola and B. Valette. Generalized non-linear inverse problems solved using the 
least squares criterion. Reviews of Geophysics and Space Physics, 20(2):219–232, 
1982. 

T. Tsuda and K. Hocke. Vertical wave number spectrum of temperature fluctuations in 
the stratosphere using GPS occultation data. J. Met. Soc. Jap., 80:925–938, 2002. 

61
 



T. Tsuda, M. Nishida, C. Rocken, and R.H. Ware.	 A global morphology of gravity 
wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). 
J. Geophys. Res., 105:7257–7273, 2000. 

V.V. Vorob’ev and T.G. Krasil’nikova. Estimation of the accuracy of the atmospheric 
refractive index recovery from doppler shift measurements at frequencies used in the 
NAVSTAR system. USSR Phys. Atmos. Ocean, Engl. Transl., 29:602–609, 1994. 

G. Wahba.	 Smoothing noisy data with spline functions. Numer. Math., 24:383–393, 
1975. 

Y. Wang. Smoothing spline models with correlated errors.	 J. Am. Stat. Soc., 93:341– 
348, 1998. 

C. Zuffada, G.A. Hajj, and E.R. Kursinski. A novel approach to atmospheric profiling 
with a mountain–based or airborne GPS receiver. J. Geophys. Res., 104:24.435– 
24.447, 1999. 

62
 



A Bending Angle 1D–Var S/W Overview and User Guide 

A.1 Introduction 

The purpose of this Appendix is to present a simple overview and ‘user guide’ for 
a one-dimensional variational (1D-Var) retrieval of temperature, humidity and surface 
pressure from radio occultation (RO) bending angle profiles. It provides an introduction 
to the numerical methods that have been employed, specifies the data and interface 
requirements of the main routine and gives an outline of the program structure. 

In Section A.2, the variational retrieval technique is outlined, including descriptions of 
the minimisation method and forward model that have been employed in this imple­
mentation. The method used to estimate the probability of gross error is outlined in 
section A.3. An outline of the program structure as well as the input requirements and 
user interface of the 1dvar routine are explained Section A.4. Section A.5 includes the 
instructions for installation and compilation, followed by a description of two simple 
test programs which are part of the distribution. A Reference Guide to all subroutines 
is provided in Section A.6. 

The bending angle 1D-Var software described here is available from the authors on 
request. 

A.2 The variational retrieval method 

In a variational retrieval the most probable state, x̂, is calculated by combining the a 
priori or background information, xb, and the measurements/observations, yo, in a sta­
tistically optimal way. The approach has been described in detail by many authors (e.g., 
Rodgers, 1976; Tarantola and Valette, 1982; Lorenc, 1986). The method requires the 
solution of the forward problem, mapping the state vector information into the mea­
surement/observation space. It is essentially a sophisticated least squares calculation. 
In simple terms, the solution is found by adjusting the state vector elements (for exam­
ple, temperatures on fixed pressure levels) in a way that is consistent with the estimated 
errors in the background information, in order to produce simulated measurements that 
fit the observations to within their expected errors. 

It can be shown that in the case of unbiased Gaussian error distributions, obtaining the 
most probable state is equivalent to minimizing a cost function given by: 

J(x) =  
1
(x − xb)TB−1(x − xb)+  

1
(yo − H(x))T (E + F)−1(yo − H(x)) (47)

2 2

adopting the notation outlined in Ide et al. (1997), where B is the expected background 
error covariance matrix; H(x) is the forward operator, mapping the atmospheric infor­
mation into measurement (bending angle) space; E and F are the expected error co­
variance matrices of measurements and forward model respectively. The superscripts 
T and −1 denote matrix transpose and inverse. 
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A.2.1 Minimizing the cost function 

In this work we map the state vector information to a co-ordinate system where the 
background errors are uncorrelated, to improve the conditioning of the problem. This 
is achieved with the transform, 

v = B−1/2x (48) 

The Marquardt-Levenberg approach (Press et al., 1992) is employed to minimise the 
cost function. In general, the minimum can be found by the iterative solution of 

J′′ n+1 − v.(v n) = −J′ = 0 (49) 

where vn and vn+1 are the nth and (n+1)th approximation of v. J′ and J′′ are the first 
and second derivatives of the cost function with respect to vn. These are given by 

J′ = (vn − vb)− H′(vn)T(E +F)−1(yo − H(vn)) (50) 

and (in the linear limit) 

J′′ = I +H′(vn)T (E +F)−1H′(vn) (51) 

where I is the identity matrix. In the Marquardt-Levenberg approach the diagonal val­
= J′′ues of J′′ are modified with Jii 

′′ 
ii (1 +λ), where λ is a positive scalar value. If vn+1 

reduces the penalty function value, λ is reduced for the next iteration. Conversely, if it 
is found that vn+1 increases the cost function value, λ is increased and the increment is 
recalculated. This procedure is repeated in until the cost function value falls. 

When we have found v̂, the solution that minimizes the cost function, we map back to 
physical space with 

x̂ = B1/2v̂ (52) 

A.2.2 The forward model 

This maps the atmospheric state vector x into measurement space. Since the forward 
model operates on the physical state variables x, but the minimisation uses the control 
variable v, we have to perform x = B1/2v before actually calling the forward model. In 
this problem the measurement vector, yo, is bending angle as a function of impact pa­
rameter and we assume that the state vector is composed of a surface pressure estimate 
(hPa) together with temperature (K) and (natural) log(specific humidity(g/Kg)) values 
on a set of fixed pressures. 

The bending angle forward operator is composed of three main steps (3 subroutines): 

• Evaluate the geopotential height and refractivity on fixed pressure levels 
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The virtual temperature Ti
v on the fixed pressure levels is calculated using the 

relationship, 

Ti
v = Ti(1 +0.608 × Qi) (53) 

where Ti and Qi are the temperature and specific humidity values respectively on 
the i-th pressure level. The geopotential height of the j-th (j=i+1) level, Z j, is  
given by 

R(Tj
v +Ti

v) PiZ j = Zi + loge (54)
2g Pj 

The refractivity on each fixed pressure level is given by 

c1Pj kQjNj = 1 + (55)
Tj Tj 

given, k = c2/(c1ε) where c1 and c2 are known constants (Kursinski et al., 1997b) 
and ε is the ratio of the molecular weights of water-vapour and dry air. 

• Calculate ‘nr’ on the fixed pressure levels 

The geopotential heights are mapped to geometric heights using the transforma­
tion given by List (1984). The geometric height of the jth level is given by, 

Zj
Hj = � � (56) 

glat Z j−g0 Re 

where glat is the value of gravity at Mean Sea Level for the given latitude and Re 

‘effective radius of the earth’ (see List for a detailed discussion). The radius of 
the jth pressure level is then, 

r j = R +Hj +∆ (57) 

where R is the radius of curvature value and ∆9 is the difference between the geoid 
and WGS-84 ellipsoid radius value at the location of the measurement (known as 
the undulation). It is useful to evaluate and store the product of the refractive 
index and radius values for each fixed pressure level, 

x j = (1 +10−6Nj)r j (58) 

noting that x is the conventional notation for this product, and should not be 
confused with the 1D–Var state vector. 

• Calculate the bending angle value 

9Note that we actually add the undulation to the radius of curvature outside the 1D–Var routine. We 
then pass the “effective” radius of curvature to the 1D–Var routine. 
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This requires evaluating integrals of the form, 

∞ � Z d lnn 
α(a) =  −2a dx dx (59)

(x2 − a2)1/2 
a 

where a denotes the impact parameter. This is simplified using the following 
approximations: 

d lnn 
dx ≈ 10−6dN

dx 

which is valid because the refractivity is small, and, 

(x2 − a2)1/2 ≈ 2a(x − a) 

This is valid because the refractivity scale height is small compared to the radius 
of the earth. We also assume that N varies exponentially with x = nr between the 
fixed levels. The gradient between the jth and (j+1)th levels is then 

dN
dx = −k jNj exp(−k j(x − x j)) (60) 

The bending between the jth and (j+1)th levels is then 

x j+1 Z√ exp(−k j(x − a))
∆α j = 10−6k jNj exp(k j(x j − a)) 2a √ dx (61) 

x − a 
x j 

which can be evaluated in terms of the ‘error function’. The total bending angle 
is found by summing contributions of this form. 

