

# Level 1 and Level 2 Test data needs of regional NWP and NWC users Level 1 test data for global NWP

#### Contribution to the discussion

Dr. Christina Köpken-Watts,
Data Assimilation, DWD



#### **Outline**



- ➤ Introductory remarks:
  - Relation of NWC and convection-resolving (regional) NWP
  - Satellite data in NWC
  - Satellite data regional/global NWP
- > Test data
  - User groups
  - Test data types
  - Test data needs for L1 and L2
- ➤ Summary



#### Relation of NWC and regional NWP





#### **Established systems**

NWC/VSRF

- Regional & convection resolving NWP
- Forecasts: 6 hours to 24-72h
- Resolution: ~5-7km to ~1.5–2.5 km
- Setup: ~3-6 hourly analysis updates
- Availability: 4-8 forecasts/day
  - at  $\ge$  t0 + 1-3h

- Forecasts & warnings for 6-12h
- NWC focus: up to ~6h
- Input:
  - Observations (conv./satellite) analysed & extrapolated
  - NWP: last available run

#### **Evolution**

- Focus on convection resolving NWP
- Forecasts: 6 hours (to 48 h)
- Resolution: ≤ 1 1.5 km
- RUC-setup: ≤ 1 hourly updates
- Availability: 24 forecasts/day at t0 + 30 min.
- Use of more remote sensing data (radar/satellite/ground-based)

- Forecasts & warnings for 6-12h
- NWC focus: up to ~1-2h
- Input:
  - Observations (conv./satellite)
     analysed & extrapolated

**NWP** 

Integrated products



#### Satellite data in NWC

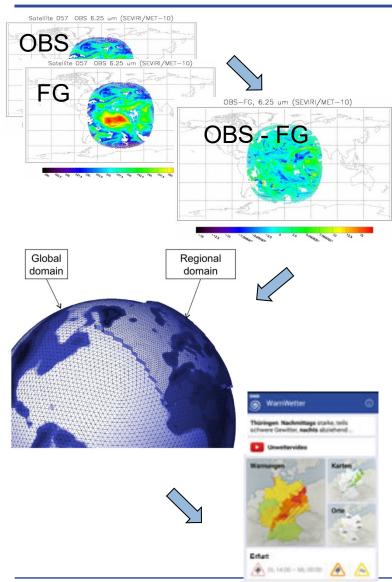


#### Use of satellite data e.g. to:

- → Complement radar data
- → Analyze convective environment, e.g. stability, for timely warnings
- → Fog detection, volcanic ash
- → Indication of local phenomena, convergence lines, ...

#### Mostly in the form of:

- Cloud, fog, volcanic ash prod
- Dedicated spectral composit
- → Stability indices
- → CI parameter


#### → Early indicator for detection Development areas & IRS potential:

- More accurate L2 profiles to complement RS network (in space and time)
- Convective indicators, e.g. based on PC scores
- Low level humidity, improved fog detection (e.g. use of dedicated composites)
- Wind field information, convergence lines?
- Use of automated systems, e.g. neural networks, detection of objects



## MTG - IRS in regional (convection resolving) and global NWP





#### Successful assimilation of MTG-IRS data

- will be key for both regional NWP and NWC/VSRF applications
- provides huge potential for global NWP

#### NWP assimilation needs:

- Fast forward model (RTTOV)
- Stable SRF across detector array & in time
- Accurate calibration of data
- Well defined strategy for updating and communicating the PCs

Esp. high-resolution NWP requires additionally:

very high timeliness (similar to NWC)



#### L1 Test data for MTG - IRS



#### User groups

MTG – IRS PC scores compressed data

(standard via EumetCAST)

MTG – IRS Raw radiances

(via GEANT network)

- Need PC scores test data
- May need corresponding raw spectra to develop & check methods based on PCs
- Need raw spectra test data

Similar requirements for availability of test data

- PC compressed data sets
- Corresponding raw spectra



#### Test data for MTG – IRS: L1 (and L2)



## Types of use for test data

## Check of format and data contents

Technical tests
of data processing
and methods (applications)

- No high physical realism needed
- Identical (very close) to final contents and format
- Good documentation

- Realistic underlying profiles and RT (L2: retrieval method)
- Realistic range of atmospheric situations and observing conditions
- Realistically simulated instrument & noise characteristics

