Validation of an OLCI Fluorescence Product

S3VT Meeting 2019

Lena Kritten, Rene Preusker, Juergen Fischer

Spectral Earth - SE

1. The Fluorescence Algorithm

2. Validation of the Fluorescence Product

The Fluorescence Algorithm

Quantification of solar-induced phytoplankton Fluorescence has two main advantages in marine bio-geochemistry studies:

- **improvement of the chlorophyll retrieval**, customarily based on the detection of the chlorophyll absorption signal
- additional information on phytoplankton physiological state, biomass and maximum layer depth

Idea behind the OC-FLUO Algorithm

Use **OLCI's extended spectral capabilities** in order to develop an algorithm, which is working also in **complex waters**, where current algorithms fail!

Spectrum is effected by diverse optically active substances in the water \rightarrow Spectral separation of chlorophyll fluorescence, absorption and other substances.

 $F_{w} \cdot e^{((\lambda - \lambda_F)^2/w_F)}$

 $F_{w} \cdot e^{((\lambda - \lambda_F)^2/w_F)}$

 $A \cdot e^{((\lambda - \lambda_A)^2/W_A)} + F_W \cdot e^{((\lambda - \lambda_F)^2/W_F)}$

$O + A \cdot e^{((\lambda - \lambda_A)^2 / W_A)} + F_W \cdot e^{((\lambda - \lambda_F)^2 / W_F)}$

 $L_{TOA}(\lambda) = \mathbf{O} + S \cdot \lambda + A \cdot e^{((\lambda - \lambda_A)^2/W_A)} + F_{W} \cdot e^{((\lambda - \lambda_F)^2/W_F)}$

Input and Output

Figure 1: Processing by OC-Fluo for different input and output Levels

$$R_{\rm rs}(\theta,\phi,\lambda) \equiv \frac{L_w(\theta,\phi,\lambda)}{E_d(\lambda)} \,\,({
m sr}^{-1})$$

Variability of Chlorophyll Fluorescence

•	variation in the chlorophyll-a pigment
	concentration

- photoinhibition
- phytoplankton species
- physiological states
- layering of the phytoplankton
- relationship between FLH and chlorophyll can vary by a factor of eight [Borstad, 1985]

Empiricism

- correlation within a particular study region quite good
- strong diel cycle in in situ measured fluorescence lifetime (fluorescence efficiency)

Theory

Example: Fluorescence Retrieval in the German Bight

Figure 2: F_w from Level1 data in the German Bight, May 2017

Figure 3: Measured and reproduced spectrum with high and low F_w

Example: Fluorescence Retrieval in the German Bight

Figure 4: F_w from Level1 data in the German Bight, May 2017

Figure 5: Components of the reproduced spectrum with high F_w

Example: Fluorescence Retrieval in the German Bight

Figure 6: F_w from Level1 data in the German Bight, May 2017

Figure 7: Components of the reproduced spectrum with low F_w

Validation of the Fluorescence Product

Validation Approach

Fluorescence/Concentration Correlation in Literature and from RTM

Figure 8: Empirical relationship of Chlorophyll fluorescence and concentration derived in BABIN et al. [1996], relation from RTM simulations of Rrs using bio-optical model from Bricaud et al. [2010] (MERIS band setting, OLCI band setting)

Validation on in situ Match-ups

Figure 9: HPLC measurements with OLCI match-ups, extracted from the SeaBASS database (Ilaria, pers. communication), the yellow dots passed the filter as described in Werdell and Bailey [2005].

Validation of F_w from Level1 Data

Figure 10: $F_{\rm w}$ over in situ Chl concentration from global HPLC measurements retrieved from OLCI Level1

- \cdot good correlation above 2.5mg/m³ in situ chlorophyll
- offset for F_w probably caused by missing water vapour correction (in prep.)

Validation of nF_w from Level2 Data

Figure 11: nF_w over in situ Chl concentration from global HPLC measurements retrieved from OLCI Level2 Rrs

- correlation below 2.5mg/m³ in situ chlorophyll slightly better
- no offset necessary

Conclusions

- Good correlation of F_w from Level1 Data as well as F_w from Level2 Data to global insitu Chlorphyll
- Consistent relation between Chlorophyll concentration and fluorescence from literature, RTM and OLCI/insitu comparison

Open Question

- Which study region should be object to validation?
- Requests: Complex water, accompanying in situ measurements,...