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1. Introduction 
After this introductory section, this document is divided into three parts. The first part covers 

algorithms that are using Level 1B data products as input, while the second part covers algorithms 

that use Level 0 data. The final part covers topics related to the software implementation and 

evolution of this document. 

Given the research driven nature of the project we expect this document to be a “living” document, 

that is, we expect it to change as the project progresses. As new avenues are explored we will add 

additional algorithms and as some areas prove fruitless we will remove them from the document. The 

aim will be to produce a full algorithm theoretical basis document that covers all aspects of the final 

set of algorithms implemented at Eumetsat. 

1.1 Fundamental Approach and Overview of the Scientific/Engineering Outcome 
In this document we describe the algorithms which together meet the set of requirements defined in 

the Requirements Baseline (EOSense-018-006, latest issue) that specifies additional calibration and 

data quality measures to assess the calibration of the Sentinel-3 SLSTR and OLCI imagers. 

The underpinning idea for all the algorithms discussed, is that we can derive information on the sensor 

calibration and data quality from the imagery collected during normal operations. This information 

can be useful as a supplement to on-board systems, in other cases an alternative form of vicarious 

calibration and in some cases providing a unique source of information on issues that cannot be 

determined easily using on-board systems or standard methods of vicarious calibration. 

Essentially we are using statistical measures of various forms to derive the information we require 

from the image data. In the case of SNR measurements it can be a histogram of the noise estimates 

from a moving window approach across a heterogeneous image. For relative gain it is the estimate in 

a calibration shift based on a distribution of ratio values between highly correlated neighbouring 

pixels. These two examples show single image estimates. For other operations we need a lot of data 

to derive a stable measure of the parameter of interest, such as calibration drift, in this case billions 

of data points provide a stable assessment of change from one week or one month to the next, with 

some key underlying assumptions about the stability of the earth’s albedo. 

1.2 Satellite Instrument Description 
The OLCI instrument is the successor to ENVISAT MERIS with additional spectral channels, different 

camera arrangements and simplified on-board processing. It is a push-broom instrument with five 

camera modules sharing the field of view. The field of view of the five cameras is arranged in a fan-

shaped configuration and each camera has an individual field of view of 14.2° and a 0.6° overlap with 

its neighbours. The whole field of view is shifted across track by 12.6° away from the sun to minimise 

the impact of sun glint. The spectral range is 400 nm to 1020 nm.  

Calibration of all OLCI measurements are made via a calibration assembly of a similar design to MERIS 

that includes a mechanical rotating table. Either a direct view of the Earth (for imaging mode) or one 

of several calibration targets may be selected by rotating the table: a dark shutter plate (for dark 

current calibration), a primary Polytetrafluoroethylene (PTFE) calibration diffuser (viewed every 2 

weeks for radiometric calibration), a redundant PTFE calibration diffuser (viewed every 3 months to 

determine degradation of the primary diffuser due to solar exposure) or an erbium doped 'pink' 

diffuser plate for spectral calibration. During the calibration sequence, a selected diffuser plate is 
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moved into the instrument Field of View (FOV) and illuminated by the sun so that all five cameras can 

be calibrated at the same time. Characterisation of diffuser ageing is determined through on-ground 

processing using the two OLCI diffusers in synergy.  

For more information, refer to the OLCI technical guide at:  

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci  

The SLSTR instrument mission maintains continuity with the (A)ATSR series of instruments. The design 

incorporated the basic functionality of AATSR, with the addition of some new, more advanced, 

features. These include a wider swath, new channels (including two channels dedicated to fire 

detection), and higher resolution in some channels. The spectral range is 0.55 micrometres to 12 

micrometres, though the spectral region of interest in this study is the VIS/NIR, with possible extension 

to the SWIR. The calibration scheme for the short-wave, near infra-red, and visible channels is based 

on a diffuse calibration (VISCAL) target of accurately known reflectance which is illuminated by the 

sun over a short segment of the orbit, and which is intersected by the instrument scans. The black 

bodies (for TIR calibration) provide a dark reference.  

For more information, refer to the SLSTR technical guide at:  

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/instrument 

Calibration and data quality activities are performed by the Sentinel-3 MPC, and the results 

documented in the cyclic reports at: 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/data-quality-reports  

And: 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/data-quality-reports 

2. Part 1 - Level 1 Processing 
Three specific development areas have been identified that use Level 1 data in the analysis, these are, 

 Relative Gain 

 Non-linearity 

 SNR 

The first two are intimately related, persistent relative gain residuals seem strongly associated with 

non-linearity effects between neighbouring detectors, these first two are only relevant to pushbroom 

type instruments therefore will only be applied to OLCI. The final area, the SNR evaluation is a separate 

algorithm based on a different approach and is equally applicable to both SLSTR (reflectance channels) 

and OLCI sensors. 

Note that spectral radiance values given in this document are stated as Watts (W) but refer to (Wm-

2sr-1m-1) 

2.1 Relative Gain 
When a detector array is manufactured each detector in the substrate has slightly different behaviour, 

including 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/instrument
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/data-quality-reports
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/data-quality-reports
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 Different bias values when there is no signal 

 Some non-linearity in response 

 Different overall response to the same signal level (gain values) 

So to get a stripe free image from a group of detectors in a linear array we need to equalise all the 

detectors, so we get the same response to the same radiant energy on the detector surface. One of 

the steps of the calibration process is to determine the bias and gain values and correct for any non-

linearity in response to avoid striping. 

A raw image from Landsat 8 is shown as an example in figure 1, showing uncorrected data. 

 

Figure 1: Landsat 8 image showing striping present due to detector to detector difference before 

calibration has taken place. 

Once calibrated these detector to detector differences in figure 1 and hence the striping in pushbroom 

instruments disappear. Imagine if the image in figure 1 was a snow-field, with the same amount of 

radiative energy from each pixel of the scene. If we have performed the relative gain calibration 

correctly, no matter where we look in the image, all the values will be the same and no striping will 

be present. 

The relative gain equalisation can be performed in many different ways, it can be performed on the 

ground using an integrating sphere or other light source that illuminates the whole of the detector 

array evenly and it can be performed in space using either an on-board diffuser illuminated by the sun 

and regularly viewed (every few weeks for Sentinel-3) or by using vicarious ground targets such as 

snow-fields. In all cases we use a homogeneous target to derive our measure of a uniform illumination 

for the correction. 

2.1.1 Our Approach 
The approach developed by EOSense is somewhat different, in that we can determine changes with a 

much higher temporal resolution than a daily visit to a snow-field (in the right season) or a monthly 

determination from an on-board calibrator. This is achieved by using all data as the source of our 
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information, so single heterogeneous images, as soon as they are downloaded can be used to derive 

information on the relative gain of the sensor. 

What do we mean by a heterogeneous image? We mean any image, not just specific calibration 

images (figure 2). 

 

Figure 2: All images can be used in the analysis including very heterogeneous fields and urban areas 

The relative gain algorithm can be applied in different ways to different data products. It could in 

theory be applied to Level 0 data to derive the relative gain curve in the same manner as we use flat-

field targets on the earth or a diffuser on-board. 

