EUMETSAT - Copernicus Sentinel-3 SLSTR L2 NRT AOD Product Data Format Specification
Change Record

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>DCR* No. if applicable</th>
<th>Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0</td>
<td>12/08/2020</td>
<td>Initial</td>
<td></td>
</tr>
</tbody>
</table>

*DCR = Document Change Request
Table of Contents

1 INTRODUCTION .. 5
 1.1 Scope ... 5
 1.2 Applicable Documents ... 5
 1.3 Reference Documents ... 5
 1.4 Terminology.. 6
 1.5 Document Structure ... 7

2 NRT S3 SLSTR L2 AOD PRODUCT DESCRIPTION ... 8
 2.1 General product structure - Layout .. 8
 2.2 NRT S3 SLSTR L2 AOD product package & summary ... 8
 2.2.1 Manifest file .. 8
 2.2.2 SLSTR L2 NRT global aerosol parameters – NRT_AOD.nc 9

3 XML SCHEMA .. 19

4 NRT S3 SLSTR L2 AOD PRODUCT SIZE .. 20

Table of Figures
Figure 1: S3 Product package .. 8

Table of Tables
Table 2: NRT SLSTR L2 AOD package .. 8
Table 3: SLSTR Solar spectral channels .. 9
Table 4: NRT SLSTR L2 AOD – NRT_AOD.nc description .. 9
Table 5: NRT SLSTR L2 AOD product size per 5-min granule ... 20
1 INTRODUCTION

1.1 Scope

This document describes the format of the Near Real Time (NRT) Level 2 (L2) Aerosol Optical Depth (AOD) product generated from the Copernicus Sentinel-3 (S3) Sea and Land Surface Temperature Radiometer (SLSTR) by EUMETSAT.

It is applicable to the following release: Instrument Processing Facility (IPF) version 2.0, EUMETSAT Processing Baseline (PB) 2.70, Baseline Collection (BC) 1. Further information about this release status and associated quality and known limitations are available the Copernicus Sentinel-3 Product notice SLSTR Level-2 NRT AOD document (see RD-4).

1.2 Applicable Documents

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD-2 Product Data Format Specification - Product Structures</td>
<td>S3IPF.PDS.002, Issue 1.6, 10/02/2015</td>
</tr>
<tr>
<td>AD-3 XML Schemas.zip – Zip file containing all the schemas used to represent the metadata</td>
<td>S3IPF.PDS.009, i2r5 – 26/03/2015</td>
</tr>
</tbody>
</table>

1.3 Reference Documents
<table>
<thead>
<tr>
<th>RD-1</th>
<th>Document Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Product Data Format Specification - Level 0</td>
<td>S3IPF PDS 001 - Product Data Format Specification - Level 0</td>
</tr>
<tr>
<td>RD-2</td>
<td>Product Data Format Specification – SLSTR Level 1 and 2</td>
<td>S3IPF PDS 005 - Product Data Format Specification - SLSTR</td>
</tr>
<tr>
<td>RD-3</td>
<td>Copernicus Sentinel-3 Near real Time Aerosol Optical Depth Retrieval from SLSTR – S3 SLSTR L2 AOD ATBD</td>
<td>Under editing</td>
</tr>
<tr>
<td>RD-4</td>
<td>Copernicus Sentinel-3 Product notice SLSTR Level-2 NRT AOD</td>
<td>EUM/SEN3/DOC/20/11880 82</td>
</tr>
</tbody>
</table>

1.4 Terminology

AD Applicable Document
ADF Auxiliary Data File
AOD Aerosol Optical Depth
ATBD Algorithm Theoretical Basis Document
BT Brightness Temperature
CFI Customer Furnished Items
ESA European Space Agency
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites
IPF Instrument Processing Facility
L1 Level 1
L2 Level 2
NRT Near Real Time
NTC Non Time Critical
PDGS Payload Data Ground Segment
RSP Remote Sensing and Products Division
RD Reference Document
S3 Sentinel-3
SLSTR Sea and Land Surface Temperature Radiometer
SSA Single Scattering Albedo
SST Sea Surface temperature
1.5 Document Structure

This document is structured as follows:

- Overview of the S3 SLSTR L1 and L2 products in Section 0;
- NRT S3 SLSTR L2 AOD product description in Section 2;
- XML diagram in Section 3;
- NRT S3 SLSTR L2 AOD product size in Section 4.
2 NRT S3 SLSTR L2 AOD PRODUCT DESCRIPTION

2.1 General product structure - Layout

The format of all Sentinel 3 products is described in [AD-2] and illustrated in Figure 1.

