#### Bruna Silveira V. Guidard,N. Fourrié

EUMETSAT study EUM/CO/17/4600001975/TA

April 8, 2019





<ロ> (四) (四) (三) (三) (三)



- 1 Next Steps proposed during last meeting
- 2 Evaluation of the MetOp combined retrieval L2 product v6.4
- 3 Recap and Results of data assimilation experiments
- 4 Closing Remarks



└─Next Steps proposed during last meeting

## Next Steps proposed during last meeting

- Statistics of L2 product v6.4 done
- Add another period (15/May-15/Jul/2018) in progress
- More statistics will be provided (precipitation) in progress
- Detailed study of meteorological situation and precipitation evaluation (study cases) in progress
- 48 hours forecast starting 12 UTC (Summer and winter experiments) not start
- We will propose the paper structure, the figures and tables that will be used in the article not start

## Evaluation of the MetOp combined retrieval L2 product v6.4 $\,$

## Evaluation of the MetOp combined retrieval L2 product v6.4

#### **L2 product X AROME** - **Monthly Variation** Recapping data selection: QCI Temperature < 2K QCI Humidity < 3K (dew point temperature) Difference between L2 data and AROME model altitudes < 25m

## L2 product X AROME - Monthly Variation

#### Temperature - old version



#### Temperature - new version



6 / 87

## Temperature - IASI L2 PPF v6.4 validation report



Figure 17: Metop-A (left) and Metop-B (right) temperature retrievals compared to radiosondes between 23 December 2017 and 13 February 2018 with the processor v6.3 (cyan: PWLR<sup>2</sup>, blue: OEM) and v6.4 (orange: PWLR<sup>2</sup>, red:OEM)

<ロト 4日 ト 4 目 ト 4 目 ト 4 目 か 9 0 0 7 / 87

## L2 product X AROME - Monthly Variation

#### Specific Humidity - old version



#### Specific Humidity - new version



8 / 87

## Specific Humidity - IASI L2 PPF v6.4 validation report



Figure 18: Metop-A (left) and Metop-B (right) temperature retrievals compared to radiosondes between 23 December 2017 and 13 February 2018 with the processor v6.3 (cyan: PWLR<sup>3</sup>, blue: OEM) and v6.4 (orange: PWLR<sup>3</sup>, red:OEM)

9 / 87

## L2 product X AROME - Monthly Variation

#### Relative Humidity - old version



#### Relative Humidity - new version



## Conclusion - Statistics Evaluation v6.4

- Temperature: Improvement in the bias between 400 and 800 hPa. The standard deviation is smaller near surface, the values are closer 2K in the v6.4.
- Specific Humidity: Improvement in the bias between 600 and 800hPa, below in the atmosphere there is a degradation, near 900hPa the bias have a negative peak in all months evaluated. The standard deviation has a small spread in the v6.4 when compared against v6.3. It is really evident near surface.
- The L2 product statistics against AROME model have behave similar to L2 product evaluated against radiosondes in the IASI L2 PPF v6.4.

Recap and Results of data assimilation experiments

## Evaluation Long Period Experiments

#### Status and some results (update) of the long period experiments.



## **Experiments** Configuration

**Experiments Period 1**: January and February/2018 - Done **Experiments Period 2**: July, 15th to Sep, 15th/2017 - Done **Experiments Period 3**: May, 15th to Jul, 15th/2018 - In Progress **Observations assimilated** : radar measurements, surface stations, buoys, ship, aircrafts, wind profilers, radiosondes, ATMS, SSMIS, GMI, SEVIRI, ASCAT and GPSSOL

| Experiment    | Configuration                                |
|---------------|----------------------------------------------|
| Baseline      | No IASI, AMSU-A and MHS data                 |
| Control       | Baseline $+$ IASI, AMSU-A and MHS L1 product |
| L2 Experiment | Baseline + L2  product                       |