A.3 Screening of observations and the probability of gross error (PGE) 

The 1D–Var code can have considerable difficultly finding the optimal solution if the 
observation vector contains gross-errors. We define gross errors as large errors that are 
not consistent with the assumed combined observation/forward model errors, (E+F). 
Ideally, gross errors should be ‘screened out’ before the observation vector is presented 
to the 1D–Var. For example, the data could be rejected if the ‘O-B’ difference exceeds 
10 times the combined O and B errors. The 1D–Var package contains the subroutine 
set_pge which provides an estimate of the probability of gross error (PGE) for each 
observed bending angle. The PGE is based on the O-B difference, following the ap­
proach outlined by Ingleby and Lorenc (1993) and Andersson and Jarvinen (1998). 
The PGE for the ith bending angle is given by, 

1 
PGEi = 1 − (62)

γexp(u)+  1 
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Subroutines Functions 
OneDvar_Solve Penfunc 
SatMatInv erf 
cholesky svp 
eval_derivs e_rad 
alpha_op g_lat 
refrac_levs 
calc_nr 
calc_alpha 
humid_check 
alpha_op_and_K 
refrac_levsK 
calc_nrK 
calc_alphaK 
check_input_alpha 
set_pge 

Tab. 17: Subroutines and functions in the libalpha_1dvar.a library. 

where, 

i i )2(yo − ybu = 
2 

(63) 
2(σi + σi 2)o b 

and γ is set within refrac_info, using equation 11 of Andersson and Jarvinen (1998). 
We can also define a “QC weighting factor” given by, 

iwqc = 1 − PGEi (64) 

This factor can be used to reduce the gradient of the cost function with respect to the 
ith bending angle. The qc weighting is implemented if qc_on = .TRUE. in the OneD­
var_Solve argument list. 

We would strongly advise that qc_on = .FALSE. for validation applications. 

A.4 Implementation 

A.4.1 Code organisation 

The 1D–Var source code, that implements the theory outlined in Sections 2 and 3, 
is written in Fortran 90. After compilation of the package (see section A.5), several 
subroutines and functions are available in a library libalpha_1dvar.a and can be 
linked against other programs written in Fortran 90. Table 1 lists the user callable 
routines. The calling tree, beginning at the main user interface OneDVar_Solve, is  
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alpha_op_and_K set_pge penfunc eval_derivs 

cholesky 

humid_check 

refrac_levs refrac_levsK calc_nr calc_nrK calc_alpha calk_alphaK 

g_lat 
erf 

e_rad 

OneDVar_solve 
SatMatInv 

svp 

User program / routine 

Fig. 18: Calling tree of the 1DVar software. 

shown in Fig. 18. A detailed reference guide of all routines and call interfaces can be 
found in Section A.6. 

Internally, we use one module refrac_info.f90, which contains several parameters used 
by the library. User programs written using the libalpha_1dvar.a library may benefit 
from USE’ing it. Details of this module and the derived types contained in it can be 
found in the reference section. However, users calling routines of the library do not 
need to use this module, as long as they do not want to change default settings of some 
variables used by the retrieval routines. 

To ensure that input values are within physically reasonable ranges, the library further 
provides the subroutine check_input_alpha which checks the input data for plausi­
bility; it should always be called prior to OneDVar_Solve. The package also contains 
two example programs (text_champ_data and test_sim_data) that illustrate the use 
of these routines. Several utility routines that are used for the setup of data are docu­
mented in the reference part of this Appendix; they include read routines to the example 
data (including error covariances, see below) which are also provided as part of the dis­
tribution. 

A.4.2 The user interface: OneDVar_Solve 

Subroutine OneDVar_Solve is the user-callable interface and main routine of the 1D– 
Var calculation. If the 1D–Var code is to be used as a ‘black box’, ensuring that the 
inputs to OneDVar_Solve are of the correct format and type should be sufficient to 
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enable the calculation to be completed successfully. This subroutine is called from the 
user’s application with: 

call OneDVar_Solve(nstate, &
 
nlev, &
 
nwet, &
 
nobs, &
 
roc, &
 
pz0, &
 
lat, &
 
press, &
 
xb, &
 
Bhalf, &
 
B_min_half, &
 
a, &
 
yobs, &
 
OM1, &
 
Osigma, &
 
qc_on, &
 
it, &
 
J_pen, &
 
x, &
 
pge, &
 
yb, &
 
ycalc, &
 
Amat, &
 
Kmat, &
 
converged, &
 
error)
 

The meaning of each variable is described in Table 2, and the the subroutine argument 
types, dimensions and intent are shown in Table 3. Additional information can be found 
in the reference guide section. 

A.4.3 The inverted covariance matrices: Bhalf, B_min_half & OM1 

In general, the user must provide inverted background and observation error covari­
ance matrices (BM1 and OM1) for subroutine OneDVar_Solve to be executed success­
fully. We have provided a data file new_atovs_bmat_tot.datwhich contains B−1 and 
B−1/2 on the RTTOVS fixed pressure levels, which has been used in the testing of the 
1D–Var. Clearly, B1/2 can be found by inverting B−1/2 (with SatMatInv). The example 
data file can be read with the utility routine read_binv. Note also, more accurate error 
covariance matrices should be obtained from the provider of the a priori information 
whenever possible (ECMWF in this case). 
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The observation errors are currently estimated in the testing of the 1D–Var code as fol­
lows. We assume 10% at the surface falling to 1% at 10km (i.e., impact parameter 
minus radius of curvature = 10 km). The percentage error is assumed to be constant 
above 10km, but we use a lower absolute limit of 3µrad10. Correlations are not cur­
rently modelled, so the matrix is assumed to be diagonal. 

nstate Size of the state vector 
nlev Number of ‘dry’ pressure levels 
nwet Number of ‘wet’ pressure levels (nwet≤nlev) 
nobs Number of observations in profile (i.e, number of bending angle 

values) 

roc Radius of curvature of the earth + UNDULATION (in metres) 
pz0 Surface elevation value (in metres) at the observation location, 

appropriate for surface pressure value, xb(nstate) 
lat Latitude of measurement (in degrees) 
press The vector of fixed pressure levels on which the temperature and 

humidity profiles are specified. The pressure values are in hPa 
and are in descending order of value. E.g. pres(1)=1013.25hPa, 
pres(2)=1005.43hPa and pres(nlev)=0.1hPa (Currently the RT­
TOVS pressure levels). 

xb	 The background or a priori state vector. This is composed of 
nlev temperature values (K) on fixed pressure levels, followed 
by nwet loge (specific humidity(g/Kg)) values and a surface 
pressure (hPa). E.g., xb(1) = T(at 1013.25hPa), xb(2) = T(at 
1005.43hPa), xb(nlev+1) = log(Q(at 1013.15hPa)), xb(nlev+2) = 
log(Q(at 1005.43hPa)) and xb(nstate) = surface pressure(hPa) 

Bhalf The square-root of the background error covariance matrix = B1/2 

B_min_half The inverse of the square-root of the background error covariance 
matrix = B−1/2 

a The vector of observed impact parameter values, in ascending or­
der (in metres) 

yobs The observed bending angle values (in radians) on ‘a’ levels. 
OM1 The inverse of the observation and forward model (E + F) error 

covariance matrix 
Osigma The standard deviation of the observation errors 
qc_on Logical switch for applying the qc weighting based on the pge 

value. If qc_on=.FALSE. the qc weighting is not applied. 

Tab. 18: The meaning of arguments to OneDVar_Solve (cont’d on  next page). 