![Figure 1: S3 Product package](image)

2.2 NRT S3 SLSTR L2 AOD product package & summary

A SLSTR L2 NRT AOD granule contains one single file gathering all aerosol and surface directional parameters and its associated manifest file (see Table 1). The spatial resolution is 9.5 km, with a global coverage (ocean and land). The products are only generated in NRT timeliness.

<table>
<thead>
<tr>
<th>Element name</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>xfdumanifest.xml</td>
<td>Sentinel-SAFE product manifest file, composed of xml fields.</td>
<td>x.x or AD-x</td>
</tr>
<tr>
<td>NRT_AOD.nc</td>
<td>Surface directional Reflectance, retrieved and derived global aerosol parameter at several spectral bands. Contextual parameters and flags are also included.</td>
<td>Section 2.2.2</td>
</tr>
</tbody>
</table>

2.2.1 Manifest file

The structure of the manifest file is described in [AD-3].
2.2.2 SLSTR L2 NRT global aerosol parameters – NRT_AOD.nc

This file contains all derived aerosol and surface parameters from the SLSTR solar channels S1-S6, S4 being excluded (see Table 2). Some aerosol and surface parameters are given at several spectral bands. It is based on the SLSTR L1B NRT product at the original resolution of 500 m. The SLSTR L2 NRT AOD retrievals are provided at a super-pixel level with a resolution of 9.5 km, from the aggregation of 19 x 19 L1B pixels. Note that in this super-pixel, only cloud-free and glint-free radiances are considered. The coordinates of the super pixel are provided via the position of each of its corners, and of its centre.

<table>
<thead>
<tr>
<th>SLSTR channels</th>
<th>λ centre (nm)</th>
<th>bandwidth (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>555</td>
<td>20</td>
</tr>
<tr>
<td>S2</td>
<td>659</td>
<td>20</td>
</tr>
<tr>
<td>S3</td>
<td>865</td>
<td>20</td>
</tr>
<tr>
<td>S5</td>
<td>1610</td>
<td>60</td>
</tr>
<tr>
<td>S6</td>
<td>2250</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2: SLSTR Solar spectral channels