### The observation error profile





# **First Guess and analysis departure (OMF and OMA):** AIRCRAFT Temperature, Radiosondes Humidity and radar (relative humidity and wind)



Recap and Results of data assimilation experiments

## Impact in others observations Bias AIRCRAFT Temperature

Bias - Winter/2018



#### Bias - Summer/2017



## Impact in others observations Standard Deviation AIRCRAFT Temperature

Std - Winter/2018



#### Std - Summer/2017



## Impact in others observations - Number of Obs. Assim. AIRCRAFT Temperature

#### NObs.Assim. - Winter/2018



#### NObs.Assim. - Summer/2017



Recap and Results of data assimilation experiments

## Impact in others observations Bias Radiosondes Specific Humidity

Bias - Winter/2018



#### Bias - Summer/2017



## Impact in others observations Standard Deviation Radiosondes Specific Humidity

Std - Winter/2018



#### Std - Summer/2017



## Impact in others observations - Number of Obs. Assim. Radiosondes Specific Humidity

#### NObs.Assim. - Winter/2018



#### NObs.Assim. - Summer/2017



Recap and Results of data assimilation experiments

## Impact in others observations Bias Radar Relative Humidity



## Impact in others observations Standard Deviation Radar Relative Humidity



## Impact in others observations - Number of Obs. Assim. Radar Relative Humidity



Recap and Results of data assimilation experiments

## Impact in others observations Bias Radar DOW



## Impact in others observations Standard Deviation Radar DOW

Std - Winter/2018



#### Std - Summer/2017



Recap and Results of data assimilation experiments

## **Experiments Forecast Skills**

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト ミ の Q () 27 / 87

 $\square$  Recap and Results of data assimilation experiments

### Period 1: Jan-Feb/2018 Reference is the ECMWF analysis

化口压 化固定 化医压化医压

28 / 87

## Experiments Forecast Skills - Temperature 24 hours Jan-Feb/2018



29

Reference is better than the Experiment with 95 % of confidence (t-student)

## Experiments Forecast Skills - Temperature Jan-Feb/2018

#### Control X Baseline

| Domain | F | F | 2,4 | ۱ | V | G | Р | 0 | 5   |
|--------|---|---|-----|---|---|---|---|---|-----|
| 100    | = | = | 謝   | = | = | = | = | = |     |
| 150    | = | = | =   | = | = | = | = | = | =   |
| 200    | = | = | =   | = | = | = | = | Щ | iii |
| 250    | = | = | =   | = | = | = | = | 關 | =   |
| 300    | • | = | 训   | = | = | = | = | = | =   |
| 400    |   | = | W   | = | = | = | = | = | =   |
| 500    | • | = | =   | = | = | = | = | = | =   |
| 700    | = | = | =   | = | = | = | = | = | =   |
| 850    | = | = | =   | = | = | = | = | = | =   |
| 925    | = | = | 讃   | = | = | = | = | = | =   |
| 1000   | = | ۸ | =   | = | 譋 | = | • | = | =   |

L2 Exp X Baseline

| Domain | FRANGP05                               |
|--------|----------------------------------------|
| 100    | = = = = = = 📖 🌆                        |
| 150    | ;;;; ▼ ▼ ▼ ▼ ▼ ;;;; =                  |
| 200    | • • • • • = = = = =                    |
| 250    | <b>*</b> = <b>*</b> = = = = = = =      |
| 300    |                                        |
| 400    | ;;; = ;; = = = = = = = = = = = = = = = |
| 500    |                                        |
| 700    | = = =     🔻 = = = =                    |
| 850    | <b>• •</b> = = = = = = = = =           |
| 925    | • • • = = = = = = = =                  |
| 1000   | = = = = =       = =                    |

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)