10In fact, we believe that 6 µrad may be more appropriate for CHAMP data. 
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x 

it The number of iterations that were required for convergence. If 
it=ITMAX then convergence has not been obtained within the 
maximum number of iterations. By default, ITMAX=20. If this 
is the case the solution may be questionable, particularly if the 
cost-at-convergence is high. We have found that the convergence 
is typically found in 6 iterations, when OM1 and Bhalf are good 
estimates of the actual errors 

J_pen The penalty function at convergence. This is useful for quality 
control. J_pen should be of order nobs/2, for a reasonable re­
trieval 
The solution vector 

pge The probability of gross error vector 
yb	 The simulated bending angle values calculated with the first guess 

profile 
ycalc	 The simulated bending angle values calculated with the solution 

profile 
Amat The solution error covariance matrix 
Kmat	 The gradient of the forward model with respect to the state vector 

elements 
converged Logical, TRUE if the solution converged within ITMAX 
error Logical, TRUE if there was an error in the 1D–Var retrieval 

Tab. 18: The meaning of arguments to OneDVar_Solve. 

A.5 Installation 

A.5.1 The package 

The 1dvar ‘alpha_1dvar_package’ is supplied as ’.tar.gz’ or ’.zip’ file, which can be 
unpacked with the usual gunzip, tar or unzip commands under Linux/Unix, or with 
the WinZip application under Windows. After unpacking, the source code is available 
in the subdirectory alpha_1dvar-n.n, where n.n specifies the version of the pack­
age. Refer to the files README for general information, and the files README.unix 
and README.cygwin for detailed information on the installation of the software under 
Linux/Unix and Windows environments, respectively. In general, however, a sequence 
of commands like 

> ./configure
 
> make
 

should be sufficient. If a Fortran 90 compiler is not immediately found by the configu­
ration system, the name of the compiler can be specified as follows (in a ksh or bash 
environment: 
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Variable Type Size Usage 
nstate Integer Scalar In 
nlev Integer Scalar In 
nwet Integer Scalar In 
nobs Integer Scalar In 
roc Real Scalar In 
pz0 Real Scalar In 
lat Real Scalar In 
pres Real Array(nlev) In 
xb Real Array(nstate) In 
Bhalf Real Array(nstate,nstate) In 
B_min_half Real Array(nstate,nstate) In 
a Real Array(nobs) In 
yobs Real Array(nobs) In 
OM1 Real Array(nobs,nobs) In 
Osigma Real Array(nobs) In 
qc_on Logical Scalar In 
it Integer Scalar Out 
J_pen Real Scalar Out 
x Real Scalar Out 
pge Real Array(nobs) Out 
yb Real Array(nobs) Out 
ycalc Real Array(nobs) Out 
amat Real Array(nstate,nstate) Out 
Kmat Real Array(nobs, nstate) Out 
Converged Logical Scalar Out 
error Logical Scalar Out 

Tab. 18: Type and intent of arguments to the subroutine OneDVar_Solve. 

> FC=<compiler> ./configure
 
> make
 

For example, the Intel V7.x compilers under Linux might require 

> FC=ifc ./configure
 
> make
 

Additional options to the compiler can be specified by means of the FCFLAGS environ­
ment variable. We note that we have used the \ character within a strings which are used 
for describing the usage of the two example programs (in the files test_sim_data.f90 
and test_champ_data.f90. Some compilers are able to treat \ as an escape charac­
ter (or do that by default), but may issue a warning that such escape characters are an 
extension of standard Fortran 90. These warning messages can safely be ignored. 
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A.5.2 A program using simulated data 

After successful compilation, a simple test program that runs the 1D–Var retrieval with 
simulated data is available in the drivers subdirectory. The main steps of the program 
test_sim_data are: 

•	 Read the B matrix information from the file new_atovs_bmat_tot.dat. 

•	 Read the background profile information (on RTTOVS levels) from the file 
Background_MidLatWin_Corr.dat. 

•	 Open each ‘true’ file e.g, Profile_MidLatWin_001.dat. 

•	 Calculate the ‘true’ bending angles that would be produced with the true state, 
Profile_MidLatWin_001.dat. 

•	 Set up the inverse observation error covariance matrix OM1. 

•	 Add Gaussian random noise to the true bending angles to obtain simulated obser­
vation. 

•	 Check the input prior to calling 1D–Var with check_input_alpha. 

•	 Solve the 1D–Var problem using OneDVar_Solve. 

•	 Output the results to the file sim_out.dat. 

To run the sample program from within the drivers subdirectory, type 

> test_sim_data -d ../data
 

If all goes well, this will produce an output file sim_out.dat which should be com­
pared with the file MO_sim_out.dat in the data subdirectory of the distribution. The 
file sim_out.dat contains: 

•	 The ‘true’ filename; 

•	 it, the number of iterations for convergence; 

•	 J_pen, the ‘cost at convergence’; 

•	 Followed by the 1D–Var solution vector, x̂ and xb on the fixed pressure levels. 
The output is of the form 
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TEMPERATURE (K)
 
P(hPa) soln. back
 

1 1013.25 272.05 272.07
 
2 1005.43 271.84 271.85
 
...
 

42 0.29 257.84 257.55
 
43 0.10 241.66 241.63
 

HUMIDITY (g/kg)
 
44 1013.2 3.2258 2.6618
 
45 1005.4 3.1034 2.6248
 
46 985.9 2.8672 2.5336
 
...
 

68 143.8 0.0029 0.0030
 
69 122.0 0.0029 0.0029
 

SURFACE PRESSURE
 
70 1014.3 1014.3
 

The state vector information is then followed by the bending angle values. Each 
line contains: 

– An integer (the position in array). 

– The observed impact parameter. 

– The observed bending angle value. 

– The bending angle calculated with the 1D–Var solution, x̂. 

– The bending angle calculated with the background vector, xb. 

Hence, in sim_out contains output of the form: 

imp param observed solution background
 
1 6373500.0 0.23145E-01 0.22406E-01 0.22545E-01
 
2 6374000.0 0.19336E-01 0.20486E-01 0.20605E-01
 
3 6374500.0 0.23431E-01 0.21305E-01 0.18955E-01
 
4 6375000.0 0.19047E-01 0.18453E-01 0.17349E-01
 
5 6375500.0 0.15044E-01 0.15448E-01 0.15831E-01
 

At the end of the file we output the average (over the 10 simulated retrievals) cost 
function value and number of iterations required for convergence. 

AVERAGE J_PEN = 59.39983
 
AVERAGE IT = 3.300000
 

Ideally, the average J_pen should be 60, because we use 120 simulated bending 
angle measurements. 
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Note that additional information on the command line arguments of test_sim_data 
can be obtained from the reference section. When comparing the results obtained with 
the example results in the file data/MO_sim_out.dat, it should also be kept in mind 
that small numerical deviations (usually limited to the last digit in each floating point 
number) may occur because of compiler differences or round off errors on different 
platforms. 

A.5.3 A program using a CHAMP measurement 

After successful compilation, the drivers subdirectory also contains a simple test pro­
gram (test_champ_data) that runs the 1D–Var retrieval with a CHAMP measurement. 
The main steps of the programs are: 

•	 Read the B matrix information from the file new_atovs_bmat_tot.dat. 

•	 Read the RTTOVS fixed pressure levels (from the file
 
Background_MidLatWin_Corr.dat).
 

•	 Read the observed CHAMP measurement using the subroutine read_ob. 

•	 Read the co-located ECMWF data using the subroutine read_bg. 

•	 Interpolate the ECMWF data to fixed pressure levels and set up xb. 

•	 Set the inverse of the observation error covariance matrix, OM1. 

•	 Solve the 1D–Var problem using OneDVar_Solve. 

•	 Output the results to 1dvar_out.dat. 