<table>
<thead>
<tr>
<th>Element name</th>
<th>Description</th>
<th>Range or value</th>
<th>T</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>rows</td>
<td>Along track grid size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>columns</td>
<td>Across track grid size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><common global attributes></td>
<td>Common global attributes (see Error! Reference source not found. and Error! Reference source not found.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOD_550</td>
<td>Aerosol optical thickness at 550 nm – Best quality Ocean only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Atmospheric aerosol optical thickness at 550 nm - Best quality (post-filtered due to e.g. cloud residuals, sedimentation...) - Only over ocean surfaces</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AOD_670</td>
<td>Aerosol optical thickness at 670 nm – Best quality Ocean only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Atmospheric aerosol optical thickness at 550 nm - Best quality (post-filtered due to e.g. cloud residuals, sedimentation...) - Only over ocean surfaces</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Element name</td>
<td>Description</td>
<td>Range or value</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>AOD_865</td>
<td>Aerosol optical thickness at 865 nm – Best quality</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Atmospheric aerosol optical thickness at 550 nm - Best quality (post-filtered due to e.g. cloud residuals, sedimentation...) - Only over ocean surfaces</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>AOD_1600</td>
<td>Aerosol optical thickness at 1600 nm – Best quality</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Atmospheric aerosol optical thickness at 550 nm - Best quality (post-filtered due to e.g. cloud residuals, sedimentation...) - Only over ocean surfaces</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>AOD_2250</td>
<td>Aerosol optical thickness at 2250 nm – Best quality</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Atmospheric aerosol optical thickness at 550 nm - Best quality (post-filtered due to e.g. cloud residuals, sedimentation...) - Only over ocean surfaces</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>AOD_550_uncertainty</td>
<td>Uncertainty of aerosol optical thickness at 550 nm – Best quality Ocean only</td>
<td>[0, 6]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Atmospheric aerosol optical thickness uncertainty at 550 nm - Best quality (post-filtered due to e.g. cloud residuals, sedimentation...) - Only over ocean surfaces</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>Element name</td>
<td>Description</td>
<td>Range or value</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>FM_AOD550</td>
<td>Fine-mode aerosol optical depth at 550 nm – Best quality Ocean only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>ANG550_865</td>
<td>Aerosol Angstrom exponent between 550 and 865 nm – Best quality Ocean only</td>
<td>[-6, 6]</td>
<td>i16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>-32768</td>
<td>i16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0002</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>D_AOD550</td>
<td>Dust aerosol optical thickness at 550 nm – Best quality Ocean only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>AAOD550</td>
<td>Aerosol absorption optical thickness at 550 nm – Best quality Ocean only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>SSA_550</td>
<td>Aerosol single scattering albedo at 550 nm – Best quality Ocean only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>Element name</td>
<td>Description</td>
<td>Range or value</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Atmospheric aerosol single scattering albedo at 550 nm - Best quality (post-filtered due to e.g. cloud residuals, sedimentation...) - Only over ocean surfaces</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SSA_670</td>
<td>Aerosol single scattering albedo at 670 nm – Best quality Ocean only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows, columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Atmospheric aerosol single scattering albedo at 550 nm - Best quality (post-filtered due to e.g. cloud residuals, sedimentation...) - Only over ocean surfaces</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SSA_865</td>
<td>Aerosol single scattering albedo at 865 nm – Best quality Ocean only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows, columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Atmospheric aerosol single scattering albedo at 550 nm - Best quality (post-filtered due to e.g. cloud residuals, sedimentation...) - Only over ocean surfaces</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SSA_1600</td>
<td>Aerosol single scattering albedo at 1600 nm – Best quality Ocean only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows, columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Atmospheric aerosol single scattering albedo at 550 nm - Best quality (post-filtered due to e.g. cloud residuals, sedimentation...) - Only over ocean surfaces</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SSA_2250</td>
<td>Aerosol single scattering albedo at 2250 nm – Best quality Ocean only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows, columns</td>
</tr>
<tr>
<td>Element name</td>
<td>Description</td>
<td>Range or value</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535 u16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001 f32</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0 f32</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Surface_reflectance_550</td>
<td>Surface directional reflectance (BRF) at 550 nm – Best quality Ocean only</td>
<td>[0, 4.001] u16 rows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535 u16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001 f32</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0 f32</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>AOD_550_Ocean_NonFiltered</td>
