

Doc.No.	:	EPS.SYS.SPE.990013
Issue	:	v8E e-signed
Date	:	10 July 2017
WBS	:	

EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 http://www.eumetsat.int

© EUMETSAT The copyright of this document is the property of EUMETSAT.

Document Change Record

Note: Only the last version changes pertaining to the PPF version 6 and subsequent incremental updates are listed here. A complete summary of historical document changes is in Appendix A.

Issue/Revision	DCN No.	Changed Pages / Paragraphs	
V8		Reorganised the document structure and content in line with the IASI L2 PPF version 6	
V8A		Editing and changes to signature list. Added text to Section 5.5	
V8B		Updated signature table	
		Moved historical Document Change Records to the Appendix A	
		Updated section 5.4 in line with PPF v6.2 and in the introduction of the PWLR ³	
		Updated Figure 2 and $\S5.6.2$: surface emissivity is retrieved with PWLR ³ .	
		Updated 8.3 with different OEM configuration for land and sea	
V8C		Editorial refinements for publication	
V8D		Update for version 6.3	
		• SO2	
		Dust Index	
		• Data QC and selection of SST L2Pcore	
V8E		Completion of updates for version 6.3. Corrections to reference links.	

Table of Contents

1	Intro		1	
	1.1	Purpos	se and Scope of Document	8
	1.2	Relatio	ons to EPS Core Ground Segment	8
	1.3	Requir	rements Hierarchy and Precedence	8
	1.4		ure of the Document	
	1.5		entions	
	1.6	Refere	ence Frames Definition and Use	9
	1.7		yms used in this document	
	1.8		ence Documents	
	1.9		round Documents	
2			Description	
-	2.1	Snectr	al Characteristics of IASI	15
	2.1		ling Characteristics of IASI	
3			structure overview	
4			nput/output	
-	4.1		ated products	
	4.2		ihm Input	
	4.2	4.2.1	Primary Sensor Data	
		4.2.1		
			Auxiliary sensor data	
		4.2.3	Static Auxiliary Atlases	
_	D	4.2.4	Dynamic Auxiliary Data	
5			sequence specifications	
	5.1	•	Data Preparation	
		5.1.1	IASI L1C Principal Components Compression	
		5.1.2	Acceptance and collocation of AVHRR scenes analysis	
		5.1.3	Topography information within the IFOV	
		5.1.4	Land-sea mask within the IFOV	
		5.1.5	Acceptance of IASI L1C data	
		5.1.6	Acceptance and Collocation of AMSU L1B	
		5.1.7	Acceptance and Collocation of MHS L1B	
		5.1.8	Acceptance and Collocation of NWP forecasts	
	5.2	Status	flags setting	
		5.2.1	FLG_AVHRRBAD	43
		5.2.2	FLG_LANSEA	43
		5.2.3	FLG_NWPBAD	43
	5.3	Chara	cterisation of the illumination conditions	44
	5.4	All-sky	/ statistical geophysical state estimate	45
		5.4.1	Piece-wise linear retrieval principle	
		5.4.2	Retrieved parameters	45
		5.4.3	Regression predictors	
		5.4.4	Regression class identification	
		5.4.5	Retrieval	
		5.4.6	Retrieval quality indicators	
	5.5		s detection and retrieval	
	0.0	5.5.1	IASI Window channel test	
		5.5.2	AVHRR test	
		5.5.2	ANN Cloud detection	
		5.5.4	Effective cloud amount and cloud top height assignment	
		5.5.5	Cloudiness summary Cloud top phase characterisation	
		5.5.6		
		5.5.7	Dust detection	
	F O	5.5.8	Thin cirrus detection	
	5.6		e state	
		5.6.1	Sea-ice detection	
		5.6.2	Land surface emissivity	62

	5.7	Atmospheric composition 5.7.1 ANN retrieval of trace gases	
	5.8	Optimal estimation retrieval of geophysical thermodynamic parameters	
	0.0	5.8.1 AVHRR homogeneity test.	
		5.8.2 IASI/AMSU test	
		5.8.3 The cost function	
		5.8.4 The minimisation method and convergence criterion	.70
		5.8.5 The radiative transfer model	
		5.8.6 Retrieval error estimate and averaging kernels	
		5.8.7 Check for physical adiabiatic and saturation conditions	
	5.9	Optimal estimation retrieval of atmospheric composition parameters	
	0.0	5.9.1 FORLI-CO	
		5.9.2 Brescia-SO ₂	
	5.10	Generation of the IASI L2Pcore product	
	5.11	Quality control of the final products	
6		ric functions	
•	6.1	Instrument foot-print size and Earth coordinates	
	6.2	IPSF pixels weight and geolocation.	
	6.3	78	
	6.4	Vertical interpolations of atmospheric temperature and constituent profiles	70
	6.5	Vertical integration of atmospheric constituent concentrations	
	6.6	Conversion from pressure to height levels	
	6.7	Linear interpolation	
	6.8	Bilinear interpolation	
	6.9	Three-point barycentric interpolation	
	6.10	Euclidean norm	
	6.11	Dot product	.83
	0.40	6.11.1 Vector product	
		Geolocation conversion to Cartesian coordinates	
		Water-vapour density definitions and relationships	
		Check for Supersaturation of Water Vapour	
_	6.15	Check for Super-Adiabatic Layering	
7		essing and quality Flags	
	7.1	Quality Flag: FLG_AMSUBAD	
	7.2	Quality Flag: FLG_AVHRRBAD	
	7.3	Quality Flag: FLG_CLDFRM	
	7.4	Quality Flag: FLG_CLDNES	
	7.5	Quality Flag: FLG_CLDTST	
	7.6	Quality Flag: FLG_DAYNIT	. 90
	7.7	Quality Flag: FLG_DUSTCLD	
	7.8	Quality Flag: FLG_FGCHECK	
	7.9	Quality Flag: FLG_IASIBAD	
		Quality Flag: FLG_INITIA	
	7.11	Quality Flag: FLG_ITCONV	. 91
	7.12	Quality Flag: FLG_LANSEA	. 92
	7.13	Quality Flag: FLG_MHSBAD	. 92
	7.14	Quality Flag: FLG_NUMIT	. 92
	7.15	Quality Flag: FLG_NWPBAD	. 92
		Quality Flag: FLG_PHYSCHECK	
	7.17	Quality Flag: FLG_RETCHECK	
	7.18	Quality Flag: FLG_SATMAN	
		Quality Flag: FLG_SUNGLNT	
		Quality Flag: FLG_THICIR	
8		Configuration datasets	
-	8.1	IASI EV*	
	8.2	IASI SAD	
		8.2.1 COF SY	
		8.2.2 COF_SY_LAN	