## Experiments Forecast Skills - Relative Humidity 24 hours Jan-Feb/2018



## Experiments Forecast Skills - Relative Humidity Jan-Feb/2018

#### Control X Baseline

| Domain | FRANGP05                     |
|--------|------------------------------|
| 100    |                              |
| 150    |                              |
| 200    | = 🔺 📖 = 🔺 🔺 🔺 🔺              |
| 250    |                              |
| 300    |                              |
| 400    | ▲ ▲ ▲ ▲ = = !!!! =           |
| 500    | ▲ ▲         ▲ ▲ = = =        |
| 700    | = = = = = = = = =            |
| 850    | ▲ = = = = = = = = = =        |
| 925    |                              |
| 1000   | <b>*</b> = = = = = = = = = = |

L2 Exp X Baseline

| Domain | FRANGP05                     |
|--------|------------------------------|
| 100    |                              |
| 150    |                              |
| 200    |                              |
| 250    | * * * * * * * * =            |
| 300    | • • • • • <b>•</b>     • = = |
| 400    |                              |
| 500    |                              |
| 700    | =     = = = = = = = =        |
| 850    | ▲ <b>▲</b> = = = = = = = = = |
| 925    |                              |
| 1000   | ▼ ▼ =     = ▼     = =        |

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)

 $\square$ Recap and Results of data assimilation experiments

## Period 1: Jan-Feb/2018 Reference is the radiosondes

<ロト < 回 ト < 回 ト < 至 ト < 至 ト < 至 ト ミ の Q @ 33 / 87

## Experiments Forecast Skills - Relative Humidity 12 hours Jan-Feb/2018



34 /

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)

## Experiments Forecast Skills - Relative Humidity 24 hours Jan-Feb/2018



Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)

35 / 87

## Experiments Forecast Skills - Relative Humidity Jan-Feb/2018

#### Control X Baseline

| Domain | FRANGP0025 |   |   |   |   |  |
|--------|------------|---|---|---|---|--|
| 100    |            |   |   |   |   |  |
| 150    |            |   |   |   |   |  |
| 200    |            |   |   |   |   |  |
| 250    |            |   |   |   |   |  |
| 300    |            |   |   |   |   |  |
| 400    |            | = | = | = | = |  |
| 500    |            |   | = | = |   |  |
| 700    | =          | = | = | = |   |  |
| 850    | =          | = | = | = | = |  |
| 925    | =          | • | = | = | = |  |
| 1000   | Ш          | = | = | = | = |  |

L2 Exp X Baseline

| Domain | FR | <b>NA</b> | <b>IG</b> | P00 | )25 |
|--------|----|-----------|-----------|-----|-----|
| 100    |    |           |           |     |     |
| 150    |    |           |           |     |     |
| 200    |    |           |           |     |     |
| 250    |    |           |           |     |     |
| 300    |    |           |           |     |     |
| 400    | •  | •         | =         | =   | =   |
| 500    | =  | •         | =         | =   | =   |
| 700    | =  | =         |           | =   | =   |
| 850    | =  | =         | =         | =   | =   |
| 925    | =  | =         | =         | •   | U   |
| 1000   | =  | =         | =         | =   | =   |

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)
$\square$ Recap and Results of data assimilation experiments

## Period 2:Jan-Feb/2018 Reference is Synop data



## Experiments Forecast Skills - Temperature Jan-Feb/2018



 $\square$ Recap and Results of data assimilation experiments

## Period 2:Jan-Feb/2018 Reference is SOLFRA data

化口压 化固定 化医压化医压

## Experiments Forecast Skills - Temperature Jan-Feb/2018



化口压 化固定 化医压化医压 40

24

Bias Baseline/SOLFRA

Bias L2 Exp/SOLERA

RMS Baseline/SOLFRA

RMS L2 Exp/SOLFRA

## Experiments Forecast Skills - Relative Humidity Jan-Feb/2018



化口压 化固定 化医压化医压 41

\*\*\*\*\*\*\*\*\*\*

#### Precipitation scores (scores indicateur)

Brier Skill Scores (BSS\_NO) with different neighborhood 1.3km, 20.6km, 52.8km and 120.2km

化口水 化固水 化医水化医水

42 / 87

The closer to 1 the score is, the best is the forecast.