<td>Aerosol optical thickness at 550 nm – Ocean only, not post-filtered</td>
<td>[0, 4.001] u16 rows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535 u16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001 f32</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0 f32</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>AOD_550_uncertainty_Ocean_NonFiltered</td>
<td>Uncertainty of aerosol optical thickness at 550 nm – Ocean only, not post-filtered</td>
<td>[0, 6] u16 rows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535 u16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001 f32</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0 f32</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>AOD_550_Land_Experimental_NonFiltered</td>
<td>Aerosol optical thickness at 550 nm – Land Experimental only, not post-filtered</td>
<td>[0, 4.001] u16 rows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Element name</td>
<td>Description</td>
<td>Range or value</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOD_550_Land_Experimental_PostFiltered</td>
<td>Aerosol optical thickness at 550 nm – Best quality Land Experimental only</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOD_550_Land_Experimental_NonFiltered</td>
<td>Aerosol optical thickness uncertainty at 550 nm – Land Experimental only, not post-filtered</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM_AOD_550_Land_Experimental_NonFiltered</td>
<td>Fine mode aerosol optical thickness at 550 nm – Land Experimental only, not post-filtered</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>Element name</td>
<td>Description</td>
<td>Range or value</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Surface_reflectance_550_Land_Experimental_NonF</td>
<td>Surface directional reflectance (BRF) at 550 nm–Land Experimental only, not post-filtered</td>
<td>[0, 4.001]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>Surface directional reflectance (BRF) at 550 nm - All quality (not post-filtered due to e.g. cloud residuals, etc...) - Only over land surfaces – For Experimental purpose only</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.0001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>add_offset</td>
<td>this offset must be added to data after reading /scaling</td>
<td>0</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time_reference_a</td>
<td>Acquisition time of the sub-satellite point included in each line since 2000-01-01 00:00:00 UTC</td>
<td>[0, 9223372036854775807L]</td>
<td>i64</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>time</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>units</td>
<td>UDUNITS unit name</td>
<td>µs</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>-1</td>
<td>i64</td>
<td>1</td>
</tr>
<tr>
<td>time</td>
<td>Acquisition time since 2000-01-01 00:00:00 UTC of the central pixel</td>
<td>[0, 9223372036854775807L]</td>
<td>i64</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>time</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>units</td>
<td>UDUNITS unit name</td>
<td>µs</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>-1</td>
<td>i64</td>
<td>1</td>
</tr>
<tr>
<td>latitude</td>
<td>Latitude at pixel centre</td>
<td>[-90, 90]</td>
<td>f32</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>latitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>units</td>
<td>UDUNITS unit name</td>
<td>degrees_north</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>-999</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>longitude</td>
<td>Longitude at pixel centre</td>
<td>[-180, 180]</td>
<td>f32</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>longitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>units</td>
<td>UDUNITS unit name</td>
<td>degrees_east</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>-999</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>pixel_corner_latitude_corner_1</td>
<td>Latitude at pixel corner 1</td>
<td>[-90, 90]</td>
<td>f32</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>latitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>units</td>
<td>UDUNITS unit name</td>
<td>degrees_north</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>-999</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>pixel_corner_longitude_1</td>
<td>Longitude at pixel corner 1</td>
<td>[-180, 180]</td>
<td>f32</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td>longitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>units</td>
<td>UDUNITS unit name</td>
<td>degrees_east</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>-999</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>pixel_corner_latitude_corner_2</td>
<td>Latitude at pixel corner 2</td>
<td>[-90, 90]</td>
<td>f32</td>
<td>rows columns</td>
</tr>
<tr>
<td>Element name</td>
<td>Description</td>
<td>Range or value</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>units</td>
<td>UDUNITs unit name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pixel_corner_longitude_2</td>
<td>Longitude at pixel corner 2</td>
<td>[-180, 180]</td>
<td>f32</td>
<td></td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>units</td>
<td>UDUNITs unit name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pixel_corner_latitude_cor_3</td>
<td>Latitude at pixel corner 3</td>
<td>[-90, 90]</td>
<td>f32</td>
<td></td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>units</td>
<td>UDUNITs unit name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pixel_corner_longitude_3</td>
<td>Longitude at pixel corner 3</td>
<td>[-180, 180]</td>
<td>f32</td>
<td></td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>units</td>
<td>UDUNITs unit name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pixel_corner_latitude_cor_4</td>
<td>Latitude at pixel corner 4</td>