The problem with Level 0 analyses, is that we (EOSense) use heterogeneous images, we find gradients 

in brightness across our target area that introduce variability in our determination of the relative gain 

curve, which is not found with homogeneous surfaces or on-board diffusers. We can recover the 

higher frequency part of the Level 0 curve, which is not so closely related to surface variations, but it 

would require multiple images to average away the lower frequency variations induced by gradients 

across a heterogeneous surface to get a good example relative gain curve from Level 0 data. 

There is an alternative to using Level 0 data, assuming that the initial calibration has been performed 

using either an on-board system diffuser or flat-field on the earth, we can use the Level 1 data 

produced and look for deviations away from a perfect calibration. If the calibration is perfect we 

should see no variation from one detector to the next as we go across the image, so in the case of 

pushbroom systems no residual striping effects, only very low level random variations that are not 

consistent from one image to the next should be present. This second approach using Sentinel-3 Level 

1 data is the approach chosen for the analysis of the relative gain. 

2.1.2 Principles 
The basic idea we are exploring is that neighbouring detectors may not have the same response to 

same incoming radiant energy. Imagine we have a perfectly calibrated satellite and we are looking at 

a perfectly homogeneous scene where every pixel reflects exactly the same amount of energy. If we 

ratioed each pixel in column one with the neighbouring pixel in column two, we would get an exact 

ratio value of one for every pixel pair down the column. 
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Now let us add some reality, we add Gaussian distributed noise. Now we find the ratios vary a little 

around one, with the mean value of the noise histogram exactly on one and a standard deviation 

which is essentially the noise standard deviation of the imager for that brightness target. 

Now let us add a calibration shift of the second column detector, making it 0.1% lower in signal level 

and then do our ratio map again. We have the same noise levels and we get the same histogram, but 

we see that the mean of our histogram has shifted to higher values to 1.001. 

So essentially we are mapping the shift of this peak value. So let’s now add more complexity, let’s use 

a heterogeneous image instead of a homogeneous image. Now although our adjoining columns are 

very highly correlated, the correlation will tend to suffer, especially over very variable scenes, such as 

urban areas. So what happens to our histogram? 

In this case, we have large ratio values pushed to the wings of our histogram, where we have sudden 

brightness changes between columns, from dark shadow to bright building or vice versa, we will also 

see small variations related to surface differences producing intermediate values, stretching out our 

histogram, making it broader and less well-defined. However, even with that, we have a lot of pixels 

where the material is similar enough that we are seeing the effect of the small calibration change. 

The result is normally a more ragged distribution, in which we can exclude all the larger values as we 

know they are not due to calibration changes. In fact we could just try and focus on the peak position 

and using the peak shift we can estimate the relative gain change that has taken place.  

However, we did mention reality, the problems we can find are, 

 There are too few data points to define a really good histogram (especially over totally urban 

areas), so no easy way to determine peak value. 

 The data is quantised with a large central peak that does not move (seen in Sentinel-2). 

However the secondary peaks at the next quantisation interval often show an asymmetry 

which is related to the calibration change (figure 3). 

 In reality surfaces have cross-track gradients which affect (for a single image) the derivation 

of the relative gain terms. 

 Although brightness effects are reduced we can see some structure in the initially extracted 

residuals that mask our attempts at deriving the correction factors we require to determine 

the true relative gain variations. 

The basic principles of deriving the relationship are in themselves simple, the more difficult part is the 

interpretation of the corresponding histogram and the extraction of the correction factors over 

different surfaces which are at times very heterogeneous. 

2.1.3 Step by Step 
Step 1 – Creating the histograms 

The initial step is to create a histogram of the ratio relationships between each pixel pair for each 

column pair. We work in log values either using all the data, or just data that has ratio values between 

0.95 and 1.05. This second form eliminates the extreme values we discussed in the previous section, 

which we find in very heterogeneous areas such as urban areas. The two histograms produced using 

either all or part of the data are generally quite similar, which supports the general principle that the 

peak of the distribution will give a good indication of the value to apply. 
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Step 2 – Determining the histogram peak 

The second step is the extraction of the peak value from the histogram. This is perhaps one of the 

most challenging areas, depending on the histogram form. 

A ragged histogram with widely ranging values will give a poorly defined peak, we can’t just choose 

the highest value. We could produce a cumulative histogram and look for the mid-point defining the 

median value, or we could use the arithmetic mean. Depending on any asymmetry in the histogram 

we might get widely differing values. Issues can occur if the data is quantised. In the past we have 

used 14 bit data of a small satellite system with no quantisation and also 10 bit data from the same 

instrument which does show quantisation. 

 

Figure 3: Histogram of pixel-pairs showing strong quantisation effects. 

With quantised data the median value is more difficult to determine due to the step like structure of 

the cumulative curve given the gaps in the data values (figure 3), any shift of where the true peak 

position is placed will be seen as a calibration offset. In heavily quantised data there are two options. 

The central peak we cannot use, as it will say there is no offset. However, if we look at the secondary 

peaks to either side of the central peak they are generally asymmetric and consistently asymmetric 

from image to image for any image pair, we used this difference initially to prove to ourselves that 

consistent variations existed, although it is difficult to use these peaks to quantify the amount of 

calibration change required. 

The reason it works is that for a perfectly calibrated system we get a central peak and an equal division 

of value to either side of this peak. If there is an offset, a small proportion of pixels will be pushed to 

the right or left, depending on the offset, producing asymmetric peaks. 

Given we can’t use the peak heights directly we can actually consider a much simpler measure, if we 

ignore the central peak and use all the other data with an arithmetic mean, we found that the results 
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were consistent and could be well-matched to the imagery. Therefore we believe that even with 

quantised data we can achieve reasonable results. 

Step 3 – Eliminating Gradients 

One issue we mentioned for single images, was that when we applied the algorithm, if we have a 

surface gradient in brightness, it shows up as a trend in the derived relative gain values. To eliminate 

gradients there are a limited number of choices. We could use an average of many images, which 

would re-inforce the smaller high frequency detector to detector variations we are interested in, while 

reducing lower frequency gradient induced features. This approach is fine and can be considered when 

a large amount of data is available. However, for monitoring changes with very high temporal 

resolution this approach is not feasible. 

The alternative is to remove the low frequency resolution features and just highlight the high 

resolution features in the retrieved coefficients. Therefore we use a local polynomial based on the 

Savitsky-Golay method, usually five or seven point to remove the low frequency terms. The overall 

effect is that we can ignore the surface variability that is inducing the lower frequency changes and 

still recover consistent high frequency terms over different surface types as shown in figure 4. 

Additionally the magnitude of these effects can be seen to match those over homogeneous surfaces. 

Confirming that most of the persistent residuals we derive are true surface effects and providing a 

direct means for correction. 

2.1.4 Issues 
The biggest issues alluded two in the “Step by Step” section are quantisation and the variability of the 

surface in the imagery, especially the influence of clouds. 

Quantisation we have discussed and an adequate approach based on ignoring the central peak data 

and using an arithmetic mean of the remaining data seems to provide a robust method for assessing 

the relative gain persistent residuals from one image to the next. 