#### Control Experiment X Baseline



#### L2 Experiment X Baseline



#### Control Experiment X Baseline



#### L2 Experiment X Baseline



### Precipitation scores (scores indicateur)

Bias frequency, detection rate, false alarm rate, Heidke skill scores (HSS) 0.5mm, 2mm, 5mm and 10mm



Recap and Results of data assimilation experiments

#### Control Experiment X Baseline - 5mm

#### Précipitations RR6 - réseau de 0 heure

Période 20180102 - 20180302 - grille de contrôle FRANGP0025 - seuil 5.0mm - référence BDCLIMH



≣ ∽৭৫ 48 / 87

Recap and Results of data assimilation experiments

#### L2 Experiment X Baseline - 5mm

#### Précipitations RR6 - réseau de 0 heure

Période 20180102 - 20180302 - grille de contrôle FRANGP0025 - seuil 5.0mm - référence BDCLIMH



≣ ∽৭৫ 49 / 87

### Precipitation scores (scores indicateur)

Brier Scores (BS\_NO) with neighborhood 52.8km and 18h forecast The closer to 0 the score is, the best is the forecast.





 $\square$  Recap and Results of data assimilation experiments

### Period 2:15/Jul to 15/Sep/2017 Reference is the ECMWF analysis

イロト 不良 トイヨト イヨト

## Experiments Forecast Skills - Temperature 24 hours 15/Jul-15/Sep/2017



Reference is better than the Experiment with 95 % of confidence (t-student)

# Experiments Forecast Skills - Temperature 15/Jul-15/Sep/2017

#### Control X Baseline

| Domain | FRANGP05                            |
|--------|-------------------------------------|
| 100    | = = =    = = = =                    |
| 150    |                                     |
| 200    | ▲ ▲ = = = = = = ▼                   |
| 250    |                                     |
| 300    | = = = =     = = = =                 |
| 400    | = =     = = = = = = =               |
| 500    |                                     |
| 700    | <b>•</b> = <b>•</b> = = = = = = = = |
| 850    |                                     |
| 925    |                                     |
| 1000   |                                     |

#### L2 Exp X Baseline

| Domain | FRANGP05                     |
|--------|------------------------------|
| 100    | ▼ = ▼ = ▼ = = = =            |
| 150    |                              |
| 200    | <b>• •</b> = = = = = = = = = |
| 250    |                              |
| 300    | = = =     = = = =            |
| 400    | ▲ = = = = = = = = = =        |
| 500    | =     =     🔺 = = = =        |
| 700    |                              |
| 850    | =     = = =         🔺 =      |
| 925    | = = =     = = = = =          |
| 1000   | <b>A A A = = = = = = =</b>   |

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student) 

## Experiments Forecast Skills - Relative Humidity 6 hours 15/Jul-15/Sep/2017



#### L2 Exp X Baseline



# Experiments Forecast Skills - Relative Humidity 15/Jul-15/Sep/2017

#### Control X Baseline

| Domain | FRANGP05                   |
|--------|----------------------------|
| 100    |                            |
| 150    |                            |
| 200    | = =     = = = = = = =      |
| 250    |                            |
| 300    | ▲         = =     = = =    |
| 400    | ▲ <b>▲</b> = = = = = = = = |
| 500    | = = 🔺 = = = = = = =        |
| 700    | = = =     = = = = =        |
| 850    |                            |
| 925    |                            |
| 1000   | ▼ = ▼ =    =    = =        |

#### L2 Exp X Baseline

| Domain | FRANGP05                     |
|--------|------------------------------|
| 100    |                              |
| 150    | = = =     = = = = 🔻          |
| 200    | • • • • • • <b>•</b>     = = |
| 250    | ▼ ▼ ▼     ▼ =     = =        |
| 300    | <b>• •</b> = = = = = = = = = |
| 400    |                              |
| 500    | =     • = = = = = =          |
| 700    | ▲ <b>▲</b> = = = = = = = =   |
| 850    | ▲ <b>▲</b> = = = = = = = =   |
| 925    | = = = = = = 🔺 🏼 =            |
| 1000   | ▲ ▲ ▲ ▲     = ▲ = =          |