<td>[-90, 90]</td>
<td>f32</td>
<td></td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>units</td>
<td>UDUNITs unit name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sun_zenith_nadir</td>
<td>Nadir solar zenith angle at pixel center</td>
<td>[0, 90]</td>
<td>u16</td>
<td></td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>units</td>
<td>UDUNITs unit name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.003</td>
<td>f32</td>
<td></td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sun_zenith_oblique</td>
<td>Oblique solar zenith angle at pixel center</td>
<td>[0, 90]</td>
<td>u16</td>
<td></td>
</tr>
<tr>
<td>standard_name</td>
<td>CF standard name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>units</td>
<td>UDUNITs unit name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.003</td>
<td>f32</td>
<td></td>
</tr>
<tr>
<td>Element name</td>
<td>Description</td>
<td>Range or value</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>coordinates</td>
<td></td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>satellite zenith nadir</td>
<td>Nadir satellite zenith angle at pixel center</td>
<td>[0, 90]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard name</td>
<td>CF standard name</td>
<td>zenith_angle</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>units</td>
<td>UDUNITS unit name</td>
<td>degrees</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.003</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td></td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>satellite zenith oblique</td>
<td>Oblique satellite zenith angle at pixel center</td>
<td>[0, 90]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>standard name</td>
<td>CF standard name</td>
<td>zenith_angle</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>units</td>
<td>UDUNITS unit name</td>
<td>degrees</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.003</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td></td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>relative azimuth nadir</td>
<td>Nadir relative azimuth angle at pixel center</td>
<td>[0, 180]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>units</td>
<td>UDUNITS unit name</td>
<td>degrees</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.003</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td></td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>relative azimuth oblique</td>
<td>Oblique relative azimuth angle at pixel center</td>
<td>[0, 180]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>units</td>
<td>UDUNITS unit name</td>
<td>degrees</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.003</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td></td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Cloud_fraction nadir</td>
<td>Cloud fraction of the AOD super-pixel in nadir view</td>
<td>[0, 1]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.00001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td></td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Cloud_fraction oblique</td>
<td>Cloud fraction of the AOD super-pixel in oblique view</td>
<td>[0, 1]</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>_Fillvalue</td>
<td>Default value range for unused elements</td>
<td>65535</td>
<td>u16</td>
<td>1</td>
</tr>
<tr>
<td>scale_factor</td>
<td>raw data must be multiplied by this factor after reading</td>
<td>0.00001</td>
<td>f32</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td></td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>aod_quality_flags</td>
<td>Global aerosol retrieval quality flags</td>
<td>see Error! Reference source not found.</td>
<td>u16</td>
<td>rows columns</td>
</tr>
<tr>
<td>flag_masks</td>
<td>flags mask values</td>
<td>see Error! Reference source not found.</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>flag_meaning</td>
<td>meaning of flags mask values</td>
<td>see Error! Reference source not found.</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>coordinates</td>
<td></td>
<td>latitude, longitude</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Element name</td>
<td>Description</td>
<td>Range or value</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>SLN_L1b_quality_flags</td>
<td>Original L1b quality flags associated with SLSTR Nadir view</td>
<td>see Error! Reference source not found.</td>
<td>u32</td>
<td>rows columns</td>
</tr>
<tr>
<td>flag_masks</td>
<td>flags mask values</td>
<td>see Error! Reference source not found.</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>flag_meaning</td>
<td>meaning of flags mask values</td>
<td>see Error! Reference source not found.</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>SL0_L1b_quality_flags</td>
<td>Original L1b quality flags associated with SLSTR Oblique view</td>
<td>see Table 9</td>
<td>u32</td>
<td>rows columns</td>
</tr>
<tr>
<td>flag_masks</td>
<td>flags mask values</td>
<td>see Table 9</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>flag_meaning</td>
<td>meaning of flags mask values</td>
<td>see Table 9</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>coordinates</td>
<td>latitude, longitude</td>
<td></td>
<td>S</td>
<td>1</td>
</tr>
</tbody>
</table>
3 XML SCHEMA

The xml schemas used to generate the product manifest are provided as separate files [AD-4].
4 NRT S3 SLSTR L2 AOD PRODUCT SIZE

Table 4 lists the size computation per product file produced over a 5-min granule. A file compression (ratio of 4) is applied on NRT_AOD.nc.

The overall product size over 1 day (24h) is about 610 Mbytes.

<table>
<thead>
<tr>
<th>Element name</th>
<th>Description</th>
<th>Size in Mbytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>xfdumanifest.xml</td>
<td>Sentinel-SAFE product manifest</td>
<td>~0.6</td>
</tr>
<tr>
<td>NRT_AOD.nc</td>
<td>9.5 km L2 NRT Aerosol & surface product</td>
<td>~1.6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>~2.2</td>
</tr>
</tbody>
</table>