

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

RapidScat on the International Space Station ISS

Ad Stoffelen

Manager OSI SAF winds Manager NWP SAF winds Manager EU CMEMS satellite winds

Overview

Scatterometer missions and orbits >The special ISS orbit RapidScat and ASCAT collocation Geophyisical Model Function (GMF) \geq Rain effects ➢Quality Control Summary and questions

The Ocean Surface Vector Wind Constellation: Status, Health and Future?

CEOS OSVW-Virtual Constellation Paul Chang (NOAA), Julia Figa Saldana (EUMETSAT) and B.S. Gohil (ISRO)

https://coaps.fsu.edu/scatterometry/meeting/docs/2015/ProgrammaticTalks/PCHANG_IOWVST_OSVW-VC.pdf

Ocean Vector Surface Winds Constellation Local time coverage assessment (ground track) - NRT data access Launc 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 h 01:30 GCOM W2/3 03 Т. **DESCENDING NODE CROSSING TIME** 2 05 Т 03 06:00 HY-2 A/B/C 07 06:00 FY-3E/G 05-06:00 \$CATSAT 06:00 \$CATT O.S. 07:00 CFOSAT No NRT data 60 WMO observation cycle requirement: 6 h 07access committed 09:30 EPS (ASCAT) 7 -60 09:30 EPS-SG (SCA) 13 н 12:00 OceanSAT 2/3 Ę 12:00 Meteor M/MP Design Life Extended Life **Design Life** Extended Life Proposed Operating Approved Source: WMO OSCAR database and direct

interactions with agencies

Committee on Earth Observation Satellites

RapidSCAT - Diurnal

- First scatterometer **not** on a sun-synchronous plaform
- Views a point at all local times of day every two months
- Facilitates cross-calibration of previous scatterometers at different local time-of-days

Daily orbits: RapidScat

- Inclined ISS orbit limits coverage to 55S to 55N
 - Between latitudes of 40 to 55
 degrees swath overlaps and enhanced coverage
 - Local time of overpass regresses, which allows
 - intercalibration of scatterometers
 - diurnal cycle analysis

RapidScat on ISS

http://www.telegraaf.nl/tv/opmerkelijk /23929606/ Astronaut filmt ISS me t GoPro .html

ISS Expedition 42_US EVA2 GoPro

NRT RapidScat at KNMI

www.knmi.nl/scatterometer

- <u>RapidScat 25-km 2hrs</u> Operational status
- <u>RapidScat 25-km 3hrs</u> Operational status
- <u>RapidScat 50-km 2hrs</u>
 Operational status
- <u>RapidScat 50-km 3hrs</u>
 Operational status
- Continuation of OSCAT
 - 50km for NWP
 - 25km for others
- NRT and delayed product
- Products over Europe typically within 100 minutes

Minutes

<u>scat@knmi.nl</u>

STAR Center for Satellite ~~~~ National Environmental Satellite, Data, and Information Service (NESDIS)

on

North

OSWT Home | Product Description | Data Products | Research | Contact US NOAA | NESDIS | STAR | SOCD OSWT Home Data from Satellite/Instruments: RapidSCAT **Product Description Additional Products** Year Month Day Get Images Wind Vectors 10x15 (12.5KM) 2015 ~ **Data Products** 9 16 ~ V V Global(80N80S-180E180W) QuikSCAT/SeaWinds RapidScat Scheduled Outages ▶ OSCAT RapidSCAT >> **Ascending Pass** ASCAT (METOP-A) ASCAT (METOP-B) Rapidscat Winds(12.5KM) Sep 16 05:11 UTC 2015 ascending 80 ▶ WindSAT 5 10 15 20 25 30 35 40 45 >5D knota n ERS-2 SSM/I Research FD 4 **Contact Us** This is web site is not supported on a 24x7 basis and should not be considered operational. Enter search term(s) Go 1D. This site only All of NOAA ¢_D **Advanced Search**

RapidScat winds

- Orbit files run from S-most point, so European waters are about in the middle and here only half an orbits time (45 min.) is lost in ground transmission
- Systematic gaps in the Indian Ocean
- Events such as vehicle dockings or astronaut/cosmonaut space-walks in service messages
- Recent anomaly

Triple collocation (scat scale)

	Scatterometer		Buoys		ECMWF	
SDE [m/s]	EU	٤V	εu	٤V	<i>ЕИ</i>	εν
25 km RapidScat	0.64	0.67	1.33	1.38	1.17	1.15
50 km RapidScat	0.56	0.53	1.41	1.47	1.06	1.07
50 km OSCAT	0.69	0.54	1.46	1.57	1.03	1.09
25 km SeaWinds	0.79	0.63	1.40	1.44	1.19	1.27
U10N=aw+b 25 km RapidScat 50 km RapidScat	<i>au</i> 0.983 0.980	<i>av</i> 0.978 0.972		<i>bu</i> (m/s) <i>bv</i> (m/s) -0.06 -0.03 -0.07 -0.04		ı/s)

- Good verification of RSCAT
- A bit more QC due to swath pattern
- Different years, but all Nov-Jan

29 March 2015 : ASCAT-A 20:09 ASCAT-B 21:03 RSCAT 22:34

Daily orbits: RapidScat/ASCAT

RapidScat not sunsynchronous Ku-band ~2 cm <=

ASCAT sunsynchronous C-band ~5 cm

=>

Collocations RapidScat/ASCAT

" < 25 minutes • < 25 km

<= One day</p>

<= Nov `14 - Apr `15

RapidScat provides the opportunity to get collocations at the ASCAT overpass time for all ISS latitudes

RadidSca

Rapidscat vs ASCAT

- November thru April, < 25 min, < 25 km & closest
- Good comparison, but different speed scale and QC
- ASCAT and RapidScat accepted winds are similarly dissimilar to ECMWF
- High latitude winds are different; not due to speed scale; SST?
- RapidScat NSCAT4 winds higher at low and high end (vs CMOD6)
- Low ASCAT winds too often rejected (need CMOD7?)
- Many rejected RapidScat winds appear close to the diagonal, which calls for further QC improvements (at KNMI)
- > Work in progress!