	8.2.3	COF_SY_SEA	
	8.2.4	COF CLDDET	
	8.2.5	COF CNN*	
	8.2.6	COF SLIC	
	8.2.7	COF BC	
	8.2.8	COF STV	
	8.2.9	COF TRG*	
	8.2.10	COF EMS	
		COF MWCHAN	
	8.2.12	MWIR/IRON	
	8.2.13	EV MW4	100
	8.2.14	EV_0Z4	100
	8.2.15	EV [_] TW4	100
	8.2.16	EV_EM4	100
		COF EV4IR	
	8.2.18	COF DUST	101
8.3	IASI L	 2P	102
8.4		pf.conf	
8.5	ipcc pr	of M0[12].conf	104
Appendix A		ded Document Change Record	

Table of Figures

. 17
. 17
. 19
om . 20
om . 20
ary . 25
. 34
. 34
. 35
. 36
. 37
. 37
.69
.71
.77
103
104

Table of Tables

Table 1: Spectral characteristics of IASI	
Table 2: Scanning characteristics of IASI	16
Table 3: List of IASI L2 products to be generated.	18
Table 4: List of IASI L1 PCC products to be generated	18
Table 5: Spectral characteristics of AMSU-A	21
Table 6: Scanning characteristics of AMSU-A.	22
Table 7: Spectral characteristics of MHS.	22
Table 8: Scanning characteristics of MHS	
Table 9: Spectral characteristics of AVHRR/3.	24
Table 10: AVHRR input data within IASI L1C products.	24
Table 11: Structure and content of the PRP files	31
Table 12: Configurable parameters and dimensions of the data stored in the PRP files	32
Table 13: Valid intervals for AMSU radiances (W/(m ² . sr . m-1))	40
Table 14: Valid intervals for MHS radiances (W/(m ² . sr . m-1))	42
Table 15: PWLR ³ output vector	46
Table 16: Regression coefficients per paramater	
Table 17: Acceptance threshold values for PWLR ³ retrievals	
Table 18: Solar irradiances for the AVHRR channels 1, 2 and 3a	51
Table 19: FLG_CLDNES settings.	58
Table 20: Elements on the diagonal can be extracted from the static auxiliary dataset COF STV	68
Table 21: Settings for flag FLG_ITCONV .	72
Table 22: IASI L2Pcore SST field description	74
Table 23: IASI Level 2 processing and quality flags	88
Table 24: HDF5 objects contained in the eigenvector files	95

1 INTRODUCTION

1.1 Purpose and Scope of Document

The purpose of this specification is to present all requirements specific to the Metop IASI Level 2 product generation function (PF) which are not already covered in the CGSRD (Core Ground Segment Requirements Document) and the other applicable documents. This specification encompasses not only the required algorithm functions but also the identified supporting functions pertaining to the product generation function.

The document covers all the functions encompassed by the corresponding PF, the interrelations between these functions and the relation to the other functions of the EPS Core Ground Segment (CGS).

1.2 Relations to EPS Core Ground Segment

This document addresses all the requirements pertaining to the corresponding instrument PF of the EPSCGS. The product generation function encompasses all the functions (algorithmic, scientific and supporting functions) required for the generation of the products.

The instrument product generation function is a constituent of the CGS. Therefore, unless otherwise specified, all the requirements of the Core Ground Segment Requirements Document (CGSRD) in [CGSRD] shall apply to this product generation function. In particular, the PF shall comply with all the requirements of the generic PGE services.

1.3 Requirements Hierarchy and Precedence

In the case of conflict between these product generation function requirements and Core Ground Segment Requirements Document requirements, the latter shall take precedence.

Any conflicts shall be brought to the attention of EUMETSAT, in order to resolve such conflicts with the participation of EUMETSAT.

1.4 Structure of the Document

Chapter 1	this introduction		
Chapter 2	a description of the instrument		
Chapter 3	the overall processor structure		
Chapter 4	the specifications of the output products and input measurement and configuration data		
Chapter 5	the processing sequence specifications		
Chapter 6	the specifications of generic functions		
Chapter 7	listing and description of all the processing flags		
Chapter 8	description of the static auxiliary data		

1.5 Conventions

Where a deviation from or limitation to the use of the convention is required it will be explicitly defined within this document. In particular, in the case of a conflict between definitions in other documents and this document, the conventions in this document shall take precedence.

1.6 Reference Frames Definition and Use

The usage of reference frames shall comply with the definitions expressed in this document: *EPS Mission Conventions Document EUMETSAT* [EPSconv] DM Number [EUM/EPS/GGS/SPE/990002.]

The numbering of IFOVs within an EFOV shall comply with this document: *IASI L1C processing specifications: « Dossier de definition des algorithmes » [*IASIL1spe] EUMETSAT Document Number [IA-DF-0000-2006-CNE]

1.7 Acronyms used in this document

Acronym	Meaning	
AC SAF	Atmospheric Composition Monitoring SAF	
AMSU-A	Advanced Microwave Sounding Unit A (part of ATOVS)	
API	Application Programming Interface	
ANN	Artificial Neural Network	
ATBD	Algorithm Theoretical Basis Document	
ATOVS	Advanced TIROS Operational Vertical Sounder	
AVHRR	Advanced Very High Resolution Radiometer	
CGS	Core Ground Segment	
CGSRD	Core Ground Segment Requirements Document	
ECMWF	European Centre for Medium-Range Weather Forecasts	
EFOV	Elementary Field of View	
EOF	Empirical Orthogonal Function	
EPS	EUMETSAT Polar System	
FG	First Guess	