The second effect is more of an issue. The most important advantage of this methodology is the use 

of heterogeneous images in the analysis, providing very high temporal resolution. However, 

heterogeneous images by their nature make it much more difficult to extract the often very small 

relative gain differences. Large variations from one column to the next can produce “difficult” 

histograms that lack enough shape to be able to clearly identify the peak position and assess the 

relative gain. A problem often occurs with clouds. The algorithm is very effective with hard boundaries 

between objects, as although moving into a bright object causes a group of extreme ratio values, the 

impact they have on the peak is normally quite low. 

However, clouds do not have sharp boundaries, the boundaries are diffuse, producing ramps in ratio 

values as the clouds are entered and exited that change the shape of the detector to detector ratio 

distributions and affecting the offsets. Obviously it depends on the amount of cloud, but also the 

contrast with the underlying surface. Some cloudy images distort the extracted values enough to 

significantly reduce the correlation between images. 

The only way to mitigate these effects are to increase the number of images, this is especially true 

with the relatively low magnitude features we see in band 1 of OLCI. Examples of the size of residuals 
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we can determine are shown in figure 4. The top plot is for band 1, Camera 1, the bottom plot for 

band 13, Camera 1. 

 

 

Figure 4: Two plots of the recurrent residuals from two different dates. 

In figure 4, the blue line is the March 21st data, a whole day of data. The orange line is June 21st data. 

As can be seen, even as in the top plot for band 1, we have very small features (usually less than 0.05%) 

that we can see repeated from one date to the next. Individual plots show a lot of variability, but 

averages of a whole day show much more consistent response. This is ignoring the effects of non-

linearity on the results (see non-linearity section) and any temporal changes over the three month 

period which may have reduced the correlation. The results suggest that these low level features and 

much larger features in band 13 (bottom plot, greater than 0.2% in some cases) are persistent over 

quite long time periods, but not detected during normal calibration using the on-board diffuser. 

2.2 Non-linearity 
For most imaging systems the non-linearity in response is a function of the detectors and the 

electronics (amplifiers, A/D convertors). Non-linearity is normally determined in the laboratory pre-

launch. For Sentinel-2 for the VNIR bands a second order polynomial is fitted to reduce the effects of 

the non-linearity. Once in orbit the shape of the non-linearity curve is never changed and non-linearity 

effects are assumed fixed. 
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Figure 5: Non-linearity correction applies a polynomial to produce a linear relationship between 

radiance and the digital number. 

In figure 5 (above) we see more or less how the non-linearity correction is performed. After a bias 

term is determined from dark images for each detector, it is subtracted from the detector DN response 

and then the remaining term will be a gain term relating the image brightness in digital numbers to 

the measured radiance in the lab for example. 

Once launched from the evidence currently available, it seems that the non-linearity coefficients 

defined are never changed, the tie point of the diffuser for the upper part of the calibration is adjusted, 

but the non-linearity coefficients themselves are not. This leads to the possibility that the important 

part of the dynamic range of the instrument covering vegetation, soil and oceans is never observed 

fully and could have residual non-linearity effects. 

This intermediate region (figure 6) is that where we are seeing persistent residuals from the relative 

gain analysis and it seems likely that there may be issues. 

 

Figure 6: The intermediate region between the dark bias images and diffuser images is poorly 

monitored 
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If there are problems in this region related to non-linearity effects producing differences between 

neighbouring detectors, how would they appear? 

The obvious sign is the effect of column striping that is evident for part of the column at a particular 

brightness then fades away and reappears as the image brightness changes. Obviously other causes 

such as a temporal effect in the electronics could introduce striping, but this would tend to affect all 

the detectors across the image array at the same time, while if we see localised effects for specific 

brightness targets it would indicate some behavioural differences between neighbouring detectors. 

Obviously, if we can see the striping effects (normally only visible with features greater than about 

0.2% of the magnitude of the signal), then we can detect these effects as calibration residuals, the 

magnitude of which is the average residual across the range of brightness’s that make up the column. 

So potentially depending on the non-linearity curves fitted for each detector, we could if there is 

residual non-linearity, determine it using an adaption of our relative gain algorithm, discussed 

previously. 

2.2.1 Our Approach 
This is an extension of the relative gain algorithm. It uses multiple heterogeneous images to build up 

a relationship between the persistent residual depth and the average column radiance for the target 

image for which the persistent residual has been determined. With enough images, we can start to 

clearly see a correspondence between the depth of any specific residual and the target brightness 

over the whole dynamic range of the sensor. 

As with the relative gain algorithm we use Level 1 calibrated data as our input, the only additional 

parameter collected is the column average radiance or scaled radiance. 

2.2.2 Principles 
The principles followed initially are exactly the same as the relative gain algorithm. We determine the 

column to column ratios and define the ratio histogram, find its peak and eliminate gradients by 

focusing on the high frequency element. These are determined for each image or sub-image used. The 

granularity of our measurement is determined by the image size. 

One thing we always capture when extracting the relative gain values, is the corresponding average 

column radiance for each column. These two parameters provide the basis for determining if there is 

a brightness relationship to differences between neighbouring detectors. In a perfectly calibrated 

system, no matter what the brightness of the target, neighbouring detectors will not show linear 

striping effects. 

However, if for a certain brightness range (figure 7) there is a difference in behaviour between 

neighbouring detectors then the non-linearity can be observed as striping between detectors at 

specific brightness targets. 
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Figure 7: Comparison of a perfectly calibrated detector (A) to one showing non-linearity errors (B) 

In figure 7 above, imagine we have several homogeneous images covering the whole dynamic range 

of radiance. As we ratio A/B we find that for really dark targets we see little difference, but as we move 

to brighter targets we see our ratio value decrease steadily to a minimum at about one quarter of our 

dynamic range. By the time we move to half the range the ratio values are more or less back to one 

and we can again see no mis-calibration between detectors. 

In figure 8 we can see an example from Band 13 Camera 1 of OLCI, showing the intermittent nature of 

the striping produced by such an effect. Stripes over darker areas disappear into brighter areas. The 

stripes can be bright stripes or dark stripes based on the relative ratio. 
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Figure 8: Band 13 Camera 1, notice the stripes are partial and fade in and out in the image 

Using this model as a basis to predict behaviour, it is fairly clear with enough images we can plot a 

range of radiance values against the corresponding persistent residuals to determine if there are 

systematic variations in the residual depths with target radiance. There are however some difficulties, 

in that within a single image, for a single column pair we may find a range of radiance values and a 

range of residual values, which are averaged at the image level and this average is not necessarily a 

true representative of the relationship and will induce scatter in the final result. This is illustrated in 

figure 9. 

In figure 9 we have three materials, A, B and C with radiance values of 50, 100 and 150 and 

corresponding feature depths of 0%, 0.4% and 0%. If we have a scene that is split between for example 

land with a value of 150 and sea with a value of 50, when we average the radiance we get 100, when 

we average the feature depth we get zero. 

Now if we have a scene which is homogeneous made of B, we have the same average radiance value 

of 100, but a feature depth of 0.4%. So in effect, the varying relationships in brightness and feature 

depth when averaged to get a scene value, will show scatter in the final plot due to the inconsistencies 

described in the simple example shown in figure 9. So we need to consider how we deal with this 

issue. 
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Figure 9: Showing that averaging feature depth and radiance does not necessarily give the right 

answer. 

