MTG-IRS L2 data assimilation into the ECMWF model

Contract No. EUM/CO/15/4600001613/SAT Progress report 10.7.2019

Kirsti Salonen

kirsti.salonen@ecmwf.int

© ECMWF July 10, 2019

Core phase of the project

- 1. Technical developments
- 2. Quality assessment
 - Understand the data characteristics
 - Design quality control
 - Estimate realistic observation errors and error correlations
- 3. Data assimilation experiments
 - Depleted observing system: degraded quality but easy to demonstrate impact
 - Full observing system: operational quality, more difficult to demonstrate impact

In the core phase of the project the main focus has been on "best of the best" T and q clear sky retrievals over sea.

Quality assessment

Measure of cloudiness OmC

• OmC: observed window channel brightness temperature minus the corresponding brightness temperature computed by a forward model with clear-sky assumption

Criterion used to select cloud free data |OmC| < 1

Quality indicator QI_T

- QI_T: uncertainty estimate of the low tropospheric temperature
- Additional screening for high quality data, $QI_T < 1.5$
 - Over sea majority of the data fulfil the criterion

Applying quality criteria

- The overall quality of the retrievals is relatively good as long as strict quality criteria are applied to exclude cloudy scenes. (Focus on data over sea only.)
- All, cloud free retrievals |OmC| < 1, additional quality screening for cloud free retrievals $QI_T < 1.5$

L2 has challenges to capture low level inversions

Geodisc NH

Geodisc TR

Geodisc SH

- Model is capturing the low level temperature inversions much more frequently than L2.
- L2 inversions are smooth, and on average found from higher altitudes than the model inversions.

Tropopause structure

- The model tropopause is on average warmer and at lower ٠ altitude than the L2 tropopause.
- Model captures more often the double tropopause structure in the midlatitudes

Model

 Mode • L2

12

(hPa)

Q 100

200

Summary of the quality assessment

- Quality of the retrievals is highly situation and location dependent
 - Cloud free profiles have the best quality
 - Errors increase rapidly for cloud affected data
 - Generally the data quality is better over sea than over land
- QI_T is useful for filtering good quality data especially over land
 - |OmC| < 1, 11% of all data
 - QI_T < 1.5 K, 35% of all data
 - |OmC| < 1 and QI_T < 1.5 K 9 % of all data
- Model is capturing the low level inversions much more frequently than L2
 - L2 inversions are smooth, and on average found from higher altitudes than the model inversions
- The model tropopause is on average warmer and at lower altitude than the L2 tropopause.
 - Model has more often the double tropopause structure in the midlatitudes

Impact assessment

Estimating observation errors

• Observation errors diagnosed with Desroziers method.

• Temperature errors require significant inflation, $4^*\sigma_{oT}$ used in the assimilation experiments.

- Increased errors at low level inversion and tropopause levels.
- Inflation for humidity errors moderate, 2.5* σ_{oq}

Observation error correlations in clear sky

Single observation experiment, temperature

- 1.1.2017, 12.38 UTC
- 39.26 N, 33.41 W
- All IASI channels are cloud free according to ECMWF cloud detection scheme
- High quality clear sky L2 temperature profile
 - OmC = 0.36
 - QI_T = 0.75

Single observation experiment, using diagonal R

Single observation experiment, using full R

- It is very important to take the vertical error correlations into account.
- Missing inversion results to strong signal in the analysis increment despite significantly inflated σ_{oT} .

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Data assimilation experiments, Jan – Feb and Jun – Jul 2017

Depleted observing system

- **CTL**: Conventional observations + AMSU-A
- L2: CTL + L2 temperature and specific humidity
- IASI: CTL + IASI radiances

• Full observing system

- CTL: Full observing system without IASI
- **L2**: **CTL** + L2 temperature and specific humidity
- IASI: CTL + IASI radiances

12-hour sample coverage for active data

- Data selection as similar as possible for L2 profiles and radiances
 - Horizontal thinning 125 km
 - Clear sky data over sea only
 - IASI radiances blacklisted at the edges of the swath
 - L2 data blacklisted above ~30 hPa due to large temperature errors

Short range forecast impact, depleted observing system

Short range forecast impact, full observing system

Forecast impact day 5, full observing system (verification against own

Assimilation experiments with q only, depleted observing system

Impact in tropics, depleted observing system

Summary of the L2 impact in clear sky conditions

- Positive impact from L2 humidity
 - Benefit comparable to IASI radiances
- Negative impact from L2 temperature
 - Most likely due to smoothing of inversions and tropopause structures
- Results are consistent in depleted and full NWP systems
 - Smaller impact in full system
- L2 impact is very sensitive to the diagnosed error correlations

6 month extension phase, focus on cloud affected data

- In the L2 assimilation experiments only "best of the best" clear sky data is used, |OmC| < 1. This
 represents a very small fraction of the available data (large dots, blue bars in the figures below).
- Errors are highly situation dependent and grow rapidly for cloud affected data.
- Suggestion: focus next only on humidity to get realistic understanding of the potential of the cloud affected humidity retrievals.

Clear sky error correlations

Cloudy error correlations

Error correlations become increasingly stronger for cloudy data

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS