Mid-Term Report: Assessment of the operational potential of assimilating IASI L2 in a regional model

Bruna Silveira V. Guidard,N. Fourrié

EUMETSAT study EUM/CO/17/4600001975/TA

November 06th, 2018 Darmstadt, Germany

2

・ロト ・留ト ・目ト ・目下

- 2 Definition of data assimilation experiments
- **3** Results of data assimilation experiments
- 4 Closing Remarks

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q へ 2 / 47

Review

AROME

Characteristics:

- Horizontal Resolution \Rightarrow 1.3 km;
- Vertical Resolution \Rightarrow 90 levels (10 hPa top);
- Assimilation Scheme ⇒ 3D-Var (1 hour assimilation cycle and 1 hour window);
- Boundary conditions \Rightarrow ARPEGE;
- Forecast lead time \Rightarrow 48 hours
- Observations assimilated: radar measurements, surface stations, buoys, ship, aircrafts, wind profilers, radiosondes and satellite observations.

AROME domain and orography

Review

MetOp combined retrieval L2 Product

Information Used:

- Temperature profiles;
- Water vapour mixing ratio profiles;
- Pressure levels;
- Surface mean elevation in the pixel;
- Quality control indicator (QCI)

Characteristics:

- Only L2 from locally received observations in Lannion.
 No MetOp-A in the evening.
- QCI temp < 2 K and QCI hum
 3 K of Td.
- Vertical Resolution: 109 levels below 10 hPa.
- Period : August, 2017 to February 28th, 2018.

L2 product X AROME - Monthly Variation

Temperature Profiles

Mean Bias and Standard Deviation:

- Agreement below 1 K in mid-troposphere.
- Larger differences near surface and between 200-300 hPa.

Dashed lines with squares - standard deviations

L2 product X AROME - Monthly Variation

Specific Humidity Profiles

- Mean Bias:
 - Near surface is negative in most cases (except December).
- Standard Deviation:
 - Absolute differences varying with seasons (actual moisture content)

deviations

Define the observation error: L2, radiosondes and aircraft X AROME (January/2018)

L2 observation error

Temperature (L2) observation error \Rightarrow 1.2 * radiosondes observation error Humidity (L2) observation error \Rightarrow 1.25 * radiosondes observation error

Review

The observation error profile

└─ Definition of data assimilation experiments

L2 data setup

Data selection procedure:

- Horizontal Thinning: select one profile over a 160 × 160 km box ;
- Vertical Thinning: 1 level every 3 levels

Filters Applied:

Region	Filter
Sea	Use data only above level 1000 hPa
Land, orography below 1 km	Use data only above level 900 hPa
Land, orography above 1 km	Use data only above level 700 hPa

Definition of data assimilation experiments

Experiments Configuration

Experiments Period: January/2018 and 22 February/2018 **Observations assimilated** : radar measurements (doppler wind and reflectivity), surface stations, buoys, ship, aircrafts (AIREP), wind profilers, radiosondes, ATMS, SSMIS, GMI, SEVIRI, ASCAT and GNSS data from ground-based station

Experiment	Configuration
Baseline	No IASI, AMSU-A and MHS data
Control	Baseline $+$ IASI, AMSU-A and MHS L1 product
L2 Experiment 1	Baseline $+$ L2 product
L2 Experiment 2	Baseline + L2 product (New observation error)

- Analysis Increment (AMF);
- First Guess and analysis departure (OMF and OMA);

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

11 / 47

Forecast Skills.

Analysis Increment (AMF):

First evaluation : January 1st at 09 ÚTC, it represents the first analysis with a significant spatial coverage of IASI data.

12 / 47

Mid-Term Report: Assessment of the operational potential of assimilating IASI L2 in a regional model

Results of data assimilation experiments

Temperature

Mid-Term Report: Assessment of the operational potential of assimilating IASI L2 in a regional model

Results of data assimilation experiments

Profile over land and sea

Profile over land and sea

Mid-Term Report: Assessment of the operational potential of assimilating IASI L2 in a regional model

Results of data assimilation experiments

Specific Humidity

Mid-Term Report: Assessment of the operational potential of assimilating IASI L2 in a regional model

Results of data assimilation experiments

Profile over land and sea

Profile over land and sea

First Guess and analysis departure (OMF and OMA):

A D N A D N A D N A D N

31 / 47

Observations: AIREP Temperature and Radiosondes Humidity

Period1 : 2018010101 - 2018022123 Period2 : 2018010101 - 2018012723

Impact in others observations Jan-Feb(21)/2018 AIRCRAFT Temperature

Impact in others observations (01-27 January/2018) AIRCRAFT Temperature

Impact in others observations Jan-Feb(21)/2018 Radiosondes Specific Humidity

Impact in others observations (01-27 January/2018) Radiosondes Specific Humidity

 igsi Results of data assimilation experiments

Experiments Forecast Skills: Period1 : 2018010101 - 2018022123 Period2 : 2018010101 - 2018012723

イロト 不得 トイヨト イヨト 三日

36 / 47

Experiments Forecast Skills - Temperature 24 hours Jan-Feb(21)/2018

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)