The program can be run in the drivers subdirectory by typing 

> test_champ_data -d ../data <obs_file> <bg_file>
 

where <obs_file> and <bg_file> are the names of a bending angle and a back­
ground data file. We have provided one example data file of each in the data sub­
directory of the source code distribution; the files ob_data.dat and bg_data.dat in 
the same subdirectory are copies of these to ease the task of typing. Thus, to test the 
installation, it should be sufficient to type 

> test_champ_data -d ../data ../data/ob_file.dat \
 
> ../data/bg_file.dat
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which will produce an output file 1dvar_out.dat. The result file should be compared 
with the file MO_champ_out.dat in the data subdirectory of the distribution. The 
general format of the output is similar to the one used in sim_out.dat, as described 
above. Information on other command line arguments of this program can be found in 
the reference section. 

As for the simulated data, we note that small numerical differences, typically limited to 
the last printed digit of each floating point number, may occur due to compiler differ­
ences or round off errors on different platforms. 

A.6 Reference guide to all subroutines 

This section has been generated from the source code, and included in the LATEX–source 
of this Appendix. To regenerate the text included here, do a make refsec.tex in the 
doc subdirectory of the source code distribution. Note that a standalone version of 
the reference guide of the library (libalpha_1dvar.pdf) is also available in the same 
subdirectory. An experimental html version of the reference documentation is pro­
vided in the doc/html subdirectory of the distribution; point your browser to the file 
index.html to view it. The standalone reference documentation (both as pdf and as 
html) can be updated by running make doc in the doc subdirectory of the documen­
tation. Note that recreating the documentation requires properly installed versions of 
RoboDoc and pdfLaTeX 

A.7 Examples/test_champ_data 

NAME 

test_champ_data - Test bending angle 1DVar using radio occultation data
 
from the German CHAMP satellite.
 

SYNOPSIS 

test_champ_data [-d <data_dir>] [-c <bg_corr_file>] \
 
[-l <bg_levels>] [-k <bg_ml_coeff>] \
 
[-o <output_file>] <obs_file> <bg_file>
 

DESCRIPTION 

This program tests the bending angle 1DVar solver for CHAMP bending angle
 
profiles. The main steps of the program are:
 

o Read the B matrix from the file new_atovs_bmat_tot.dat
 
o Read the vertical level structure (for RTTOVS levels) from the file
 
Background_MidLat_Win_Corr.dat
 

o Read the observed CHAMP bending angle profile
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o Set up a (simple) error covariance matrix for the CHAMP data
 
o Read co-located ECMWF background data
 
o Interpolate ECMWF data to RTTOVS pressure levels and set up the
 
state vector
 

o Solve the 1DVar problem
 
o Write results
 

ARGUMENTS 

The two command line arguments are mandatory:
 

<obs_file> file w/ observed bending angle data (including
 
path).
 

<bg_file> file w/ background temperature, humidity and
 
surface pressure data (including path).
 

OPTIONS 

All options are optional, i.e. default values (as used above) are
 
provided.
 

-h give some help.
 
-p apply PGE based automated quality control.
 
-d <data_dir> directory where system files are stored.
 
-c <bg_corr_file> file w/ background error correlations.
 
-k <bg_ml_levels> file w/ the background’s model level coefficients.
 
-l <p_levels> file w/ pressure levels of the retrieval.
 
-o <output_file> output file (including path).
 

The -d <data_dir> options defines the path for all ’system’ data files,
 
i.e. to the filenames that can be changed by means of the -c, -l and -k
 
options. The default is path the current directory. Note, however, that
 
the installation procedure will install examples of such data files in
 
the directory $(prefix)/share/alpha_1DVar.
 

Input (<obs_file> and <bg_file>) as well as the output file can contain
 
a full path specification if they do not reside in the current directory.
 

By default, the PGE based automated QC of the 1DVar is not enabled.
 

OUTPUT 

The file 1dvar_out.dat is generated in the local directory; it contains
 
results of the retrieval run. For details of the format, see the
 
documentation of output_res.
 

USES 
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The following routines from the libalpha_1DVar library are used:
 
satmatinv
 
set_xb
 
check_input_alpha
 
OneDVar_solve
 

Additional routines:
 
read_bg
 
read_ob
 
read_binv
 
nread_tovs_data
 
output_res
 

NOTES 

The program assumes that the background profiles are given on ECMWF’s
 
hybrid vertical levels; the ak and bk level coefficients that allow
 
the calculation of the model level’s actual pressure are expected in
 
a different file (which can be specified via the -k option). Both the
 
example background data files as well as the model level coefficient
 
file are thos of the currently (early 2004) operational L60 version
 
of the ECMWF system. The program then interpolates the profile given
 
on model levels onto the pressure levels defined in the level
 
structure data file as specified via the -l option. The example data
 
file replicates the RTTOVS set of fixed pressure levels.
 

SEE ALSO 

test_sim_data
 

A.8 Examples/test_sim_data 

NAME 

test_sim_data - Test bending angle 1DVar using simulated radio occultation
 
bending angle data.
 

SYNOPSIS 

test_sim_data [-d <data_dir>] [-b <bg_file>] [-c <bg_corr_file>] \
 
[-o <output_file>] [<list_file>]
 

DESCRIPTION 

This program tests the bending angle 1DVar solver for multiple simulated
 
bending angle profiles. The main steps of the program are:
 

o Read the B matrix from the file new_atovs_bmat_tot.dat
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o Read a background profile (on RTTOVS levels) from the file
 
Background_MidLat_Win_Corr.dat
 

o Loop over several ’true’ atmospheric profiles, where the names
 
of the test cases are contained in the file true_files.lst, and
 
- Read each ’true’ profile
 
- Calculate the ’true’ bending angle profile
 
- Set up the inverse observation error covariance for
 
uncorrelated errors
 

- Add uncorrelated random gaussian noise to the ’true’ bending
 
angles to simulate the ’measurement’
 

- Check the simulated ’measurement’ for reasonable data ranges
 
- Solve the 1DVar problem
 
- Write results to an output file
 

o Add diagnostic information on the mean value of the cost function
 
and the average number of required iterations.
 

ARGUMENTS 

<list_file> Name of file containing a list of sample profiles 
used for simulating bending angle measurements. 

OPTIONS 

All options are optional, i.e. default values (as used above) are
 
provided by the program.
 

-d <data_dir> Data directory.
 
-b <bg_file> Background profile (including 1DVar level structure).
 
-c <bg_corr_file> Background error covariance (on 1DVar levels).
 
-o <output_file> Output file name.
 

The -d <data_dir> options defines the path for all input data files;
 
the location of the output data file still needs to be specified
 
explicitely.
 

OUTPUT 

The file sim_out.dat is generated in the local directory; it contains
 
results of all retrievals run.
 

USES 

The following routines from the libalpha_1DVar library are used:
 
satmatinv
 
alpha_op
 
check_input_alpha
 
OneDVar_solve
 

Additional routines:
 
read_binv
 
nread_tovs_data
 
gasdev
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NOTES 

The list of true profiles contained in the source code distribution
 
points to ten example profiles contained in files named like
 
Profile_MidLatWin_<nnn>.dat, where <nnn> refers to the example
 
number.
 

SEE ALSO 

test_champ_data
 

A.9 Examples/Tools 

DESCRIPTION 

As part of the drivers subdirectory, a number of useful subroutines
 
including some to read the sample data in the data subdirectory of the
 
alpha_1DVar library are provided. They are not required to use the
 
actual bending angle 1DVar, but may serve as example on how to
 
prepare data for the use with the 1DVar.
 

SEE ALSO 

Data input and output:
 
read_bg Read background data given on ECMWF model levels.
 
read_binv Read the inverse background covariance matrix.
 
read_ob Read bending angle observations.
 
nread_tovs_data Read RTTOV vertical level structure.
 
output_res Write retrieval results to a data file.
 

Random number generator:
 
ran1 Minimal randon number generator.
 
gasdev Normally distributed random numbers.
 

Other:
 
nag_interfaces Interfaces to the NAG f90/f95 f90_unix_* routines.
 