2.2.3 Step by Step 
The initial three steps are the same for the relative gain analysis, 

 Create a histogram for each detector to detector pair of the ratio values between 

neighbouring columns for the detectors to be compared. 

 Find the peak of this histogram which is related to any relative shifts due to calibration 

differences between neighbouring detectors. 

 Extract the high frequency component related to detector variations avoiding lower 

frequency gradients due to surface brightness effects. 

The fourth step is related to plotting the high frequency values against brightness for each image or 

sub-image. 

Step 4 – Generating the non-linearity plot 

For each image processed for each detector we generate the relative gain value (high frequency) and 

the corresponding average radiance value for that detector for that image. We can then for each 

image, hence we need several images, plot the corresponding persistent residual feature against the 

average brightness value. 

There are issues related to the quantity of images required to generate a suitable plot. For large well 

defined persistent residuals a small number of images would define the overall shape of the correction 

to tie any two detector responses together. However, for very small effects, a large number of images 

may be required and even these may be dominated by the scatter alluded to in the previous section. 
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However, it is feasible to try and extract the relationships. In figure 10, we plot an example from Band 

13 from Camera 2 to illustrate the relationship for March 21st and June 21st. 

 

Figure 10: Combined plot of two days data showing a weak trend in for B13, C2, D222. 

The example shown is not entirely convincing, the aim here is to merely illustrate that the effects we 

are looking for are very small and we need to consider the impact of the scatter on the final result. In 

figure 10 we can see there is no calibration residual for brighter targets, but it increases as we move 

to darker targets with features up to almost 0.2% close to zero signal. 

Other examples show an almost continuous gain change, with a consistent value across the radiance 

range examined, with values exceeding 0.3% in Band 13 (figure 11). 

 

Figure 11: Persistent residuals across 180 images taken in March showing offset, average of 0.36% 

2.2.4 Issues 
The issues are related in part to the use of the relative gain algorithm, and the effects of using very 

heterogeneous images in the analysis. As mentioned in the section on relative gain, we can use large 

averages of residuals from a single day of data collection to produce good consistent values for the 

persistent residuals. 

The second problem is how to deal with the averaging process over very different brightness targets 

with different magnitude persistent residuals as illustrated in figure 9. 
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The averaging process is required to generate the histogram, but the averaging process also is 

responsible in part for the scatter in the non-linearity plot. So one of the key elements to be examined 

will be how to extract the information we require to reduce these scatter effects. For the moment the 

approach we suggest to derive the first pass correction algorithms is to use several days data to get a 

good scatterplot to derive the relationship for the correction. 

Once we have a relationship for every detector, then we need to derive the corrections and apply 

them, but this in itself is not as simple as it seems, as we do not know which is the best calibrated 

detector to use as a reference. In theory if we had one really well calibrated detector, we could say 

we are going to map every detector to this one and extend the relative correction out to all the other 

detectors from this absolute calibration reference. In reality we don’t know which is best. 

So we need to come up with a methodology that will reduce the impact. Our first suggestion is to use 

an area of the detector array which is showing little or no variation between detectors and use a 

detector in that area as the reference. 

Then we need to migrate the correction out from this point, by either 

(a) Combining correction factors 

(b) Changing two values on either side of our reference, iterating and then moving to the next 

two. 

The first option is easier from the point of view of computation. However, we are concerned that any 

residual error or precision effect may increase rapidly given the large number of detectors in each 

detector array. 

The second option means re-running the relative gain correction several hundred times and changing 

one or two detectors at a time (one on either side of our reference). This would have to be repeated 

for all bands showing persistent residuals. So quite intensive processing. 

2.3 Signal to Noise Ratio (SNR) 
Regular measurements of the SNR can be important, not only to validate the pre-launch behaviour of 

an instrument once launched in space, but for the long term monitoring of the spacecraft health.  On 

many systems with on-board calibration devices, SNR can be estimated on a regular basis (every few 

weeks in the case of OLCI on Sentinel-3), but many sensors do not have on-board systems, especially 

the new generation of small satellites being developed throughout the world. Additionally, if a major 

satellite system calibration device becomes degraded or fails, then the method described in this report 

provides a vicarious, alternative method to estimate SNR. 

This data can not only be used to determine how well the spacecraft is performing, but also has the 

potential to be used in estimating the uncertainty on image products at various levels, as part of a 

comprehensive assessment, such as that proposed within QA4EO, where pixel level uncertainty on 

image or derived products is the ultimate aim.  By characterising the variations in noise at the detector 

level in any image we have a parameter which can be used in the uncertainty estimates of any data 

product, as well as providing important quality information to ground controllers of large satellite 

constellations. 

In this report the noise we deal with is assumed to be purely instrumental noise, so that the optics of 

the system are perfect and the only uncertainties arise from the properties of the detectors and 
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electronics.  It is assumed that the image values x, consist of a “true” signal, and an additive noise 

component.  The noise is generated by the detectors and electronics on board, including dark current 

noise, read noise and Poisson distributed shot noise.  The noise can be added during the read process 

of the detector or any later stage as the signal is passed through the electronics subsystems.  The 

simple expression for the observed signal is: 



xi    ti    i ti   Equ. 1 

where t denotes the true signal (that which arises from perfect imaging and optics), while the noise 

term  is taken to be a random variable with zero mean, and variance: 



E i

2     i

2    kiti  Equ. 2 

where the first term on the right hand side is independent of signal (but allowed to vary from detector 

to detector), and the second term denotes shot noise.  In practice other sources of error in an image 

may lead to effects that appear as striping in an image.  These are effectively multiplicative biases, and 

will be examined in a later report: the noise we deal with here is purely additive.  The signal-to-noise 

ratio we are interested in is defined as: 



SNR    
t


 Equ. 3 

and will be itself a function of signal, given Equ. 2.  This is the way the term is widely used in the remote 

sensing community; other definitions may be found in electrical engineering departments or among 

electronics groups. 

Of course the optimal way to characterise the noise parameters in an image is to arrange for a uniform 

field of light to fall on the detectors; variations in the values read from the detectors then are all we 

need to examine. If we were to have such an image then noise characteristics could be found by 

examining the variability (essentially, the variance of the data values) and matching it to the expected 

form (Equ. 2).  In some systems there might be an attempt made to effect such a situation, by the use 

of on-board calibration systems of some kind.  Current satellite-based observation systems, designed 

to be small, light and to be launched regularly, cannot afford the expense, complexity and weight of 

such additional subsystems. Alternatives using the images that are actually taken from space, and an 

automatic procedure is preferred so that such analysis can be done autonomously – conceivably, on-

board future missions. 