37 / 47

Experiments Forecast Skills - Temperature 24 hours Jan-Feb(21)/2018

Control	X Baseline
Domain	FRANGP05
100	= = = = = 📖 = = 🔺
150	
200	= = = = = • = = =
250	
300	▼ = = = = = = =
400	= = = = = = = = =
500	• • = = = = = = = = =
700	▼ = = = = ▼ =
850	* = = = = = = = = = =
925	= = = 🔻 = = = = = =
1000	= = = 🔻 🔻 = =

.2 Exp 2	X Baseline
Domain	FRANGP05
100	= = = = = = = 🔻 =
150	= = 🕶 🕶 🕶 = =
200	• • • = • = = = =
250	▼ = = = = ▼ = =
300	
400	▼ = ::: = = = = = =
500	
700	= = = = 🔻 = = = =
850	• • = = = = = = = = =
925	• • • = = = = = = = =
1000	= = = = = = =

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student) <ロト < 回 ト < 目 ト < 三 ト < 三 ト < 三 ク へ へ 38 / 47

Experiments Forecast Skills - Temperature 24 hours (01-27 January/2018)

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)

39 / 47

Experiments Forecast Skills - Temperature 24 hours (01-27 January/2018)

12 Exp1 X Baseline

ontrol X	Baseline
Domain	FRANGP05
100	= = = = = = = :
150	
200	
250	
300	* = = = = = = = = = =
400	
500	
700	• = = = = = = = = = = = =
850	∭=======
925	
1000	= = 🔺 = = = = = = = =

F	
Domain	FRANGP05
100	
150	= = = = = = = =
200	▼ = = ▼ = = = =
250	= = = = = = + = =
300	= = = = = = = =
400	= = . = = = = = = = = = = = = = = = = =
500	=====
700	= = = = = = = = =
850	
925	▼ ▼ = = = = =
1000	

Domain	FRANGP05
100	= = = = = = = •
150	= = = = = = = =
200	▼ ▼ ▼ = ▼ = = = =
250	= = = = = = 🔻 = 🔺
300	= = = = = = =
400	= = = = = = = = =
500	= = = = = = = = :
700	
850	= = = = 🔺 = 🔺 = =
925	• • = = = = = = = = =
1000	= = = = = = =

40 / 47

Experiment is better than the reference with 95 % of confidence $(t-student) < \exists > < \exists >$ Reference is better than the Experiment with 95 % of confidence (t-student)

Experiments Forecast Skills - Relative Humidity 24 hours Jan-Feb(21)/2018

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)

41 / 47

Experiments Forecast Skills - Relative Humidity 24 hours Jan-Feb(21)/2018

Control	X Baseline
Domain	FRANGP05
100	
150	
200	= = = 🔺 🔺 🔺
250	
300	A A A = = A = = =
400	▲ ▲ = = = = =
500	▲ ▲ = = = = = =
700	= = = = 🔺 = = = =
850	
925	= = = = = = =
1000	= = = = = = = =

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)

Experiments Forecast Skills - Relative Humidity 24 hours (01-27 January/2018)

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)

43 / 47

Experiments Forecast Skills - Relative Humidity 24 hours (01-27 January/2018)

10 Evel V Paceline

ontrol X	Baseline
Domain	FRANGP05
100	
150	= = = = 🔺 = = = =
200	
250	
300	▲ :::: = = = = = = = = = = = = = = = = =
400	∭ ▲ = = = = = = = =
500	
700	
850	= = = = 🔻 = = = =
925	
1000	▼ = = = = = =

	1 Dasenne
Domain	FRANGP05
100	A A A A = = = = =
150	
200	
250	• • • • • • • iii =
300	▼ = = ▼ = ▼ = =
400	
500	= = = = 🔺 = = = 🖩
700	᠁ ▲ = = = = = = = =
850	▲ = = = ▲ = = ▲
925	* = = = = = = = = =
1000	• • • = = = = = = = =

Domain	FRANGP05
100	▲ ▲ ▲ = !!!! = = =
150	
200	
250	▼ ▼ ▼ ▼ ▼ ▼ = =
300	▼ = = ▼ ▼ = = = =
400	
500	= = = = = = = = =
700	A A A = = = = = =
850	▲ = = ▲ = = =
925	* = = = = = = = = = =
1000	= = = = = = = = 🔺

Experiment is better than the reference with 95 % of confidence (t-student) $4 \equiv 4 \equiv 2$ 2 = 2Reference is better than the Experiment with 95 % of confidence (t-student) 44/47

Computed the scores of precipitation X rain gauge It seems to be neutral.

Conclusion

- The L2 experiment helped to decrease the first guess and the analysis departure of the other observations.
- L2 experiment has scores comparable with the control experiment (L1 product).
- The modifications (observation error) in the L2 experiment do not cause large differences in the results. We should not keep with them.
- Next Steps:
 - Perform other periods of the year.
 - Look to the vertical resolution. Investigate the vertical distribution.
 - Try to assimilate observation close to surface. Perform a short period (3 days) to investigate if there is an improvement in the AIRCRAFT and Radiosondes OMA and OMF near surface. As we discussed in the results.

Closing Remarks

Thank you!!!