A.9.1 Tools/gasdev 

NAME 

gasdev - Normally distributed random numbers.
 

SYNOPSIS 

value = gasdev(idum)
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DESCRIPTION 

This function, repetetively called, returns a series of normally
 
distributed pseudo random numbers with mean zero and unit variance.
 

INPUTS 

idum Seed; to initialise, call with a negative value; afterwards. 
don’t change (see Press at al. for details). 

OUTPUT 

value Pseudo random number.
 

REFERENCES 

This function was copied manually from
 

Press, W., S. Teukolsky, W. vetterling and B. Flannery, Numerical
 
Recipes in Fortran, 2nd Ed., Cambridge University Press, 1988.
 

A.9.2 Tools/nag_interfaces 

NAME 

nag_interfaces - Interfaces to the NAG f90/f95 f90_unix_* routines.
 

SYNOPSIS 

When Fortran 90 routines call standard Unix system calls but are
 
compiled with the NAGWare Fortran 90/95 compiler, link the resulting
 
object code with a compiled version of this file.
 

DESCRIPTION 

The NAG f90 / f95 compiler provides access to most standard Unix
 
system routines via a set of modules named f90_unix_*. While this
 
is a clear and well defined interface to system routines, it leaves
 
source code developed for the NAG compilers incompatible with Other
 
Fortran compilers (which usually provide access to the same routines
 
as part of their standard library), as the corresponding NAG modules
 
are missing in Other compiler distributions. This causes a lot of
 
unnecessary recoding work.
 

As an alternative, this file collects (part of) the system routines
 
addressed by the various f90_unix_* modules and provides an interface
 
to them. Instead of adding the appropriate use f90_unix_* entries
 
in each affected source file, this file can be compiled with the NAG
 
compiler and linked to the Other routines.
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NOTES 

These interfaces are only included in the libalpha_1DVar library if
 
the NAG Fortran 90/95 compiler is used; it is ignored otherwise.
 

Not all routines are currently implemented; I will add them if they
 
will be requested (or I have a need for them).
 

Some of the NAG routines do have optional arguments, like ALARM.
 
Obviously, this is not implemented. Also, all parameter and type
 
definitions available from the NAG modules have been omitted.
 

SEE ALSO 

For the NAG compiler:
 
f90_unix
 
f90_unix_dir
 
f90_unix_dirent
 
f90_unix_env
 
f90_unix_file
 
f90_unix_proc
 

A.9.3 Tools/nread_tovs_data 

NAME 

nread_tovs_data - Read RTTOV vertical level structure and a vertical
 
background profile from a data file.
 

SYNOPSIS 

call nread_tovs_data(file, nstate, nlev, nwet, lat, pz0, press, xb)
 

DESCRIPTION 

This subroutine reads the RTTOV vertical level structure and a
 
vertical background profile from a data file.
 

INPUTS 

file Name of data file. 
nstate Number of elements in the state vector. 
nlev Number of levels for temperature. 
nwet Number of levels for humidity. 

OUTPUT 
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lat Latitude (in degree). 
pz0 Surface elevation (in m). 
press Pressure of RTTOV levels (in hPa). 
xb Example state vector. 

NOTES 

The routine is intended to be used as read routine for the file
 
Background_MidLatWin_Corr.dat which is part of the alpha_1DVar
 
package. This file contains a background profile on the standard
 
set of RTTOV fixed pressure levels. Contents of this file may be
 
used for simulation purposes (as in the test_sim_data example program
 
which is part of the alpha_1DVar package), or simply as a way to
 
define the RTTOV pressure levels (as in the test_champ_data example
 
program which is part of the alpha_1DVar package).
 

A.9.4 Tools/output_res 

NAME 

output_res - Write retrieval results to a data file.
 

SYNOPSIS 

call output_res(outfile, nstate, nlev, nwet, &
 
it, j_pen, press, x, xb, ob)
 

DESCRIPTION 

This subroutine writes the result of a 1DVar retrieval based on bending
 
angles to an ASCII data file.
 

INPUTS 

outfile Name of the output data file.
 
nstate Number of elements in the state vector.
 
nlev Number of levels for temperature.
 
nwet Number of levels for humidity.
 
it Number of iterations required for convergence.
 
J_pen Value of cost / penalty function at convergence.
 
press Pressure levels of state vector.
 
x Solution state vector.
 
xb Background state vector.
 
ob Observation structure, as defined in refrac_info.
 

USES 

refrac_info
 

NOTES 

For details of the format implemented, see the source code of this
 
routine.
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A.9.5 Tools/ran1 

NAME 

ran1 - Minimal randon number generator.
 

SYNOPSIS 

value = ran1(idum)
 

DESCRIPTION 

This function generates a uniform series of pseudo random numbers.
 

INPUTS 

idum Seed; to initialise, call with a negative value; afterwards. 
don’t change (see Press at al. for details). 

OUTPUT 

value Pseudo random number.
 

REFERENCES 

This function was copied manually from
 

Press, W., S. Teukolsky, W. vetterling and B. Flannery, Numerical
 
Recipes in Fortran, 2nd Ed., Cambridge University Press, 1988.
 

A.9.6 Tools/read_bg 

NAME 

read_bg - Read background data given on ECMWF model levels.
 

SYNOPSIS 

call read_bg(bg_file, bk_file, bg)
 

DESCRIPTION 

This subroutine reads background data given on ECMWF model levels,
 
calculates pressure on the full levels, and copies everything into
 
the background structure. The information on the level coefficients
 
is read from the second data file.
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INPUTS
 

bg_file Name of the file containing the actual background data 
on ECMWF model levels. 

bk_file Name of the file containing the ECMWF model level 
definition coefficients. 

OUTPUT 

bg Background data structure, as defined in refrac_info.
 

USES 

refrac_info
 

NOTES 

In the example programs provided in the alpha_1DVar package, the
 
model level background information is interpolated onto a set of
 
fixed pressure levels; this calculation is done in the routine
 
set_xb.
 

The routine is intended to be used as read routine for one of the
 
example background data files which are part of the alpha_1DVar
 
package. Other background data may be used as well, provided they
 
are in the same ASCII format of the above mentioned files. For
 
details of the format, see the source code of this routine.
 

SEE ALSO 

set_xb
 

A.9.7 Tools/read_binv 

NAME 

read_binv - Read the inverse background covariance matrix.
 

SYNOPSIS 

call read_binv(file, nstate, BM1, BMHALF, Bdiag)
 

DESCRIPTION 

This subroutine reads the inverse of a background error covariance
 
matrix, along with the inverse of (a) symmetric square root of that
 
matrix, and the diagonal elements of the non-inverted matrix.
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INPUTS 

file File name 
nstate Number of elements in the state vector. 

OUTPUT 

BM1 Inverse of the background covariance matrix. 
BMHALF Inverse of a square root of the background error covariance 

matrix. 
Bdiag Diagonal elements of the background error covariance matrix. 

NOTES 

The routine is intended to be used as read routine for the file
 
new_atovs_bmat_tot.dat which is part of the alpha_1DVar package.
 
Other covariance matrices may be used as well, provided they are
 
in the same ASCII format of the above mentioned file. For details
 
of the format, see the source code of this routine.
 

A.9.8 Tools/read_ob 

NAME 

read_ob - Read bending angle observations.
 

SYNOPSIS 

call read_ob(ob_file, ob)
 

DESCRIPTION 

This subroutine reads observed bending angle data and copies it into
 
the bending angle observation structure.
 

INPUTS 

ob_file Name of the bending angle observation data file.
 

OUTPUT 

ob Bending angle observation structure, as defined in
 
the module refrac_info.
 

USES 

refrac_info
 

NOTES 

The routine is intended to be used as read routine for one of the
 
example bending angle data files which are part of the alpha_1DVar
 
package. Other observations may be used as well, provided they are
 
in the same ASCII format of the above mentioned files. For details
 
of the format, see the source code of this routine.
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A.10 libalpha_1dvar/1DVar 

DESCRIPTION 

These functions form the main part of the bending angle 1DVar in that
 
they actually calculate and minimise the cost / penalty function.
 

SEE ALSO 

eval_derivs Evaluate 1st and 2nd derivatives of the penalty function. 
OneDVar_solve Solve the bending angle 1DVar problem. 
penfunc Evaluate the penalty function. 

A.10.1 1DVar/eval_derivs 

NAME 

eval_derivs - Evaluate 1st and 2nd derivatives of the penalty function.
 

SYNOPSIS 

call eval_derivs(nstate, nobs, v, vb, yobs, ycalc, OM1, qcwt, Kmat, &
 
dJ_dv, d2J_dv2, diag_d2J)
 

DESCRIPTION 

This subroutine calculates the first and second derivatives of the
 
cost/penalty function with respect to the state vector.
 

INPUTS 

nstate Number ofelements in the state vector.
 
nobs Number of observations.
 

Current estimate of solution.
 
vb Background vector.
 
yobs Observation vector.
 
ycalc y(x)
 
OM1 Inverse of observation + forward model error covariance matrix.
 
qcwt QC weighting.
 
Kmat Gradient matrix.
 

OUTPUT 

dJ_dv Negative(!) of first derivative of the cost function.
 
d2J_dv2 Second derivative of the cost function.
 
diag_d2J Vector containing the diagonal values of the matrix above.
 

USES 

refrac_info
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A.10.2 1DVar/OneDVar_solve 

NAME 

OneDVar_solve - Solve the bending angle 1DVar problem.
 

SYNOPSIS 

call OneDVar_solve(nstate, nlev, nwet, nobs, &
 
roc, pz0, lat, press, xb, Bhalf, B_min_half, &
 
a, yobs, OM1, Osigma, qc_on, & 
it, J_pen, x, pge, yb, ycalc, Amat, Kmat, & 
converged, error) 

DESCRIPTION 

This subroutine is the main user interface to the bending angle 1DVar.
 

INPUTS 

nstate	 Number of elements in the state vector.
 
nlev	 Number of levels for temperature.
 
nwet	 Number of levels for humidity.
 
nobs	 Number of observations.
 
roc	 Radius of curvature + geoid undulation (im m).
 
pz0	 Surface elevation abobe Mean Sea Level (in m).
 
lat	 Latitude (in degrees).
 
press	 Pressure levels for the state vector (in hPa).
 
xb	 Background state vector.
 
Bhalf	 The square root of the background error covariance matrix.
 
B_min_half	 The inverse of Bhalf.
 
a	 Impact parameters for the bending angle observations (in m).
 
yobs	 Bending angle observations (in rad).
 
OM1 The inverse of the observation and forward model (E + F)
 

covariance matrix.
 
Osigna The standard deviations of the observation errors (i.e., the
 

square roots of the diagonal elements of (E + F)).
 
qc_on If .false., PGE based QC will not be applied; otherwise
 

if .true.
 

OUTPUT 

it	 Number or iterations required for convergence.
 
J_pen	 Penalty / cost function value at convergence.
 

Solution state vector.
 
pge	 Probability of Gross Error vector.
 
yb	 Simulated bending angle calculated from the background state.
 
ycalc	 Simulated bending angle calculated from the solution state.
 
Amat	 Error covariance matrix of the solution.
 

88 

x 



v 

Kmat Weighting functions / Gradient of the forward model with 
respect to the state vector. 

converged .True. if solution converged within ITMAX iterations (as 
defined in refrac_info). 

error .True. if an error occured in the 1DVar retrieval. 

USES 

refrac_info
 

A.10.3 1DVar/penfunc 

NAME 

penfunc - Evaluate the penalty function.
 

SYNOPSIS 

J_pen = penfunc(qc_on, nstate, nobs, &
 
v, vb, yobs, ycalc, qcwt, OM1)
 

DESCRIPTION 

This function evaluates the value of the cost/penalty function.
 

INPUTS 

qc_on	 QC check on or noff.
 
Nstate	 Number of elements of the state vector.
 
Nobs	 Number of elements of the observation vector.
 

Current estimate of the solution.
 
vb	 Background.
 
yobs	 Observed values.
 
ycalc	 y(x).
 
qcwt	 Weight from QC.
 
OM1	 Inverse of observation and forward model covariance matrix.
 

OUTPUT 

J_pen	 Value of the cost / penalty function.
 

USES 

refrac_info
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A.11 libalpha_1dvar/Diagnostics 

DESCRIPTION 

The alpha_1DVar library contains two diagnostic routines.
 

SEE ALSO 

check_input_alpha Check input data for plausibility.
 
set_pge Calculate the Probability of Gross Error (PGE).
 

A.11.1 Diagnostics/check_input_alpha 

NAME 

check_input_alpha - Check input data data for plausibility.
 

SYNOPSIS 

call check_input_alpha(nstate, nlev, nwet, nobs, &
 
roc, pz0, xb, a, yobs, input_error)
 

DESCRIPTION 

This subroutine checks both the bending angle values and background
 
data for physical plausibility.
 

INPUTS 

nstate Number of elements in the state vector. 
nlev Number of pressure levels for temperature. 
nwet Number of pressure levels for humidity. 
nobs Number of observations. 
roc Local radius of curvature (in m). 
pz0 Surface elevation (in m). 
xb State vector 
a Impact parameters (in m). 
yobs bending angle observations (in rad). 

OUTPUT 

input_error .True. if the data appears to be implausible or
 
inconsistent.
 

USES 

refrac_info
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A.11.2 Diagnostics/set_pge 

NAME 

set_pge - Set Probability of Gross Error (PGE).
 

SYNOPSIS 

call set_pge(nobs, nstate, yobs, ycalc, Osigma, kmat, pge, qcwt)
 

DESCRIPTION 

This subroutine calculates the a priori Probability of Gross Error
 
for a bending angle profile as described in Healy and Marquardt (2004).
 

INPUTS 

nobs Number of elements in the observation vector. 
nstate Number of elements in the state vector. 
yobs(nobs) Array containing observations 
ycalc(nobs) Forward modelled observations. 
Osigma(nobs) Error in observations. 
kmat(nobs, nstate) Weighting functions (i.e., linearised forward model).
 

OUTPUT 

pge Probability of Gross Error (0...1).
 
qcwt QC weighting factor, equals 1 - pge.
 

USES 

refrac_info
 

NOTES 

It is assumed that the weighting functions are given in the control
 
variable where the problem has been preconditioned with the square
 
root of the background covariance matrix, i.e. that the transformed B
 
matrix is 1.
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A.12 libalpha_1dvar/Forward_model 

DESCRIPTION 

These routines form the forward model that calculates bending angles
 
as function of impact parameter from a given state vectore, as well as
 
the gradient of the forward model with respect to the state vector
 
elements.
 

SEE ALSO 

alpha_op Forward operator for bending angles. 
alpha_op_and_K Forward operator and its gradient for bending angles. 
calc_alpha Calculate bending angles for observation impact 

parameters. 
calc_alphaK Gradient of calc_alpha. 
calc_nr Calculate the ’refractivity x radius’ product on 

geopotential levels. 
calc_nrK Gradient of calc_nr. 
refrac_levs Calculate refractivity and geopotential heights. 
refrac_levsK Gradient of the refrac_levs. 

A.12.1 Forward_model/alpha_op 

NAME 

alpha_op - Forward operator for bending angles.
 

SYNOPSIS 

call alpha_op(nstate, nlev, nwet, nobs, roc, pz0, lat, pres, x, a, alpha)
 

DESCRIPTION 

This subroutine provides a forward operator to calculate bending angles
 
on a given set of observation impact parameters.
 

INPUTS 

nstate	 Number of elements in the state vector.
 
nlev	 Number of levels for temperature.
 
nwet	 Number of levels for humidity.
 
nobs	 Number of observations.
 
roc	 Radius of curvature (in m).
 
pz0	 Surface elevation above Mean Sea Level (in m).
 
lat	 Latitude.
 
press	 Pressure levels for state vector.
 