Continuous pre-launch data stream for final infrastrucutre and processing tests

#### Scientific investigations

of data characteristics or methods and applications

- Simulated data with fully controlled and understood atmospheric conditions and instrument characteristics
- Data as realistic as possible, potentially based on very high resolution NWP

or

 Realistic observing conditions and use of full instrument and noise characteristics



#### Test data for MTG – IRS: L1 (and L2)



Types of use for test data

## Check of format and data contents

- No high physical realism needed
- Identical (very close) to final contents and format
- G( YES mentation

#### **Technical tests**

For data processing and methods (applications)

- Realistic underlying profiles and RT
- Realistic range of atmospheric situations and observing conditions
- Realisti mulated instruction instructions is characteristics.

for final infrastrucutre and processing tests

### Scientific investigations

of data characteristics or methods and applications

 Simulated data with fully controlled and understood atmospheric conditions and instrument characteristics

or

- Data as realistic as possible, e.g. based on very high resolution NWP
- Reali NWP: No and NWC: (Yes)



YES

#### L1: Needed test data for technical testing



- For global and convection-resolving (regional) NWP and NWC
- Format: final, at least very close
- Area: (1) Dwells covering Europe (or LAC4) at nominal resolution
  - (2) Full disk (global NWP)
- Period: TBD, at least several consecutive time slots to one day
- Based on:
  - Data covering realistic range of situations, e.g. coarse NWP fields
  - Realistic IRS viewing geometry
  - Expected instrument characteristics and noise
- Documentation of input and test data production setup/assumptions
- Both full spectra and PC compressed data
- Added value: Availability of used atmospheric input profiles/fields



#### L1: Test data for methods development



- Interest for development of NWC applications
- Details of requirement for intended use need to be confirmed

Format: final, at least very close

Area: some dwells, LAC4/Europe (?) at nominal resolution

Period: TBD, at least several consecutive slots

- Based on:
  - Realistic high-resolution NWP fields
  - Realistic IRS viewing geometry
  - Expected instrument characteristics and noise
- Documentation of input and test data production setup/assumptions
- Both full spectra and PC compressed data
- Added value: Availability of used atmospheric input profiles/fields
- Such data may help to raise user awareness



#### L2: Test data for technical tests



L2 retrievals for NWC / VSRF

Format: final, at least very close

Area: dwells covering Europe

Period: TBD, at least several consecutive time slots to one day

Based on:

- Data covering realistic range of situations, e.g. coarse NWP fields
- Realistic IRS viewing geometry
- Expected instrument characteristics and noise
- Chosen retrieval setup (FCT or PWLR) not relevant for technical test
- Documentation of input and test data production setup/assumptions



# L2: ,Test' data for evaluation / application development



- Test case data for evaluation in NWC / VSRF context
- Need for continued evaluation of L2 retrievals for selected test case scenarios
  - use of FCT or PWLR prior in OEM
  - Based on simulated or proxy data
- Suggestion for forecaster training using GRUAN simulator:
  - Use of GRUAN simulator: IRS simulations based on selected RS data
  - L2 retrievals with FCT and PWLR prior
  - Dataset with retrievals, the 'real profile' (radiosonde) and the respective prior used.
  - Training forecasters on what the satellite 'sees' and on relative contribution of data and prior to the retrieval result.



# Additional test data: Pre-launch data stream for ,stress-test' of systems



- Aim:
  - full test of data reception & storage and processing systems
  - well before launch to allow possible additional system upgrades
- Users:
  - Global and convection-resolving (regional) NWP
  - NWC
- Format : Final
- Area: Operational area setup for L1 and L2
- Timing & period: real-time full data streams
  - 1 yr before launch for ≥ 24h (see also MTGUP! discussion)
  - 2) 3-6 months prior to launch for 1-2 weeks for additional infrastructure and processing exercise (both ends!)



#### **Summary**



- Test data are mostly needed for technical testing of data processing
- Additional data needs for selected cases and specific users and setups
- Data need to
  - represent realistic range of situations and processing setup but not the full atmospheric detail
  - be available early on
  - final format (or close to final)
  - EUMETSAT plans (SWG46: mature format, simulated data, Q1/2019) but: focus: format familiarization data / basic technical testing pure forward simulation from model data no instrument noise, viewing geometry only one dwell also global data?
    PC compressed
- Pre-launch full data stream (IRS and other instruments) needed for infrastructure and processing tests