Acronym	Meaning
FOV	Field of View
FRTM	Fast Radiative Transfer Model
FTS	Fourier Transform Spectrometer
GIADR	Global Internal Auxiliary Data Record
G/S	Ground Segment
GHG	Green-house gases
GHRSST	Group for High Resolution SST
HIRS	High-resolution Infrared Radiation Sounder (part of ATOVS)
IASI	Infrared Atmospheric Sounder Interferometer
IFOV	Instantaneous Field of View
IIS	Integrated Imaging System (of IASI)
IPSF	Instrument Point Spread Function
ISRF	Instrument Spectral Response Function
L1C	Level 1C
LST	Land Surface Temperature
MHS	Microwave Humidity Sounder (part of ATOVS)
NRT	Near-real time
OSI SAF	Ocean and Sea-Ice SAF
PCC	Principal Component Compression
PCR	Principal Component Residuals
PF	Product generation Function
PGE	Product Generation Environment
PSF	Point Spread Function
SAD	Static Auxiliary Data
SAF	Satellite Applications Facility
SCC	Super Channel Cluster
SST	Sea surface temperature
TRG	Trace Gases

1.8 Reference Documents

No.	Document Title	EUMETSAT Reference
EURD	EPS End Users Requirements Document	EUM.EPS.MIS.REQ.93.001
AVHL1PGS	AVHRR Level 1 Product Generation Specification	EUM/EPS/SYS/SPE/990004
IASIL1spe	IASI L1C processing specifications: « Dossier de definition des algorithmes »	IA-DF-0000-2006-CNE
IASISpe]	IASI Instrument Specification	IA-SP-1000-201-CNE

No.	Document Title	EUMETSAT Reference
IASIPsfSpe	IASI PSF format description	IASI-TN-0000-3312-CNE 01/00, 03/06/2009
GPFS]	EPS Generic Product Format Specification	EPS/GGS/SPE/96167
AMSUL1PFS	AMSU-A Level 1 Product Format Specification	EPS/MIS/SPE/97228
MHSL1PFS	MHS Level 1 Product Format Specification Document	EPS/MIS/SPE/97229
IASIL2PFS	IASI Level 2 Product Format Specification	EPS/MIS/SPE/980760
EPSconv	EPS Mission Conventions Document	EUM/EPS/GGS/SPE/990002
CGSRD	Core Ground Segment Requirements Documents	EUM/EPS/GGS/REQ/95327
BUFRcodes	World Meteorological Organisation manual on Codes Volume 1, International Codes,	ISBN: 92-63-1506-X
IASIL1PFS	IASI Level 1 Product Format Specification	EPS/SYS/SPE/990003
PCCPFS	EPS IASI L1 PCC Product format specification	EUM/OPS-EPS/SPE/08/0195
Menzel83	W.P. Menzel, W.L. Smith, T.R. Stewart, Improved cloud motion wind vector and altitude assignment using VAS3	Journal of Climate and Applied Meteorology, 22, 377-384, 1983
Smith90	W.L. Smith, R. Frey, On cloud altitude determination from high resolution interferometer sounder (HIS) observations	Journal of Applied Metreorology, 29, 658-662, 1990
Grody	Microwave Surface and Precipitation Products System Algorithms	http://www.star.nesdis.noaa.gov/co rp/scsb/mspps/algorithms.html
Rodgers	C.Rodgers, Inverse methods for atmospheric sounding	Series on Atmposheric, Oceanic and Planetray Physics, Vol.2. World Scientific, 2004
FORLI	D. Hurtmans et al, FORLI radiative transfer and retrieval code for IASI	J. Quant. Spectrosc. Radiat. Transfer, 113, 1391-1408,
FORLIatbd	Fast Optimal Retrieval on Layers for IASI, Algorithm Theoretical Basis Document FORLI-CO, Complement to FORLI ATBD: Descriptions of the inputs to FORLI-CO	SAF/O3M/ULB/ForliATBDv01 SAF/O3M/ULB/FORLICO_CATB D
	v20100815	2
Stub99	C. Stubenrauch et al, Clouds as Seen by satellite Sounders (31) and Imagers (UISCCP). Part II: A New Approach for Cloud Parameter Determination in the 31 Algorithms	J. Climate, 1999, 12, pp 2214-2223.
Eyre89	J. Eyre and W. P. Menzel, 1989: <i>Retrieval of Cloud Parameters from Satellite Sounder Data: A simulation Study</i> .	J. Appl. Met. 28, 267-275
GTOPO	Global 30 Arc-Second Elevation (GTOPO30)	https://lta.cr.usgs.gov/GTOPO30
[LSM	Description of Land/sea and Coastline Data Bases for AAPP upgrade	EUM/EPS/SYS/TEN/00/018
UWIREMS	Global Infrared Land Surface Emissivity Database	cimss.ssec.wisc.edu/iremis/
AAPP	Pre-processing of ATMS and CrIS	NWPSAF-MO-UD-027
GRIBAPI	ECMWF GRIB API User Manual	https://software.ecmwf.int/wiki/dis play/GRIB/Releases
RTTOVguide	RTTOV v11 Users Guide	NWPSAF-MO-UD-028

No.	Document Title	EUMETSAT Reference
RTTOVval	RTTOV-11 Science and Validation Report	NWPSAF-MO-TV-032
SmithMet	R.J. List, 1958: Smithsonian Meteorological Table	6th Edition, Smithsonian, Institution Press, Washington D.C.,
GHRSSTspe	The Recommended GHRSST Data Specification Revision 2.0	www.ghrsst.org/modules/docum ents/documents/GDS2.0_Techn icalSpecifications_v2.0
BresciaATBD	IASI Brescia SO2: Algorithm Theoretical Basis Document	SAF/O3M/ULB/BresciaSO2_ATBD

1.9 Background Documents

These documents give background information and are meant as supplemental reading to aid the understanding of scientific or technical details. Algorithms adopted from some scientific papers have undergone evolution, so the information given in the following documents may be outdated. In such cases, the specifications given in this document take precedence.