State vector.
 
a	 Impact parameter of observations (in m).
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OUTPUT 

alpha Forward modelled bending angles on observation heights (in rad).
 

USES 

refrac_levs
 
calc_nr
 
calc_alpha
 

A.12.2 Forward_model/alpha_op_and_K 

NAME 

alpha_op_and_K - Forward operator and its gradient for bending angles.
 

SYNOPSIS 

call alpha_op_and_K(nstate, nlev, nwet, nobs, roc, pz0, lat, press, x, a, &
 
alpha, Kmat, ErrorCode)
 

DESCRIPTION 

This subroutine provides a forward operator to calculate bending angles
 
on a given set of observation impact parameters. The gradient of the
 
operator with respect to the state vector is also calculated.
 

INPUTS 

nstate Number of elements in the state vector.
 
nlev Number of levels for temperature.
 
nwet Number of levels for humidity.
 
nobs Number of observations.
 
roc Radius of curvature (in m).
 
pz0 Surface elevation above Mean Sea Level (in m).
 
lat Latitude.
 
press Pressure levels for state vector.
 

State vector.
 
a Impact parameter of observations (in m).
 

OUTPUT 

alpha Forward modelled bending angles on observation heights (in rad).
 
Kmat Gradient of the forward operator.
 

USES 

refrac_levs
 
refrac_levsK
 
calc_nr
 
calc_nrK
 
calc_alpha
 
calc_alphaK
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A.12.3 Forward_model/calc_alpha 

NAME 

calc_alpha - Calculate bending angles for observation impact parameters.
 

SYNOPSIS 

call calc_alpha(nobs, nlev, a, refrac, nr, alpha)
 

DESCRIPTION 

This subroutine calculates bending angles from forward modelled refractivity
 
and impact parameter (’refracitivity x radius’ product) and interpolates
 
them onto a set of given impact parameters.
 

INPUTS 

nobs Number of observations. 
nlev Number of levels in the nr and refrac forward modelled profiles. 
a Impact parameter of the bending angle observations (in m). 
refrac Refracivity 
nr ’Refractivity x radius’ product. 

OUTPUT 

alpha Forward modelled bending angles at impact parameters a (in rad).
 

USES 

refrac_info
 

A.12.4 Forward_model/calc_alphaK 

NAME 

calc_alphaK - Gradient of calc_alpha.
 

SYNOPSIS 

call calc_alphaK (nobs, nlev, a, refrac, nr, Kmat_ref, Kmat_nr)
 

DESCRIPTION 

This subroutine calculates the gradient of calc_alpha with respect t
 
refractivity and the ’refractivity x radius’ product.
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INPUTS
 

nobs Number of observations. 
nlev Number of levels in the nr and refrac forward modelled profiles. 
a Impact parameter of the bending angle observations (in m). 
refrac Refracivity 
nr ’Refractivity x radius’ product. 

OUTPUT 

Kmat_ref Gradient of calculated bending angles with respect to refractivity.
 
K_mat_nr Gradient of calculated bending angles with respect to nr.
 

USES 

refrac_info
 

A.12.5 Forward_model/calc_nr 

NAME 

calc_nr - Calculate the ’refractivity x radius’ product on geopotential
 
levels.
 

SYNOPSIS 

call calc_nr(nlev, roc, lat, zg, refrac, nr)
 

DESCRIPTION 

This subroutine calculates the product of refractive index and radius (i.e.,
 
distance to the center of curvature).
 

INPUTS 

nlev Number of vertical levels.
 
roc Radius of curvature (in m.)
 
lat Latitude (in degrees).
 
zg Geopotential height (in gpm).
 
refrac Refractivity.
 

OUTPUT 

nr Refractivity x radius product.
 

USES 

refrac_info
 
e_rad
 
g_lat
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A.12.6 Forward_model/calc_nrK 

NAME 

calc_nrK - Gradient of calc_nr.
 

SYNOPSIS 

call calc_nrK(nlev, roc, lat, zg, refrac, dnr_dzg, dnr_dref)
 

DESCRIPTION 

This subroutine calculates the gradient of calc_nr with respect to
 
geopotential heights and refractivity.
 

INPUTS 

nlev Number of vertical levels. 
roc Radius of curvature (in m.) 
lat Latitude (in degrees). 
zg Geopotential height (in gpm). 
refrac Refractivity. 

OUTPUT 

dnr_dzg Gradient of nr with respect to geopotential height.
 
dnr_dref Gradient of nr with respect to refractivity.
 

USES 

refrac_info
 
e_rad
 
g_lat
 

A.12.7 Forward_model/refrac_levs 

NAME 

refrac_levs - Calculate refractivity and geopotential heights.
 

SYNOPSIS 

call refrac_levs(nstate, nlev, nwet, pz0, press, x, zg, refrac)
 

DESCRIPTION 
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This subroutines calculates refractivity values at a given set of
 
observation heights.
 

INPUTS 

nstate Number of elements in the state vector.
 
nlev Number of levels for temperature.
 
nwet Number of levels for humidity.
 
pz0 Surface elevation (in m).
 
press Pressure levels for the state vector.
 
x State vector.
 

OUTPUT 

zg Observation heights (in gpm).
 
refrac Refractivity on observation heights.
 

USES 

refrac_info
 

A.12.8 Forward_model/refrac_levsK 

NAME 

refrac_levsK - Gradient of refrac_levs.
 

SYNOPSIS 

call refrac_levsK(nstate, nlev, nwet, pz0, pres, x, dzg_dx, dref_dx)
 

DESCRIPTION 

This subroutine calculates the gradient of refrac_levs with respect to the
 
elements of the state vector.
 

INPUTS 

nstate Number of elements in the state vector.
 
nlev Number of levels for temperature.
 
nwet Number of levels for humidity.
 
pz0 Surface elevation (in m).
 
press Pressure levels for the state vector.
 
x State vector.
 

OUTPUT 

dzg_dx Gradient of geopotential height with respect to state vector.
 
dref_dx Gradient of refractivity with respect to state vector.
 

USES 

refrac_info
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A.13 libalpha_1dvar/Math 

DESCRIPTION 

The alpha_1DVar library contains a small number of mathematical
 
routines.
 

SEE ALSO 

Cholesky Cholesky decomposition of a real symmetric matrix. 
erf Error function. 
satmatinv Invert a positive definite matrix. 

A.13.1 Math/Cholesky 

NAME 

Cholesky - Cholesky decomposition of a real symmetric matrix.
 

SYNOPSIS 

call subroutine Cholesky(U, v, N, q, ErrorCode)
 

DESCRIPTION 

This subroutine solves the linear equation Uq = v for q by means of a
 
Cholesky decomposition, where U is a NxN symmetric positive definite
 
matrix, and V and q are vectors of length N.
 

INPUTS 

U(N, N) Positive definite symmetric matrix (only upper half is used).
 
v(N) Array.
 
N Number of elements.
 

OUTPUT 

q(N) Solution.
 
errorcode 0: Ok, 1: V is not positive definite.
 

NOTES 

If U is not positive definite this will be detected by the program
 
and flagged as an error. U is assumed to be symmetric as only the
 
upper triangle is in fact used.
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A.13.2 Math/erf 

NAME 

erf - Error function.
 

SYNOPSIS 

y = erf(x)
 

DESCRIPTION 

This function calculates the value of the error function.
 

INPUTS 

x real number.
 

OUTPUT 

y value of the error function at x.
 

A.13.3 Math/satmatinv 

NAME 

satmatinv - Invert a positive definite real matrix.
 