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student) Recap and Results of data assimilation experiments

### Period 2:15/Jul to 15/Sep/2017 Reference is the radiosondes

イロト 不良 トイヨト イヨト

# Experiments Forecast Skills - Temperature 12 hours 15/Jul-15/Sep/2017



# Experiments Forecast Skills - Temperature 15/Jul-15/Sep/2017

#### Control X Baseline

| Domain | FR | 2AN | 1GI | 200 | )25 |
|--------|----|-----|-----|-----|-----|
| 100    | =  | =   | Ⅲ   | =   | =   |
| 150    | =  | =   | =   | =   | =   |
| 200    | =  | =   | =   | =   | 簚   |
| 250    | =  | =   | =   | =   | =   |
| 300    | =  | =   | =   | =   | =   |
| 400    | =  | =   | =   | =   | =   |
| 500    | =  | =   |     | =   |     |
| 700    | =  | •   | =   | =   | =   |
| 850    | =  | =   | =   | Ш   | =   |
| 925    | =  | =   | =   |     | =   |
| 1000   | =  | =   | =   | =   | =   |

#### L2 Exp X Baseline

| Domain | FR | 2AN | 1GI | 200 | )25 |
|--------|----|-----|-----|-----|-----|
| 100    | =  | =   | =   | =   | =   |
| 150    | =  | =   | =   | =   | =   |
| 200    | =  | =   | =   | =   | =   |
| 250    | =  | =   | =   | =   | =   |
| 300    | =  | =   | =   | =   | =   |
| 400    | =  | =   | =   | =   | =   |
| 500    | =  | =   | =   | =   | =   |
| 700    | =  | =   | 100 | =   | =   |
| 850    | =  | =   | =   | =   | =   |
| 925    | =  | •   | =   | =   | =   |
| 1000   | =  | =   | =   | =   | =   |

Experiment is better than the reference with 95 % of confidence (t-student) Reference is better than the Experiment with 95 % of confidence (t-student)  $\square$ Recap and Results of data assimilation experiments

## Period 2:15/Jul to 15/Sep/2017 Reference is Synop data

## Experiments Forecast Skills - Relative Humidity 15/Jul-15/Sep/2017



 $\square$ Recap and Results of data assimilation experiments

## Period 2:15/Jul to 15/Sep/2017 Reference is SOLFRA data

<ロト < 回 ト < 目 ト < 目 ト < 目 ト < 目 > 3 へ へ 62 / 87

## Experiments Forecast Skills - Relative Humidity 15/Jul-15/Sep/2017



#### Precipitation scores (scores indicateur)

Brier Skill Scores (BSS\_NO) with different neighborhood 1.3km, 20.6km, 52.8km and 120.2km The closer to 1 the score is, the best is the forecast.



#### Control Experiment X Baseline



#### L2 Experiment X Baseline



### Precipitation scores (scores indicateur)

Bias frequency, detection rate, false alarm rate, Heidke skill scores (HSS) 0.5mm, 2mm, 5mm and 10mm



Recap and Results of data assimilation experiments

#### Control Experiment X Baseline - 10mm

Précipitations RR6 - réseau de 0 heure

Période 20170716 - 20170917 - grille de contrôle FRANGP0025 - seuil 10.0mm - référence BDCLIMH



≣ ೨৭৫ 68 / 87

Recap and Results of data assimilation experiments

#### L2 Experiment X Baseline - 10mm

Précipitations RR6 - réseau de 0 heure

Période 20170716 - 20170917 - grille de contrôle FRANGP0025 - seuil 10.0mm - référence BDCLIMH