No.	Document Title	Reference
BD 1	Hyperspectral earth observation from IASI: Five years of accomplishments.	Hilton et al. 2012, Bulletin of the American Meteorological Society, 93, 347–370, DOI: 10.1175/BAMS-D-11-00027.1.
BD 2	IASI on Metop-A: Operational Level 2 retrievals after five years in orbit	T. August et al, JQSRT, 113 (11), 1340-1371, doi:10.1016/j.jqsrt.2012.02.028, 2012.
BD 3	Global land surface emissivity retrieved from satellite ultraspectral IR measurements	D. Zhou et al, IEEE Trans. Geosci. Remote Sens., 49, 12771290, doi:10.1109/TGRS.2010.2051036, 2011
BD 4	Technical Note: An assessment of the accuracy of the RTTOV fast radiative transfer model using IASI data	Matricardi, Atmos. Chem. Phys., 9, 6899-6913, 2009
BD 5	Assessing the impact of radiometric noise on IASI performances	U. Amato, V. Cuomo and C. Serio Int. J. Remote Sensing, vol. 16, N°15, 2927-2938,
BD 6	The information content of clear sky IASI radiance and their potential for numerical weather prediction	P. Prunet, JN. Thepaut, V. Casse <i>QJRMS</i> , 124, pp 211-241, 1998
BD 7	The GEISA system in 1996 : toward an operational tool for the second generation vertical sounders radiance simulation	N. Jacquinet-Husson et al. <i>JSQRT</i> , 59, N°3-5, 511-527, 1998
BD 8	The effects of nonlinearity on analysis and retrieval errors	J.R. Eyre UKMO Forecasting Research Technical Report N°252
BD 9	Assimilation of carbon monoxide measured from satellite in a three-dimensional chemistry- transport model	C. Clerbaux, J. Hadji-Lazaro, D. Hauglustaine, G. Mégie, B. Khattatov and J.F. Lamarque J. <i>Geophys. Res.</i> , 106, D14,15, 385-394, 2001
BD 10	Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances	F. Rabier, N. Fourrié, D. Chafaï and P. Prunet Q.J. R. Meteorol. Soc., 128,1011-1027, 2002
BD 11	Balloon-borne calibrated spectroradiometer for atmospheric nadir sounding	Y. Té, P. Jeseck, C. Camy Peyret, S. Payan, G. Perron and G. Aubertin <i>Applied Optics</i> , Vol 41, N°30, 6431-6441, 2002
BD 12	Retrieval of CO from nadir remote-sensing measurements in the infrared by use of four different inversion algorithms	C. Clerbaux, J. Hadji-Lazaro, S. Payan, C. Camy- Peyret, J. Wang, D.P. Edwards and M. Lo <i>Applied</i> <i>Optics</i> , Vol. 41,N° 33, 7068-7078, 2002
BD 13	First satellite ozone distributions retrieved from nadir high-resolution infrared spectra	S. Turquety, J. Hadji-Lazaro and C. Clerbaux Geophys. Res. Lett., Vol.29,N°24,2198, 2002

No.	Document Title	Reference
BD 14	Simulation of uplooking and downlooking high-resolution radiance spectra with two different radiative transfer model	R. Rizzi, M. Matricardi and F. Miskolczi Applied Optics,41,6, 940-956, 2002
BD 15	The feasibility of monitoring CO2 from high resolution infrared sounders	A. Chédin, R. Saunders, A. Hollingworth, N. Scott, M. Matricardi, J. Etcheto, C. Clerbaux, R. Armante, C. Crevoisier <i>J. Geophysical. Research</i> , Vol. 108, N° D2, 4064-4083, 2003
BD 16	Spectroscopic measurements of halocarbons and hydrohalocarbons by satellite-borne remote sensors	P.F. Coheur, C. Clerbaux and R. Rolin J. Geophysical Research., Vol. 108,N° D4,4130, 2003
BD 17	Classification of IASI inhomogeneous scenes using co-located AVHRR data	Phillips, P., P. Schlüssel Proc. SPIE, 5979, 29-41, 2005
BD 18	Technical note: Analytical estimation of the optimal parameters for EOF retrievals of the IASI Level 2 Product Processing Facility and its application using AIRS and ECMWF data	Calbet, X., P. Schlüssel Atmos. Chem. Phys., 6, 831-846, 2006
BD 19	An introduction to the EUMETSAT Polar System	Klaes, K.D., M. Cohen, Y. Buhler, P. Schlüssel, R. Munro, JP. Luntama, A. Von Engeln, E. Ó. Clerigh, H. Bonekamp, J. Ackermann, J. Schmetz <i>Bulletin of the American Meteorological Society</i> , 88, 1085-1096, doi:10.1175/BAMS.88.7.1085,
BD 20	Sensitivity of analysis error covariance to the mis-specification of background error covariance	Eyre and Hilton, Q. J. R. Meteorol. Soc., 139, 524-533, doi: 10.1002/qj.1979, 2013
BD 21	Toward improved validation of satellite sea surface skin temperature measurements for climate research	Donlon, C.J., P.J. Minnett, C. Gentemann, T.J. Nightingale, I.J.Barton, B. Ward, and M.J. Murray <i>J. Climate</i> , 15, 353–369, 2002
BD 22	Diurnal signals in satellite sea surface temperature measurements	Gentemann, C.L., C.J. Donlon, A. Stuart-Menteth, and F.J. Wentz <i>Geophys. Res. Let.</i> , 30, 3, 1140
BD 23	Diurnal warm-layer events in the western Mediterranean and European shelf seas	Merchant C. J., M.J. Filipiak, P. Le Borgne, H. Roquet, <u>Autret Emmanuelle</u> , J-F. Piolle, S. Lavender <i>Geophys. Res. Let.</i> , 2008, 35
BD 24	Observations of the oceanic thermal skin in the Atlantic Ocean	Donlon, C.J. and I.S. Robinson, <i>Journ. Geophys.</i> Res., 102, C8, 1997
BD 25	Operational SST retrieval from METOP/AVHRR validation report	Le Borgne, P., G. Legendre, A. Marsouin, and S. Pere, <i>Ocean and Sea-Ice SAF CDOP report</i> , Version 2.0, July 2008
BD 26	FORLI radiative transfer and retrieval code for IAS	Hurmtans et al, JQSRT, 113, 1391-1408, doi:10.1016/j.jqsrt.2012.02.036, 2012
BD 27	Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder	Clerbaux et al, <i>Atmos. Chem. Phys.</i> , 9, 6041-6054, 2009.
BD 28	Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations	Boynard et al, <i>Atmos. Chem. Phys.</i> , 9, 6255-6271, 2009.
BD 29	Carbon monoxide distributions from the IASI/METOP mission: evaluation with other space-borne remote sensors	George et al, Atmos. Chem. Phys., 9, 8317-8330, 2009
BD 30	A unified approach to aerosol remote sensing and type specification in the infrared	Clarisse et al, <i>Atmos. Chem. Phys.</i> , 13, 2195-2221, doi:10.5194/acp-13-2195-2013, 2013
BD 31	The MACC reanalysis: an 8-year data set of atmospheric composition	Atmos. Chem. Phys., 13, 4073-4109, doi:10.5194/acp-13-4073-2013, 2013
BD 32	The 2007-2011 evolution of tropical methane in the mid- troposphere as seen from space by MetOp-A/IAS	Crevoisier et al, <i>Atmos. Chem. Phys.</i> , 13, 4279-4289, doi:10.5194/acp-13-4279-2013, 2013.

No.	Document Title	Reference
BD 33	The Concordiasi field experiment over Antarctica: first results from innovative atmospheric measurements	Rabier et al, Bull. Amer. Meteor. Soc., 94, ES17- ES20, doi <u>http://dx.doi.org/10.1175/ BAMS-D-</u> <u>12-00005.1, 2013</u>
BD 34	Equatorial total column of nitrous oxide as measured by IASI on MetOp-A: implications for transport processes	Ricaud et al, Atmos. Chem. Phys., 9, 3947-3956, 2009
BD 35	Retrieval of desert dust aerosol vertical profiles from IASI measurements in the TIR atmospheric window	Vandenbusche et al, Atmos. Meas. Tech., 6(10), 2577-2591, doi:10.5194/amt-6-2577-2013, 2013.
BD 36	Tracking and quantifying volcanic SO2 with IASI, the September 2007 eruption at Jebel at Tair	Clarisse et al., ACP 2008, doi:10.5194/acp-8- 7723-2008
BD 37	Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI)	Clarisse et al., Atmos. Meas. Tech., 5, 581-594, doi:10.5194/amt-5-581-2012, 2012.
BD 38	The 2011 Nabro eruption, a SO2 plume height analysis using IASI measurements	Clarisse et al., Atmos. Chem. Phys., 14, 3095- 3111, doi:10.5194/acp-14-3095-2014, 2014.
BD 39	Retrieval of near-surface sulfur dioxide (SO2) concentrations at a global scale using IASI satellite observations	Baudouin et al, AMT 2016, doi:10.5194/amt-9- 721-2016
BD 40	A unified approach to infrared aerosol remote sensing and type specification	Clarisse et al., 2013, doi:10.5194/acp-13-2195-2013, 2013

2 INSTRUMENT DESCRIPTION

The Infrared Atmospheric Sounding Interferometer (IASI) is a multi-purpose sounding Instrument onboard Metop, used for global measurement of temperature, water vapour, trace-gases such as ozone, nitrous oxide, carbon dioxide, and methane, as well as surface temperature, surface emissivity, and cloud characteristics. IASI has 8461 spectral channels, aligned in three bands between 3.62 μ m and 15.5 μ m, with a spectral resolution of 0.5 cm⁻¹, after apodisation. The spectral sampling interval is 0.25 cm⁻¹. The full specification of the IASI Instrument is given in IASIL1spe.

2.1 Spectral Characteristics of IASI

Table 1 summarises the spectral characteristics of IASI IASIL1spe. A satellite altitude of 819 km is assumed.

Band	Wavenumbers (cm ⁻¹)	Wavelength (µm)
1	645 - 1210	8.26 - 15.50
2	1210 - 2000	5.00 - 8.26
3	2000 - 2760	3.62 - 5.00

Table 1: Spectral characteristics of IASI.

The channel numbers k of the IASI Level 1c data are defined by the positions of the channel centres in the wave number domain:

 $v_k = 645.00 + (k - 1) \times 0.25 \ cm^{-1}, k = 1, \dots, 8461$ Equation 1

where:

 v_k is the centre wave number of channel k

2.2 Sampling Characteristics of IASI

IASI is an across-track scanning system with a scan range of $\pm 48^{\circ}20'$, symmetrically with respect to the Nadir direction. Each line covers 30 scan positions and 2 calibration views (one internal black body and one deep space view). The scan starts on the Sunward side. The elementary field of view (EFOV) is the useful field of view at each scan position. Each EFOV is covered by a 2 × 2 matrix of circular samples. Each sample has an Instantaneous Field of View (IFOV) with a diameter of 14.65 mrad, corresponding to 12 km nadir ground resolution at a satellite altitude of 819 km. The 2 × 2 matrix of IFOVs (IFOV quadruples) is centred on the current viewing direction. The instrument's point spread function (PSF), defined as the horizontal sensitivity within an IFOV is uniform within 80 % of the IFOV, the non-uniformity is less than 5 %. Included in the sounding instrument is an Integrated Imaging System (IIS). It consists of a broadband radiometer measuring between 10 µm and 12 µm with high spatial resolution to obtain detailed analysis of cloud properties inside the IASI sounder IFOVs. The IIS IFOV is defined by a squared area of 59.63 mrad × 59.63 mrad, covering 64 × 64 pixels. However, the information of the IIS is only used during Level 1 processing for coregistration with AVHRR and is not used for level 2 processing. Henceforth, the term IASI refers to the IASI sounder alone if not explicitly stated otherwise.

The instrument scans in a step and stare modus. Each interferogram is acquired within 151 milliseconds. The 30×120 Earth interferograms per scan line are taken in equally spaced time intervals every 8/37 seconds so that a synchronisation with AMSU is reached. The calibration of IASI is done by one space view, and a view to a hot calibration target.