SYNOPSIS 

call satmatinv(n, m, A, status)
 

DESCRIPTION 

This subroutine calculates the inverse of a real symmetric positive
 
definitive matrix using a Cholesky decomposition
 

INPUTS 

N: Size of the matrix being inverted 
M: If MATRIX is not present this is the same as N, else 

this is the Other dimension of MATRIX. 
A: Real matrix (assumed square and symmetrical) 

overwritten by its inverse if MATRIX is not 
present. 
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OUTPUT
 

A: Real matrix (assumed square and symmetrical) 
overwritten by its inverse if MATRIX is not 
present. 

Status: 0: ok, 1: A is not positive definite. 

NOTES 

Cholesky decomposition solves the Linear equation UQ = V for  Q 
  
where U is a symmetric positive definite matrix and U and Q
 
are vectors of length N.
 

The method follows that in Golub and Van Loan although this is
 
pretty standard.
 

If U is not positive definite this will be detected by the program
 
and flagged as an error. U is assumed to be symmetric as only the
 
upper triangle is in fact used.
 

A.14 libalpha_1dvar/Other 

DESCRIPTION 

The library contains a small number of otherwise useful routines and one
 
type declaration.
 

SEE ALSO 

Derived types and programming utilities:
 
refrac_info Derived types and constants for RO observations.
 
set_xb Fill the state vector with background data values.
 

Geodesy:
 
e_rad Effective radius of Earth (for gravity and geopotential
 

height calculations).
 
g_lat Gravity at Mean Sea Level.
 

Thermodynamics:
 
humid_check Check that humidity is below saturation (and correct it
 

if not).
 
svp Water vapour saturation pressure.
 

A.14.1 Other/e_rad 

NAME 

100 



e_rad - Effective radius of Earth (for gravity and geopotential height
 
calculations).
 

SYNOPSIS 

R_eff = e_rad(lat)
 

DESCRIPTION 

This function calculates the effective radius of Earth, which is intended
 
to be used in the calculation of geopotential height. The function
 
implements the method described by List (1985).
 

INPUTS 

lat Latitude (in degrees). 

OUTPUT 

R_eff Effective Earth radius (in m). 

USES 

g_lat 

REFERENCES 

List, R.J., Smithsonian Meteorological Tables, 6th ed., Smithsonian
 
Institution Press, Washington, 1985.
 

A.14.2 Other/g_lat 

NAME 

g_lat - Gravity at Mean Sea Level
 

SYNOPSIS 

g = g_lat(lat)
 

DESCRIPTION 

This function calculates gravity at Mean Sea Level as function of latitude.
 
The formulation follows List (1985).
 

INPUTS 

lat Latitude (in degrees).
 

OUTPUT 

g Gravitational acceleration (in m/s^2).
 

REFERENCES 

List, R.J., Smithsonian Meteorological Tables, 6th ed., Smithsonian
 
Institution Press, Washington, 1985.
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A.14.3 Other/humid_check 

NAME 

humid_check - Check that humidity is below saturation (and correct it
 
if not).
 

SYNOPSIS 

call humid_check(nstate, lev, nwet, press, x)
 

DESCRIPTION 

This subroutine checks that the humidity values in the state vector
 
are below supersaturation (i.e., below 100 % relative humidity). If
 
they are, the humidity value is corrected to reflect a 100 % relative
 
humidity value.
 

INPUTS 

nstate Number of elements in the state vector. 
nlev Number of levels used for temperature. 
nwet Number of levels used for humidity. 
press Pressure levels used in the state vector (hPa). 
x State vector. 

OUTPUT 

x State vector (elements might be changed by this routine).
 

SEE ALSO 

set_xb for the definition of the state vector.
 

A.14.4 Other/refrac_info 

NAME 

refrac_info - Derived types and constants for RO observations.
 

SYNOPSIS 

use refrac_info
 

DESCRIPTION 
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This module provides derived types and physical constants useful
 
for radio occultation data.
 

SOURCE 

Useful constants:
 

logical, parameter :: check_hum = .FALSE.
 
integer, parameter :: ITMAX = 20
 

real, parameter :: delta = 0.01
 
real, parameter :: R = 287.05
 
real, parameter :: CP = 1005.0
 
real, parameter :: kappa = R/CP
 
real, parameter :: Pref = 1000.0
 
real, parameter :: Epsilon = 0.62198
 
real, parameter :: C_virtual = 1.0E-3*(1.0/Epsilon - 1.0)
 
real, parameter :: aval = 77.6 
real, parameter :: bval = 3.73E5 
real, parameter :: g = 9.80665 
real, parameter :: RMDI = -9999.0 
real, parameter :: RMDItol = -(1.0E-6*RMDI) 
real, parameter :: Rog = R/g 
real, parameter :: pi = 3.14159 
real, parameter :: root_pi = 1.77245 

Constants for PGE QC: 

real, parameter :: big_diff = 0.05 
real, parameter :: qcaval = 0.001 
real, parameter :: qcdval = 10.0 
real, parameter :: gamma = 1.253314*qcaval/((1.0-qcaval)*qcdval) 

Constant for check_input: 

real, parameter :: ref_min = 1.0E-3 
real, parameter :: ref_max = 500.0 
real, parameter :: alpha_min = -1.0E-3
 
real, parameter :: alpha_max = 0.1
 
real, parameter :: a_min = 6.2E6 
real, parameter :: a_max = 6.5E6 
real, parameter :: zg_min = 0.0 
real, parameter :: zg_max = 1.0E5 
real, parameter :: T_min = 150.0 
real, parameter :: T_max = 350.0 
real, parameter :: lnQ_min = -25.0 
real, parameter :: lnQ_max = 4.0 

Derived type for (bending angle) observations):
 

type ob_type
 
real :: lat
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real :: lon 
integer :: year 
integer :: month 
integer :: day 
integer :: hour 
integer :: min 
integer :: sec 
integer :: doy 
integer :: ocnum 
real :: roc 
integer :: nobs 
real, pointer :: a(:) 
real, pointer :: alpha(:) 
real, pointer :: alpha_b(:) 
real, pointer :: alpha_s(:) 
real, pointer :: pge(:) 

end type ob_type
 

Derived type for background data:
 

type bg_type
 
real :: lat 
real :: lon 
integer :: year 
integer :: month 
integer :: day 
integer :: hour 
integer :: min 
integer :: sec 
integer :: doy 
integer :: ocnum 
real :: pz0 
real :: psurf 
integer :: nlev 
real, pointer :: pres(:) 
real, pointer :: temp(:) 
real, pointer :: qval(:) 

end type bg_type
 

A.14.5 Other/set_xb 

NAME 

set_xb - Fill the state vector with values.
 

SYNOPSIS 

call set_xb(nstate, nlev, nwet, press, bg, xb)
 

DESCRIPTION 
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This subroutines sets the values of a state vector array from the
 
background data provided in the bg structure.
 

INPUTS 

nstate Number of elements in the state vector. 
nlev Number of pressure levels (for temperature). 
nwet Number of pressure levels (for humidity). 
press Pressure levels to be used by the state vector (nlev elements). 
bg Structure of type(bg) as defined in refrac_info. 

OUTPUT 

xb State vector (nstate elements).
 

USES 

refrac_info
 

NOTES 

The routine interpolates the background profile as given in the bg
 
structure onto the pressure levels press of the state vector. The
 
state vector has the following elements:
 

1 ... nlev: temperature
 
nlev+1 ... nlev+nwet: log(specific humidity)
 
nstate: surface pressure
 

SEE ALSO 

refrac_info
 

A.14.6 Other/svp 

NAME 

svp - Calculate water vapour saturation pressure.
 

SYNOPSIS 

p = svp(T)
 

DESCRIPTION 

This function calculates water vapour saturation pressure in hPa,
 
given the temperature in K.
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INPUTS 

real :: T Temperature in K.
 

OUTPUT 

real :: p Water vapour saturation pressure in hPa
 

NOTES 

svp uses a look-up array es_table and interpolates to the required
 
temperature. The returned value corresponds to svp over ice for
 
T <= 8 deg C, to water for T >= 5 deg C, and to transitional values
 
in between 5 & 8 deg C.
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