For those satellite sensors that do not have diffusers, or other on-board calibration devices, the main 

difficulty in determining the SNR of a system is that we have to make do with inferences based on 

actual images of the earth: we must find a suitable way of determining the variation in a signal 

response without it being affected by variations in the image due to the surface or atmosphere.  Many 

workers have therefore chosen “homogeneous” surfaces such as snow-fields or deserts to try and 

determine the noise contribution to a “fixed” signal background. In other words, we know the radiance 

of the surface and we assume no contribution from the surface or atmosphere to the noise.  One of 

the major difficulties is that there are very few surfaces which are large enough that are truly 

homogeneous to allow an estimate of the SNR, especially for sensors with a large Instantaneous Field 

of View (IFOV) such as the UK-DMC2 sensors with a 640 km swath. 
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Another issue is related to the spatial resolution of the sensor, where a sensor with low spatial 

resolution may give an effective measure of SNR over a snow-field or desert site, while a higher 

resolution sensor gives an underestimate of the true SNR as it is sensitive to small surface variations 

(such as shadowing due to snow-dunes) that are not detectable and are averaged away in the lower 

resolution sensors. This limits the potential natural targets for such high resolution systems. 

The academic literature on remote sensing is almost wholly concerned with extracting information 

from an image, or more general signal, minimising the effects of noise.  No kudos attaches to the idea 

of studying noise in the presence of a confounding signal, and major journals generally avoid 

publishing such work.  The exchange of ideas and methodologies between those for whom calibration 

is the principal concern therefore tends to form a very “grey” literature.  Specialist conference 

proceedings, reports to Agencies, and other difficult-to-obtain sources are the main means of 

dissemination of this kind of work.  A full-blown literature search is therefore not possible, so this 

element of the background must be based largely on personal experience and informal 

communications. 

All the methods applied based on literature search tend to use similar sets of steps: 

Use of a small moving window to gather local statistics, and identify areas showing low levels of 

variability (most homogeneous surfaces).  The mean values and standard deviations over those areas 

are then extracted and used in the determination of the SNR.  In some methods the technique of area 

growing is deployed to generate enough pixels in an area to use in an assessment.  An interesting 

variation on the standard approach was proposed by Lee and Hoppel (1989) namely a method using 

small moving windows in which the mean value (squared) and the variance were plotted against each 

other and a straight line drawn through the data points, using Hough transforms to estimate the line 

position and from this the derived SNR.  This assumes no dependence of the noise on signal. This 

method has been tested and in some circumstances works very well, but the results from our tests 

were very inconsistent from image to image and highly dependent on the image content. 

Most methods by their nature have limitations.  They tend to choose the most homogeneous areas 

and, in consequence, overestimate the SNR through selection bias; they generate only spot estimates 

across the FOV, and thus not a complete knowledge of the SNR; they cannot give detector by detector 

knowledge from each scene processed.   

The selection bias arises from the fact that the calculated variance over a number of pixels for which 

the signal level is identical will itself vary from one group of such pixels to another.  The expected value 

of such a variance will be the variance of the underlying noise, but there will be some sort of variation 

and choosing sets of pixels with the smallest observed variance will underestimate the true level of 

image noise. 

2.3.1 Our Approach 
EOSense has developed a concept that uses a moving window to extract scene statistics. Normally the 

SNR of an earth observation sensor is determined by observing a homogeneous surface and taking the 

mean and standard deviation of the surface to get a signal value and corresponding noise standard 

deviation. 

This is a single data point. We would normally use multiple data points to define a relationship 

between the radiance measured and the corresponding noise standard deviation, with the noise 

decreasing as the signal decreases. 
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For practical purposes it is very difficult to find a range of targets that meet the requirements to 

generate these points, especially during the commissioning period for new satellite systems. As an 

alternative we have developed a new method of assessing the SNR of any satellite EO system by 

collecting statistical information of heterogeneous images to try and determine the effective SNR 

profile. 

This is not just a single point measurement; this approach tries to recreate the true radiance to noise 

relationship across all radiances observed by the system by using multiple images that can run into 

the hundreds. In fact the more images used the more reliable the result. 

2.3.2 Principles 
We have taken two main approaches to the problem of characterising instrumental noise in satellite 

image.  The first avenue is similar to others we have seen discussed above. Here the variance of a 

small number of contiguous pixels is calculated, repeatedly across the image.  This is done in the belief 

that for at least some of these samples the variances will be dominated by the variance of the 

instrumental noise, with scene variability contributing little or nothing.  The values are collected up 

into narrow bins, the contents of a bin at variance value v (say) being the number of times a variance 

in the range (v-v,v+v) is encountered.  From the resulting histogram we can estimate the underlying 

noise variance in one of two ways: by Maximum Likelihood estimate, or by matching the low-v portion 

of the histogram to values expected theoretically from pure noise.  The ML calculation also gives us a 

(rather too-low) estimate of the uncertainty of that calculation through standard statistical theory 

(Cramer-Rao).  The curve matching also gives us an estimate of the error, which we think may be a 

novel introduction.  The one thing we do not do is to form any kind of average of the v-values in the 

low-v part of the histogram, as this introduces a serious selection bias. 

The approaches just described work best if there is a reasonable supposition that, over at least some 

parts of the image, the true signals for adjacent pixels are effectively the same: that there are uniform 

patches of the land surface within the swath of the instrument.  The plausibility may be shown by 

considering the histogram of v-values from a high resolution panchromatic image of part of the Libyan 

Desert.  The IFOV corresponds to a ground element of about 1 meter, there is a single cover type 

present, and conditions would seem to suit such an approach.  The histogram is shown in figure 12. 
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Figure 12: Distribution of variances from a random image (left) 5 pixels per sample. Corresponding 

histogram of v-values from an image of Libya4 (right) 

The similarity of the two curves is striking, and the correspondence is strongly brought out when we 

examine the scatterplot of the two sets of values (figure 13 left, for just the 30 lowest bin values) 

corresponding to those portions of the plots to the left of the peak.  Figure 13 (right) shows the result 

of scaling the theoretical curve (blue) to the observed set of v-values (red).    

 

Figure 13: Scatterplot of random and real data (left) and overlaying scaled theoretical data on real 

data (right). 

An alternative approach is a technique from geostatistics that enjoyed some popularity a generation 

ago among part of the remote sensing community, usually as a means of estimating scale (correlation 

length) over the land surface.  This is the use of semi-variances, that is the mean squared difference 

in signal of two points a given distance (lag) apart.  At large lags this value is more or less constant, but 

decreases with decreasing lag.  Interpolating the semi-variances over small lags to a hypothetical lag 

of zero does not give zero, but instead what the geostatisticians refer to as “nugget variance”, which 

we would interpret as detector noise.  Our first studies on this approach were not promising, as the 

classically-calculated semi-variances showed too much scatter at small lags.  It is easy to show that 

this method can be affected by individual bright or dark pixels.  We think a further problem is in 

calculating the numbers directly, giving too much weight to large differences, when more consistent 

results are emerging when we use a histogram matching approach to estimating the variance at each 

lag.  We believe we can justify the methodology in terms of a simple model of surface variability we 

have developed, and which we have not encountered in any previously published work (though our 

experience of geostatistics is limited).  

An alternative model is that the surface-leaving radiance varies only slowly (between obvious 

boundaries), whereas the noise is uncorrelated form one pixel to the next.  Separating the image into 

a smooth and a very unsmooth components may then be a feasible means of estimating image noise.  