In addition to the nominal scan sequence, the IASI Instrument can be operated in an "external calibration mode", in which a specific target—any of the Earth views, the blackbody, or one of two space views—is viewed instead of the 30 different Earth views during the nominal scan. Table 2 summarizes the scanning characteristics:

Characteristics	Value	Unit
Scan type	Step and stare	
Scan rate	8	second
Stare interval	151	ms
Step interval	8/37	
EFOV/scan	30	
Swath	± 48.333	degrees
Swath width	± 1100	km
IFOV	14.65	mrad
IFOV shape	circular	
IFOV size (nadir)	12	km
IFOV size (edge) – across track	39	km
IFOV size (edge) – along track	20	km
IFOV separation within EFOV - along-track at nadir	19	km

Table 2: Scanning characteristics of IASI

3 PROCESSOR STRUCTURE OVERVIEW

The retrieval sequence and generated products are summarised in the following figures. The blue trapezoids are output products for dissemination and archive (solid lines) and for internal processing and in-house monitoring on MPSTAR (PRP files, with dashed lines). Input files are represented by parallelograms: measurements are in blue, model data is in green and static configurable datasets are in orange.

Figure 1: High level overview of the IASI L1 PCC, L2P and L2 processing.

Figure 2: Overview of the geophysical parameters retrieval modules and sequence.

4 PROCESSOR INPUT/OUTPUT

4.1 Generated products

The tables that follow list the measurement and geophysical products to be generated from the IASI L2 PPF. The L2 products shall be output as specified in [IASIL2PFS] and the principal components products as per [PCCPFS].

Name	Content of L2 products	Purpose
Т	Temperature profile	NRT dissemination and archive
q	Specific humidity profile	NRT dissemination and archive
CLDNES	Cloud detection	NRT dissemination and archive
DUSTCLD	Dust detection	NRT dissemination and archive
CFR	Cloud fractional coverage	NRT dissemination and archive
TCWV	Water vapour total column	NRT dissemination and archive
CLDPHI	Cloud top phase	NRT dissemination and archive
CTP	Cloud top height /pressure	NRT dissemination and archive
SST	Sea surface temperature	NRT dissemination and archive
LST	Land and ice surface temperature	NRT dissemination and archive
LSE	Land and ice surface emissivity	NRT dissemination and archive
CO	Carbon monoxide profile	NRT dissemination and archive
COTC	Carbon monoxide total column	NRT dissemination and archive
CH ₄	Methane total column	NRT dissemination and archive
HNO ₃	Nitric acid profiles	NRT dissemination and archive (Under development)
N ₂ O	Nitrous oxide total column	NRT dissemination and archive
O ₃	Ozone profile	NRT dissemination and archive
O ₃ TC	Ozone total column	NRT dissemination and archive
SO_2	Sulphur dioxide total column	NRT dissemination and archive

Table 3: List of IASI L2 products to be generated.

Product	Content of L1 PCC products	Purpose
PCS	Principal component scores and reconstruction skills	NRT dissemination and archive
PCR	Radiance residuals after reconstruction from the PCS and quality control	Archive
IPO	Identification of outliers: spectra that are not correctly represented by the leading PCS	Archive and monitoring

Table 4: List of IASI L1 PCC products to be generated

4.2 Algorithm Input

This section specifies the dynamic inputs and static atlases used to process the IASI L2 products.

4.2.1 Primary Sensor Data

4.2.1.1 IASI L1C spectra

The instrument characteristics are explained in Section 2.

The primary input to the IASI L2 processing algorithms are the spectra and quality information contained in the IASI L1C products specified in IASIPsfSpe. In the IASI L1C processing, the effects of the instrument function are corrected for, such that the measurements from each of the four detectors may be processed with the same configuration for higher level products.

The spectra are contained in the field GS1cSpect. The Boolean flags DEGRADED FIGURE MDR and DEGRADED PROC MDR give general quality information with respect to degradation due to Instrument and/or processing. These variables are the generic quality indicators. Additional quality flags and Instrument noise indicators are generated during the Level 1 processing based on information gained during on-board and Level 1 processing, which shall be inspected for processing the IASI L2 products. The Boolean quality flag GQisFlagQual indicates the quality of each of the three IASI spectral bands for every IASI spectrum. See Table 1 for specifications. GQisFlagQual is established by evaluating the formerly derived quality flags and quality information from on-board and Level 1 processing, e.g. quality of the internal calibration black body temperature measurement.

4.2.1.2 Acquisition geometry and product numbering

The following three figures illustrate the acquisition geometry and numbering of the IASI EFOV in the successive 30 scan positions (SP) and the identification of the four pixels (IFOVs) in each scan position.

Figure 3: IASI scanning geometry, adapted from IASISpe]

Figure 4: Scan position (SP) numbering and viewing angle computation (a, in degrees), adapted from [IASIPsfSpe].

Figure 5: IASI pixels identification and PSF pixels ordering projected on ground, adapted from [IASIPsfSpe]

A line of data, or measurement data record (MDR) consists of 30 successive acquisitions of four simultaneous fields of view. The pixel numbering in a line goes from 1 to 120 as follows:

if ovNumber = 4 * *scanPosition* + *pixelNumber* Equation 2

The line or MDR number in a product is incremented along the satellite velocity.

4.2.2 Auxiliary sensor data

4.2.2.1 AMSU L1B measurements

The AMSU-A is a fifteen-channel microwave radiometer that is used for measuring global atmospheric temperature profiles and providing information on atmospheric water in all its forms. AMSU-A measures in 15 spectral bands, whereas temperature sounding mainly exploits one band, the oxygen band at 50 GHz. These spectral bands are summarised in Table 5 below:

Channel	Channel frequency (GHz)	Passes per band	Nominal bandwidth (MHz)	Calibration accuracy (K)
		AMSU	-A2	
1	23.8	1	270	< 2.0
2	31.4	1	180	< 2.0
		AMSU	-A1	
3	50.3	1	180	< 1.5
4	52.8	1	400	< 1.5
5	53.59 ± 0.115	2	170	< 1.5
6	54.40	1	400	< 1.5
7	54.94	1	400	< 1.5
8	55.50	1	330	< 1.5
9	$F_{LO} = 57.290344$	1	330	< 1.5
10	$F_{\rm LO}\pm 0.217$	2	78	< 1.5
11	$F_{\rm LO} \pm 0.3222 \pm 0.048$	4	36	< 1.5
12	$F_{LO} \pm 0.3222 \pm 0.022$	4	16	< 1.5
13	$F_{LO} \pm 0.3222 \pm 0.010$	4	8	< 1.5
14	$F_{\rm LO} \pm 0.3222 \pm 0.0045$	4	3	< 1.5
15	89.0	1	<6000	< 2.0

Table 5: Spectral characteristics of AMSU-A

Hardware for the two lowest frequencies is located in the AMSU-A2 module. Hardware for the remaining thirteen frequencies is in the AMSU-A1 module.