Rscat vs ASCAT speed bias

all swaths

November thru April, < 25 min, < 25 km & closest

- Some ASCAT swath patterns (temporal effects?)
- Enhanced differences near convection (rain?)

				14 A						
				T.		1	The second se	10.000		
-2.0	-1.6	-1.2	-0.8	-0.4	0.0	0.4	0.8	1.2	1.6	2.0
			Bias	windsnelhe	id: Rapidso	at - Ascat (m/s)			

All ∆s

- All WVCs accepted by both
- A/RSCAT rejects 1/10%
- High latitude low bias RSCAT
- Convection stands out vs ECMWF
- RSCAT and ASCAT much agree on small scales! (must be wind, no rain!)
- RSCAT little more red though in tropics (rain?)
- Currents?

N.

Rapidscat vs ASCAT RMS

all swaths

rms (m/s)

RapidScat rejections bad?

Rain

Effects that should show large RMS and bias effects

- 1. Attenuation/backscatter in clouds
 - Very different for C and Ku band due to power law
- 2. Surface wave damping due to water turbulence in heavy rain- Dissipation depends strongly on wavelength

RadidSca

- 3. Surface roughening due to droplet impact
 - Rings form at ~2 cm wavelength

Wind effects are similarly represented in ASCAT and RSCAT winds and appear dominant (through the inverted GMFs)

Speed and QC

Speed and QC

Stdev v

1.25

1.28

1.93

DidSca

Wind speed dependence

- Wind speed dependent correction applied to get RapidScat and ASCAT on the same level.
- However, the red and blue areas remain!

SST dependence

20

30

35

10

SST (C*)

- Direct QuikSCAT ASCAT comparisons also show negative bias for Ku-band, but only data available at high latitudes.
- Wind speed bias shows monotonic increase with SST
- Surface tension decreases with increasing temperature
- Formation of wind induced waves appears to be different at 2 cm and 5 cm

Link to SST

- $\lambda_{c} = 2\pi \sqrt{(\sigma/\rho_{w}g)}$
- Capillary and gravity dispersion equal
- ≻ ~ 1.7 cm
- > 30 degrees corresponds to 6% reduction in σ , i.e., 3% reduction in λ_c (TBC)
- > $\rho_{\rm w}$ = 1024±4 kg m⁻³, i.e., negligible variation
- g decrease to pole is 0.5%,
 i.e., negligible variation

→ C 🗋 hyperphysics.phy-astr.gsu.edu/hbase/surten.html#c3

Surface Tension of Water

The <u>surface tension</u> of water is 72 dynes/cm at 25°C. It would take a force of 72 dynes to break a surface film of water 1 cm long. The surface tension of water decreases significantly with temperature as shown in the graph. The surface tension arises from the <u>polar nature</u> of the <u>water molecule</u>.

Ku more affected than C ?

At low SST, differences appear wind speed dependent and most pronounced at low to moderate winds (dissipation of breaking waves; TBC)

10

15

20

NWP impact

Spatial Coverage

- ✓ Global coverage between 56N / 56S
- Poor coverage over the Indian Ocean

RapidScat Impact on IFS

VW RMS Fc Error difference (verified vs Operations) Exp/WithoutRapidScat – Exp/WithRapidScat

Slightly negative impact in the NH and SH

Slightly positive impact in the Tropics

Similar results at higher model levels and if verified vs own analysis

NWP impact

- Are the multiple observations around 50N and 50S at multiple times in an observation window problematic in fitting a NWP model state?
- Do statistical artefacts develop > 50 latitude due to overfitting by the background error structure functions?
- Less ideal to deal with ISS RapidScat?

Statistics of RSCAT Buoy Comparisons

	Nudged	DIRTH	NC	KNMI				
Spatial resolution	25	25	12.5	25				
Wind Speed (m/s)								
Number of data	3,184	3,184	1,675	2,334				
Bias	-0.07	-0.05	0.23	0.22				
Rms difference	1.16	1.11	1.11	0.98				
Correlation	0.938	0.943	0.944	0.954				
Wind Direction (deg.), wind speed > 3 m/s								
Number of data	2,813	2,813	1,490	2,064				
Bias	1.5	0.9	1.6	3.2				
Rms difference	25.6	23.7	20.4	19.4				
Correlation	0.962	0.967	0.977	0.977				

® N. Ebuchi

Conclusions

- ✓ RScat wind quality is comparable to QSCAT or OSCAT winds
- RScat objective of intercalibration with ASCAT successful already
- ✓ RScat winds generally match well with ASCAT winds
- ✓ KNMI appears to reject quite some good quality RSCAT winds
- ✓ Latitude dependent biases are observed, which have already been seen for other Ku-band instruments but are much more obvious now due to close collocations
- ✓ There appears to be a strong correlation with SST and a wind speed dependence of the C/Ku GMF difference
- ✓ Ku band GMF probably needs SST-dependent correction
- ✓ NWP data assimilation of locally (50N and 50S) spatially and temporally dense wind observations appears challenging yet