It’s possible that Fourier methods could be applied here, assigning high frequency components to 

noise and low frequencies to “true” signal, but this introduces the problem of deciding on a threshold 

frequency, or an apodising function.  Instead we have looked at a method which finds the smooth 
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signal as that which best matches the observed signal, while satisfying certain smoothness constraints, 

and such that the residuals (noise terms) are uncorrelated from one pixel to the next.    

This is essentially a penalised least-squares method such as used for image restoration in a number of 

disciplines.  There is usually a free parameter (arising as a Lagrangian constant) in such schemes, this 

we can tie down by the requirement that the residuals be uncorrelated.  The method has been 

developed only for one-dimensional data sets, which is fine as we can apply it to the long series of 

data from a single detector.  It is not clear how easily this could be developed into a two dimensional 

algorithm, or what the computational cost would be.  We have made a limited number of tests with 

this algorithm, and get results compatible with those from our other approaches, although it is evident 

that the least squares formulation again leaves us vulnerable to outlier pixel values.  Some form of 

image pre-processing may need to form part of a fully workable method. 

Our fifth and latest scheme is not to work with variances at all, even though that is what we are 

attempting to recover.  If we take not the variance of a small set of pixels, but instead a linear 

combination of them, chosen to nullify a constant signal, then the result will be a function of the image 

noise only.  The distribution of the results can then be fitted against the expected distribution; in the 

case of the high-resolution images we have been working with, this is a simple Gaussian.  This 

approach has the main advantages of the histogram based methods – automatic elimination of 

samples containing boundaries, or over very heterogeneous areas – as these fall naturally to extreme 

values, which are ignored.  

2.3.3 Step by Step 
For Histogram methods, a “configuration” is decided upon: this could be a window of size 2x2 pixels, 

say, or a set of pixels in a row, or 3 consecutive pixels along a column (and thus from the same 

detector).  A bin size is selected for the histogram: this should be quite narrow, as it can be coarsened 

if needed by combining bins, but it cannot be refined.   Three arrays are set up of length MAXBUF 

(say), these we label COUNTS, MEANS, and VARS, all initialised to zero.  If the bin size is h then the 

maximum variance we play with is Vmax=h*MAXBUF.  We pass through the image, and for each set 

of pixels we calculate the variance of their signals, and also their mean value.  If the variance is less 

than Vmax then we increment the count of the appropriate array element by one, add the mean value 

to the number in the corresponding element of MEANS, and the variance value itself to the 

corresponding element of VARS.  At the end of this we divide each element of MEANS and VARS by 

the corresponding element of COUNTS.  The output histogram is essentially a table with MAXBUF 

rows.  The first column of the table contains the midpoints of the histogram bin, the second contains 

the endpoint of that bin.  The next is the contents of COUNTS, and then the modified numbers from 

MEANS and VARS.  Generally it is found that the first and last columns are almost identical, but for the 

first few bins, those with the lowest v-values, there may be observable differences.  This is an 

indication that the histogram could be affected in those values by quantisation problems. 

 

For the ML method we choose a bin, and calculate the mean value of the counts and the mean value 

of the vars variable for all bins up to the one chosen.  These are readily reconstructed from the table.  

The ML estimate is now the solution of a transcendental equation with these two numbers as 

parameters.  It is straightforward to calculate ML estimates for any portion of the histogram, to help 

check for consistency.  The mean signal of the bins used – again, readily calculated from the array 

table – is the appropriate mean value to combine with the noise variable to estimate SNR. 
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For the histogram matching our aim is to compare the numbers in a portion of the COUNTS array to 

members of a one-parameter family of curves, depending on the underlying noise distribution.  For 

Gaussian noise these are 2 curves.  After much experimenting we believe that the most sensible 

approach is to scale the counts in our selection so that they sum to one, and to do the same with the 

scaled integrals of the 2 function over each bin.  The squared differences of these two sets of 

numbers, when added, form an objective function; the desired noise variance is that which minimises 

this.   An uncertainty estimate can be determined for the result.  

The geostatistics approach we deploy is not quite standard.  Semi-variances are classically calculated 

by summing the squares of differences f signals, but as mentioned above this can be badly affected by 

bright or dark isolated values.  Instead, a histogram of the differences at each lag is generated, and 

the lower values in it are fitted to a Gaussian (in practice, we fit the log of the counts to a quadratic).  

This is showing improved results over the earlier work, although testing has only recently begun on 

this. 

The same methodology is adopted in our most recent scheme.  We pass through the image, calculating 

certain linear combinations of sets of successive pixel values, and accumulate the results (which may 

now be positive or negative) in a histogram; this is then fitted to a Gaussian and the variance of the 

Gaussian is the noise we infer.   Unsuitable numbers never get included in the calculations as their 

derived numbers are too high.   

2.3.4 Issues 
The histogram matching technique has been extensively tested on images of the Libya Desert for a 

particular instrument.   The results have enabled us to confirm a linear relationship between radiance 

and noise variance, and are generally consistent.   

The most significant problem we have seen is that if the data is highly quantised (by which we mean 

the digital numbers are squeezed into a smaller number of bits, before conversion to radiance values) 

then the histograms can become very distorted if the number of pixels per sample is small.  This makes 

the whole fitting process difficult. Having said that, the last method we discussed seems more robust 

than the others examined and this will be tested on highly quantised data for Sentinel-2 in the near 

future. For Sentinel-3 OLCI data the quantisation was not apparent in the Level 1 data, so we may be 

able to try several different algorithms to assess the noise and give comparative figures. 

The second issue we need to explore is the problem of spatial resolution. Most tests have been 

performed on very high resolution systems. However, we do have enough evidence from medium and 

low resolution systems to give us confidence that we can extract some useful information (previous 

limited tests on AATSR and MERIS). We will get a clearer view on whether this is a major issue as the 

project develops. 

Finally, the aim for all our work has been to use heterogeneous images, normal images, in our analysis. 

The SNR histogram methods show that when we have very heterogeneous images, the histogram 

shape becomes distorted due to the effects of mixing different surface components of very different 

brightness, producing large variance values with poorly defined peak values. This may limit the 

usefulness of this method to sites which show only moderate variations in surface brightness. This will 

be examined as the project develops. 
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3. Part 2 – Level 0 Processing 

 Drift of on-board calibrator 

 Sensor drift monitored relative to the earth without and on-board calibrator 

These two algorithms are variants of each other. They are very different from the level 1 algorithms 

discussed in Part 1 of this document, in that instead of using a very limited number of images to 

determine parameters such as relative gain, non-linearity and SNR they instead use a very large 

number of images (in fact as many as possible) to try and assess changes in sensor performance. 

Global datasets are preferred, so there are no regional biases to the sampling of the data. Both 

algorithms are based on creating a new calibration reference, by which we can see either changes to 

the on-board calibration devices or direct changes in the sensor performance. 

No absolute calibration drift assessment can exist without some form of reference calibration target. 

In our case this target is the whole earth, with the underlying assumption that the spectral albedo of 

the bands of interest of our sensor is not changing during the lifetime of the sensor and hence we can 

adequately track changes in either on-board calibrator or the sensor itself by direct reference to the 

level of signal change (after bias subtraction) of the level 0 data. 