AMSU-A is an across-track scanning system with a scan range of $\pm 48.33^{\circ}$ with respect to the Nadir direction. The instantaneous field of view (IFOV) of each channel is approximately 57.6 milliradians (3.3°) leading to a IFOV size close to 47.63 km at nadir and a swath width of ± 1026.31 km (with sampling time of 200.0 ms) for a nominal altitude of 833 km. The sampling angular interval is closer to 58.18 milliradians (3.3333°). The distance between two consecutive scans is approximately equal to 52.69 km.

There are 30 Earth views, two views of the internal warm target, and two views of cold space per scan line for each channel. Each scan takes 8.0 seconds to complete and is synchronised with IASI scanning. Table 6 summarises the scanning characteristics of the AMSU-A.

Criteria	Value	Unit
Scan direction	west to east (northbound)	-
Scan type	step	-
Scan rate	8	second
Sampling interval (duration)	200	ms
Sampling interval	3.3333	degree
Pixels/scan	30	-
Swath	± 48.33	degree
Swath width	± 1026.31	km
IFOV	3.3	degree
IFOV type	circular	-
IFOV size (nadir)	47.63	km
IFOV size (edge): across-track	146.89	km
IFOV size (edge): along-track	78.79	km
Scan separation (adjacent scan lines)	52.69	km

Table 6: Scanning characteristics of AMSU-A.

4.2.2.2 Microwave Humidity Sounder (MHS) L1B measurements

The Microwave Humidity Sounder (MHS) is the follow-on Instrument to the Advanced Microwave Sounding Unit-B (AMSU-B) which flew as a part of ATOVS on the NOAA-KLM satellite series. It is procured by EUMETSAT for the Metop and NOAA satellites. MHS is a five-channel microwave radiometer, which complements the AMSU-A channels. In some MHS descriptions documents, MHS channels may be numbered as a continuation of the AMSU-A channels: 16, 17, 18, 19 and 20.

These frequencies carry information about humidity profiles and cloud liquid water content. Additionally, the Instrument's sensitivity to large water droplets in precipitating clouds can provide a qualitative estimate of precipitation rates. Table 7 summarises the spectral characteristics of the MHS.

Channel	Central frequency (GHz)	Bandwidth (MHz)	Calibration accuracy (K)
H1	89.0	± 1400	1.0
H2	157.0	± 1400	1.0
H3	183.311 ± 1.00	± 250	1.0
H4	183.311 ± 1.00	± 500	1.0
Н5	190.311	± 1100	1.0

Table 7: Spectral characteristics of MHS.

MHS is an across-track scanning system with a scan range of $\pm 49.44^{\circ}$ with respect to the Nadir direction. The IFOV of each channel is approximately 19.2 milliradians (1.1°) producing a circular IFOV size close to 15.88 km at nadir for a nominal altitude of 833 km. Each scan takes 2.667 seconds to complete. The scan of the MHS Instrument is synchronised with the AMSU-A scan. There are three scans of MHS for each scan of AMSU-A.

There are 90 Earth samples per scan and per channel for a swath width of ± 1077.68 km with a sampling time of 19.0 ms. Calibration is performed using a cold-space view and an on-board black body target. The sampling angular interval is close to 19.39 milliradians (1.1111°). The distance

between two consecutive scans is approximately equal to 17.56 km. Table 8 below summarises the scanning characteristics.

Criteria	Value	Unit
Scan direction	west to east (northbound)	-
Scan type	continuous	-
Scan rate	2.667	second
Sampling interval (duration)	18.52	ms
Sampling interval	1.1111	degree
Pixels per scan	90	-
Swath	± 49.44	degree
Swath width	± 1077.68	km
IFOV	1.1	degree
IFOV type	circular	-
IFOV size (nadir)	15.88	km
IFOV size (edge): across-track	52.83	km
IFOV size (edge): along-track	27.10	km
Scan separation (adjacent scan lines)	17.56	km

Table 8: Scanning characteristics of MHS

4.2.2.3 AVHRR radiance clusters and cloud analyses

The Advanced Very High Resolution Radiometer (AVHRR) is a multipurpose imaging Instrument used for global monitoring of cloud cover, sea surface temperature, ice, snow and vegetation cover characteristics. The Instrument model flying together with IASI on the Metop satellites is AVHRR/3.

The AVHRR/3 is a six-channel scanning radiometer providing three solar channels in the visible/near-infrared region and three thermal infrared channels. It has two one-micrometre wide channels between 10.3 and 12.5 micrometres. AVHRR/3 is an across-track scanning system with a scan range of \pm 55.37° with respect to the Nadir direction. The field of view (IFOV) of each channel is approximately 1.3 milliradians (0.0745°) leading to a square instantaneous field of view size of 1.08 km at nadir for a nominal altitude of 833 km. The scanning rate of 360 scans per minute is continuous with one scan every 1/6 second. There are 2048 Earth views per scan and per channel for a swath width of approximately \pm 1447 km, with a sampling time of 0.025 ms. The sampling angular interval is close to 0.944 milliradians (0.0541°). The distance between two consecutive scans is approximately equal to 1.1 km.

Although AVHRR/3 is a six-channel radiometer, only five channels are transmitted to the ground at any given time. Channels 3a and 3b cannot operate simultaneously. For Metop, channel 3a is operated during the daytime portion of the orbit and channel 3b during the night-time portion.

The spectral characteristics of AVHRR/3 are summarized in Table 9.

	Central	Half now an points	Channel noise specifications		
Channel	wavelength (µm)	Half power points (µm)	Surface/ Noise @ 0.5% reflectance	NEdT @ 300K	
1	0.630	0.580 - 0.680	9:1	_	
2	0.865	0.725 - 1.000	9:1	-	
3a	1.610	1.580 - 1.640	20:1	-	
3b	3.740	3.550 - 3.930	-	< 0.12 K, 0.0031 mW/(m ² sr cm ⁻¹)	
4	10.800	10.300 - 11.300	-	< 0.12 K, 0.20 mW/(m ² sr cm ⁻¹)	
5	12.000	11.500 - 12.500	-	< 0.12 K, 0.21 mW/(m ² sr cm ⁻¹)	

Table 9: Spectral characteristics of AVHRR/3.