≣ ൗ≪⊂ 69 / 87

### Conclusion - Experiments winter and summer

- The L2 experiment helped to decrease the first guess and the analysis departure of the other observations.
- L2 experiment has scores comparable with the control experiment (L1 product)

化口压 化固定 化医压化医压

### Next Steps:

The precipitation scores evaluation (scores calculated by Pierre)

Recap and Results of data assimilation experiments



Thomas August suggested 2 case studies. **Experiments Case Study 1**: May,26th 2018 Hail storm in Bordeaux and Cognac **Experiments Case Study 2**: July, 4th 2018 Storm in Dordogne

### Case Study 1: May,26th 2018. Experiments: May, 23rd to May, 28th 2018

L'averse a duré une dizaine de minutes avec une rare intensité. Les trottoirs sont devenus blancs, couverts de grêlons.



Les pompiers sont actuellement débordés d'appels.

▲日▼▲□▼▲□▼▲□▼ □ ○○○
#### Position of Observation Assimilated - Case Study 1



#### L2 Experiment Position of Obs. Assimilated in L2 Exp. day=26 hour=10 1000 55°N 900 52.5°N 800 50°N 700 600 47.5°N 500 45°N 400 5 42.5°N 300 40°N 200 27 5 °M 100 1010 15°W 1.0214 E 91AF 化口水 化固水 化医水化医水

# First Guess and analysis departure (OMF and OMA)

Observations: AIREP Temperature, Radiosondes Humidity and radar (relative humidity and wind)

化口下 化间下 化医下不良

### Impact in others observations May,23rd to May,28th 2018 AIRCRAFT Temperature



### Impact in others observations May,23rd to May,28th 2018 Radiosondes Specific Humidity





Std

### Impact in others observations May,23rd to May,28th 2018 Radar Relative Humidity



### Impact in others observations May,23rd to May,28th 2018 Radar DOW



#### Case Study 2: July, 4th. Experiment: July, 1st to July, 6th 2018

En images : le Sud-Ouest touché par les orages

A LA UNE / ENVIRONMEMENT / METEO / Publie le GLOT/2018 à 16h42. Mis à jour le 05/07/2018 par Sudduest In.

S'ABONNER À PARTIR DE 16 🥤 🥤 💔 ท 🛛 15 COMMENTAIRES



A La rue Pierre Sernard à Périgueux sous l'eau@PHOTO INTERNAUTE

Les premiers éclairs et averses de grêle ont frappé la région mercredi après-midi. Tour d'horizon.



#### Position of Observation Assimilated - Case Study 2



80 / 87

400 5

### Impact in others observations July, 1st to July, 6th 2018 AIRCRAFT Temperature



#### Standard Deviation



#### Impact in others observations July, 1st to July, 6th 2018 Radiosondes Specific Humidity



### Impact in others observations July, 1st to July, 6th 2018 Radar Relative Humidity



### Impact in others observations July, 1st to July, 6th 2018 Radar DOW



## Precipitation accumulated in 24h - 2018-05-26 12UTC - 2018-05-27 12UTC



Project: Assessment of the operational potential of assimilating IASI L2 in a regional model

 $\square$ Recap and Results of data assimilation experiments

#### Conclusions - Case Studies

The OMF and OMA of observations (radiosondes and AIRCRAFT) are similar between the two long period experiments. Notice an improvement in the humidity in the same levels.

(日)

86 / 87

Detailed study of meteorological situation and precipitation evaluation

#### Next Steps

- Statistics of the new long period experiment (15/May to 15/Jul/2018) not start
- Perform different setup for study case 1
  - try to observation close to the surface (L2 Exp3) in progress
  - observation error used in the L2 Exp2 not start
  - try to assimilate data no thinned not start
- More statistics will be provided (precipitation) in progress
- Detailed study of meteorological situation and precipitation evaluation (study cases) in progress
- 48 hours forecast starting 12 UTC (Summer and winter experiments) not start
- We will propose the paper structure, the figures and tables that will be used in the article not start