3.1 On-board Calibrator Drift 
One of the issues with any on-board calibration system is the tendency for drift to take place in the 

response of the on-board device. Landsat 8 OLI has multiple calibration systems, these provide a good 

estimate of the calibration stability, but still show small, but different drift behaviours (Markham et 

al., 2014). An alternative approach is to use vicarious calibration sites on the earth’s surface as targets 

from which we can derive the drift of a sensor (Mishra et. al, 2014). These use Pseudo-Invariant 

Calibration Sites (PICS), areas of the earth that have shown good long term stability over a 30 year 

time period. They key element is the stability of these sites, there are however problems in use 

including extensive modelling of the surface BRDF, atmospheric variation including the presence of 

clouds over the sites and the relative paucity of data given instrument revisit times. An example of the 

complexity, is the processing used for ATSR-2 and AATSR for the on-board VISCAL device, the same 

device used in SLSTR. 

As part of the validation process of the (A)ATSR  on-board calibrator the Rutherford Appleton Lab 

(RAL) carried out a calibration exercise of the North African Pseudo-Invariant Calibration Sites (PICS) 

and snow sites in Antarctica and Greenland using Level 1 Radiometrically Corrected data (Smith and 

Cox, 2013). In this case a reference reflectance model based on ATSR-2 over these sites was used as a 

basis for comparison, which does not require time-coincident data. The data is restricted to nadir view 

only and the BRDF can then be considered as a function of solar zenith angle and the measurements 

collected can be fitted using a polynomial. 

Once ingested the images are checked for location, cloud screening with checks on spatial uniformity 

over the targets using a windowing method based on thresholds. For accepted images they compute, 

 Mean reflectance 

 Standard deviation 

 Minimum reflectance 

 Maximum reflectance 
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 Mean solar zenith and azimuth angles 

 Mean view zenith and azimuth angles 

 Total number of pixels in the scene (clear and cloudy) 

 Number of cloud free and non-saturated pixels in the scene used in the average. 

The next stage in the RAL processing was to account for any long term drift, as the ratio between the 

measured reflectance and the reference BRF, this was carried out for the PICS desert sites, Dome-C in 

Antarctica and a site in Greenland, the same drift was observed in all sites which strongly suggested it 

was a calibration drift rather than a site specific variation.  

In detail, the average drift in a specified time window, within that time window any observations that 

are more than two standard deviations from the mean were excluded and the mean recalculated, 

several iterations were performed until a stable result was achieved, usually within five iterations. The 

time window to use for averaging was determined by visual inspection of the results which removed 

most of the high frequency noise but without aliasing the low frequency drift. For the analysis the time 

window was 120 days, this could be reduced but at the cost of reducing the number of measurements 

in the average, as some sites had no cloud free observations in a given month. (Smith and Cox, 2013). 

The drift values were saved to a lookup table and made available to the community. As can be seen 

the standard PICS approach is very time consuming with many steps, models and corrections including 

removal of outliers before an effective assessment could be made. 

3.1.1 Our Approach 
The approach developed by EOSense and tested on AATSR is based around using an alternative 

reference to the pseudo-invariant site, replacing it with a pseudo-invariant Earth. This approach, 

particularly suited to global data sets is based on the idea of using the whole earth as the reference 

data set. The obvious underlying assumption being the need for stability of the spectral albedo for the 

spectral bands we wish to monitor over extended time periods. There are several factors that can 

affect the “invariance” of the earth as a reference.  

 There will be seasonal variations in the global albedo, so we cannot directly compare one 

month’s data directly with the following month. Secondly, from year to year, depending on 

seasonal variability, we will have variations in any particular time period due to extent of snow 

cover, unseasonably warm or cold weather and cloud distribution. However on an annual 

basis we expect consistent average values. 

 There is a variation in solar irradiance and earth-sun distance. The sun-earth distance varies 

by 3.3% during its orbit around the sun, producing a well-defined variation in solar irradiance 

at the earth’s orbit which can be corrected for if we know the day an observation was made. 

Additionally the actual output from the sun, solar irradiance ignoring changes in earth sun 

distance, has been the focus of many papers and discussions. The magnitudes of these effects 

are very small, with estimated trends between -0.008% per decade to +0.037% per decade 

(Willson, 2014). 

 The atmospheric conditions are certainly not constant from day to day over the same target 

on the globe. The angle of illumination and view may change to each target type and hence 

induce Bidirectional Reflectance effects. However, these can be considered high frequency 

“noise” effects when using a global data set over several years, as we will cover all atmospheric 

conditions and all illumination conditions. 
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However, we can estimate the uncertainties induced by these variations and in many cases it is 

possible to remove or reduce some of these effects by using multiple bands and multiple sensors. If 

this is the case the use of the earth as a reference may provide a simple method for assessing the long 

term radiometric stability of optical sensors. 

3.1.2 Principles 
In terms of methodology, we use two simple examples, a system with an on-board calibration device 

(such as a diffuser) and a system which has no on-board calibration device (this will be discussed in 

the sensor drift section later in this document). 

In the case of the first example with an on-board diffuser we are effectively comparing two reference 

targets, the diffuser and the Earth. If the diffuser is unchanging and the Earth is unchanging on average 

over a year, then a simple ratio of the diffuser average and the Earth average value, after bias 

subtraction, will give a constant. As long as there is no drift in either reference, the ratio value will 

remain unchanged. Multiplicative changes in the detectors, electronics and optics, or changes in the 

digital gain will have the same impact on both the data from the on-board calibration device and the 

imaging data collected of the earth, hence will have a constant ratio value. If however, there is a 

change in either the diffuser or the Earth (or both) we will see a change in the ratio value proportional 

to the drift. 

3.1.3 Step by Step 
The processing steps will be as follows, 

1. The Level 0 data needs to be extracted using a purpose written program. The average value 
for each column for both the forward and oblique views of SLSTR and nadir view for all five 
cameras for OLCI will be extracted for each orbit for each band and the bias value (blackbody 
for SLSTR and shutter for OLCI) subtracted from each value. 

 
2. The corresponding VISCAL values during captures over the South Pole need also to be 

averaged and lower blackbody value subtracted from each average during the VISCAL 
collection for SLSTR, while the current calibration bias values need to be subtracted from the 
OLCI data. 

 
3. Initially we propose, for the data values for each band (plus forward and nadir views of SLSTR), 

all the column values are averaged together to give a single orbit value, then all the orbit 
values for one month are averaged to give a monthly value.  

 
4. For the SLSTR VISCAL values all the orbit values for one month are averaged to give a monthly 

value. For OLCI the regular diffuser average results are used in a monthly average. 
 

5. In essence it is simply averaging the RAW counts from the data over a whole year and the 
RAW counts from the on-board calibrator over a year. If we now ratio the two sets of counts, 
if nothing has changed in the calibrator, we will see a constant ratio, if something changes in 
the detectors or main optical chain then it will affect the calibrator and Image data. If 
something changes in the calibrator alone, then there will be a divergence between the 
calibrator averages and the image data averages. 

 
A first trial of the algorithm was performed on AATSR data in a previous study, using the first year of 

data and VISCAL (2003) as a starting point, we determined the percentage drift by simply calculating 
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the ratio of the values against the first value in our set. We validated the results of the analysis, against 

the established measurement carried out in a different manner using Level 1 data. In this case, we 

referenced our results to those obtained by the Rutherford Appleton Laboratory (RAL). 

The results are shown in figure 14. The dotted lines are the results from RAL based on the PICS analysis 

and Dome-C and Greenland data analysis, while solid lines are from the Earth Reference Method are 

based on divergences of the ratio between the average annual measurements of the spectral albedo 

for each band with the average annual VISCAL response for each band, both after bias subtraction. 

The two sets of data using very different approaches in their processing show remarkably consistent 

results. This tends to validate that the approach developed and used by RAL gave a very reasonable 

model of the drift of the AATSR on-board calibrator. However, there are differences, notably in the 

1.6 m band although of the order of only 1%. 

 

 
 

Figure 14: Final results comparing the calibration drift table (dotted) against the earth reference 
method (solid) 

 
The advantage of the Earth Reference method is the simplicity of the approach, there is no data pre-
selection, no conversions, no site selection, and no correction for BRDF or site conditions (cloud, snow, 
and atmosphere). It is a simple averaging of the RAW data counts after bias subtraction and provides 
a viable validation method for the established methods. 
 
The overall uncertainties we expect not exceed 1% based on the instrumental design which is a similar 
order of magnitude as that from established methods using vicarious calibration over the Pseudo-
Invariant Calibration Sites (Smith and Cox, 2013). 
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3.1.4 Issues 
One of the two major issues related to the methodology is the problem of extracting monthly values 

against the varying signal background. Annual averages should be consistent, but we need to 

understand how the relationship varies from month to month to make adequate predictions on a 

monthly basis and perhaps even week to week. 

The second problem is that we are assuming linear behaviour over the whole dynamic range of the 

instrument. Any non-linearity with signal level is not accounted for, as there is no pre-processing. 

However, we need to consider that for an annual measurement, assuming the signal levels are 

changing slowly, the overall mean values will be about the same and any effects due to non-linearity 

will be limited. It may be worth considering the current non-linearity correction applied and assess by 

simulation what that might mean to the calculated signal levels. 

3.2 Sensor Drift Monitored Relative to the Earth Without an On-board Calibrator 
In this case we are purely monitoring the sensor drift with time. If we use an example of AATSR (figure 

15) we can see that over a relatively short period of time the signal level recorded dropped 

dramatically, with a gain change of 25% of the signal level being applied to recover the loss in response. 

 

Figure 15: Large change in signal level during the first year of life of the sensor 

The standard way of monitoring the loss of response when there is no on-board calibrator is to use a 

vicarious method, a cross-calibration approach over PICS using a well-calibrated reference sensor. 

Using a methodology similar to that used by RAL in assessing the calibrator drift in the previous 

section. 
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3.2.1 Our Approach 
EOSense uses an extension of the method described in the previous section for monitoring the on-

board calibrator, except in this case, we do not use a ratio of the earth reference data to the on-board 

calibration data, but instead use the earth reference data alone. Imagine we have a perfectly 

calibrated sensor that is unchanging with time and the earth reference on average is also not changing 

with time. In theory we will have a repeating signal, capturing the normal seasonal variations, every 

year the same magnitude, an example is shown in figure x for MERIS data red band. 

 

Figure 16: The repeated pattern of raw data counts during the annual cycle 

As can be seen in figure 16, the pattern is repeated each year (different coloured lines are different 

years), the most variability we see is in December, possibly related to snow cover variations. But on 

average it is remarkably consistent. Careful analysis shows that the MERIS curve did gently drift 

downwards over several years then stabilise. 

So in theory just by using the bias subtracted counts we can get a good indication of drift of the sensor.  

3.2.2 Principles 
For the second example where no calibration device is present, we can still measure the degradation 

of the system and corresponding loss of signal, by looking at the average earth signal and how it 

changes over the lifetime of the sensor, assuming of course that the earth’s albedo is not changing. 

However to measure this change we need a full annual curve which does not show degradation as a 

reference to begin with. 

In principle, given that the sensor is constantly changing, this is not feasible. However, we can in the 

case of OLCI get a very good approximation if we use the primary and secondary diffusers to correct 

the first year’s data and apply those changes to the bias subtracted data to generate the curve. Once 



Project - 018 Statistical Degradation Model – Algorithm 
Theoretical Basis Document 

Doc - EOSense-018-011 

31/05/2020 Customer – EUMETSAT Deliverable V2.0 

Copyright 2020 EUMETSAT (Contract EUM/CO/18/4600002181/Abu) 

 

29 
 

we have the initial curve we can then assess the changes in the calibration in the second year, which 

we can validate using the on-board calibration devices. We can then create a second year corrected 

data set which may have small month to month variations. By collecting multiple years, we can sum 

the corrected curves to remove small month to month variations and improving our reference curve. 

This will work very well for OLCI. However for SLSTR given the large diffuser drift observed for AATSR 

we need to consider an alternative. In this case we can use the OLCI data as a proxy source of 

information on the reference curve shape, choosing OLCI bands that align with the SLSTR reflectance 

channels and generating the reference curve from OLCI data to derive the form of the curve and then 

superimposing the SLSTR results and adjusting accordingly to derive the sensor drift. 

3.2.3 Step by Step 
The processing steps will be as follows, 

1. Generate a first year reference curve from the OLCI data for each spectral band. This will use 

the secondary diffuser on-board to provide a drift free reference for each spectral band. For 

SLSTR, OLCI bands will provide the reference shape in the first year, the reference magnitude 

determined from the SLSTR data itself. 

2. The Level 0 data needs to be extracted using a purpose written program. The average value 
for each column for both the forward and nadir views of SLSTR and nadir view for all five 
cameras for OLCI will be extracted for each orbit for each band and the bias value (blackbody 
for SLSTR and shutter for OLCI) subtracted from each value. 

 
3. Initially we propose, for the data values for each band (plus forward and nadir views of SLSTR), 

all the column values are averaged together to give a single orbit value, then all the orbit 
values for one month are averaged to give a monthly value.  

 
4. The drift for the first year can be estimated by referencing back to the uncorrected first year 

data, which should recover the same drift estimates as derived from the OLCI on-board 

diffusers. 

 
5. For years following, we use the initial reference curve to calculate the month my month 

corrections required and compare those results against the secondary diffuser data from OLCI 

to validate that the results are consistent and estimate the uncertainties of the comparison. 

The SLSTR data will be compared against its reference data curve, although validation may be 

more complex. 

 

6. After the cross-comparison the corrected second year data will then be merged with the 

reference curves, reducing the effects (eventually) of month to month seasonal variations. 

3.2.4 Issues 
There are potential issues related to using the OLCI data as a proxy for the generation of the SLSTR 

reference curve. Also as mentioned in the previous section we are ignoring non-linearity effects, which 

could potentially become significant if the sensor response changes greatly during the first year of life 

to a point that the effective response of our detectors/electronics is different due to non-linearity 

effects. Simulation based on knowledge of the non-linearity corrections currently employed may help 

resolve this potential issue. 
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