The AVHRR measurements are already collocated to the IASI IFOVs as part of the IASI L1C processing. The AVHRR information required as input to the IASI L2 algorithms is extracted from the following fields of the IASI L1C products. See also IASIPsfSpe:

IASI L1C fields	Description
IDefCcsChannelId	Radiance Analysis: Identification of the AVHRR channel or pseudo-channels used for Radiance Analysis.
GCcsRadAnalNbClass	Radiance Analysis: Number of identified classes in the sounder FOV
GCcsRadAnalWgt	Radiance Analysis: sounder FOV Radiance Analysis (per cent covered by each class)
GCcsRadAnalY	Radiance Analysis: Y Angular position of the centre of gravity.
GCcsRadAnalZ	Radiance Analysis: Z Angular position of the centre of gravity.
GCcsRadAnalMean	Radiance Analysis: Mean AVHRR radiances (all channels) of the sounder FOV classes.
GCcsRadAnalStd	Radiance Analysis: Standard deviation AVHRR radiances (all channels) of the sounder FOV classes.
GEUMAvhrr1BCldFrac	Cloud fraction in IASI FOV from AVHRR 1B in IASI FOV.
GEUMAvhrr1BLandFrac	Land and Coast fraction in IASI FOV from AVHRR 1B.
GEUMAvhrr1BQual	Quality indicator. If the quality is good, it gives the coverage of snow/ice.

Table 10: AVHRR input data within IASI L1C products.

4.2.2.4 Acquisition geometry and collocation with IASI

The acquisition geometry and collocation of IASI with the microwave sounding Instruments and image on-board Metop is illustrated in Figure 6.

Figure 6: IASI footprint geometry with the AMSU, MHS and AVHRR instruments providing auxiliary measurements to the IASI L2 processing.

4.2.3 Static Auxiliary Atlases

The static auxiliary atlases described in this section are part of the data package which is installed directly on the IASI L2 PPF nodes.

4.2.3.1 Digital Elevation Model

The digital elevation model consists of a single file GlobalGtopo2. DEM which has been compiled from the tile files constituting the GTOPO30 global digital elevation model. This is fully detailed in GTOPO The file is composed by 58320000 16-bit binary signed little-endian integers. These integers correspond to altitudes on a regular latitude/longitude grid with 30 by 30 grid points per 1 degree by 1 degree box. The GTOPO30 has a resolution of 120 pixels per degree in longitude and 120 pixels in latitude. An average of four by four grid points has been used for the lower resolution GlobalGtopo2.DEM file. The altitudes are stored from north to south and from west to east, with longitude varying the fastest, such that the position p in the file of a point at longitude λ (from -180 to 180) and latitude ϕ (from -90 to 90) is given by this expression:

$$p = 10800 * [30 * (90 - \phi)] + [30 * (180 + \lambda)]$$
 Equation 3

where:

[] denotes rounding to nearest integer ([12.3] = 12 and [12.9] = 13).

4.2.3.2 Land/Sea mask

The land sea mask consists of a single file clo.10.00.prd which contains a land/sea mask and coastline mask. Both masks are stored as quad trees based on the principle of recursive decomposition of space with a latitude/longitude resolution of 0.01 degree. For a given geo-location, the value of both masks is looked up. This results in one of four possibilities:

- 0) Sea and not coast,
- 1) Land and not coast,
- 2) Coastline and sea,
- 3) Coastline and land.

For the computation of the land fraction within a IASI IFOV any coastline is considered as being land. Only the value 0 is considered as being sea. The detailed description of the data organisation and access is provided in [LSM].

4.2.3.3 Land surface emissivity atlas

The land surface emissivity atlas consists of 12 files, one for each month of the year structured as follows UWirbfemis _V2.1_0.1deg_2007??_mask_nc4.nc, These files come from the UW/CIMSS Global IR Land Surface Emissivity Database as part of RTTOV. They have been converted to netcdf-4 so they are readable with the hdf-5 software library. For a given month of the year, the corresponding file holds the emissivity at ten wave numbers at a latitude/longitude resolution of 0.1 degree. To save space, the file only includes 2250931 grid points with emissivity values, in the NCDF fields /emis1../emis10. A separate table /emis_flag is used to look up any geo-location. The result of this look-up is a flag indicating whether an emissivity is available for that grid point. From this flag, the index number in the emissivity dataset can be derived. Usually, emissivities are not available because the location is over sea. The ten emissivity values are transformed to an emissivity spectrum at IASI channel wave number resolution as follows:

1) Transform the 10 emissivities, E_i , to 6 PC scores *s*,

$$s_i = \sum_{j=1}^{10} D_{ij} \left(E_j - \bar{E}_j \right); i = 1..6$$
 Equation 4

2) Transform the 6 PC scores to emissivity spectra on N_k configurable wavenumbers v_k^{UW} .

$$e_k = \bar{e}_k + \sum_{i=1}^{6} P_{ki} s_i; k = 1..N_k$$
 Equation 5

3) Interpolate linearly (as defined in Section 6.5) the emissivity spectra e_k defined at the 417 wavenumber v_k^{UW} to the wavenumbers of the IASI channels defined in Equation 1.

The eigenvectors P are stored in the file UWiremis_labeigvects_nc4.nc in the table /PC_scores and the coefficients D, \overline{E} and \overline{e} are configurable.

4.2.4 Dynamic Auxiliary Data

4.2.4.1 NWP forecast

The NWP fields of temperature, humidity, ozone, surface temperature and surface pressure provided by ECMWF are input to the IASI L2 processing. They give initial description of the atmospheric and surface state which can be used for cloud detection and as alternative or complementary inputs to some of the retrieval functions of the IASI L2 processing chain.

The data come in the GRIB format and are read with the GRIB API maintained and released by ECMWF. See [*GRIBAPI*] for specifications on the GRIB API. The vertical profiles are stored on a N_{lev} level grid, where the pressures at each level depend on the actual pressure at the surface. The pressure p_k at level k is computed as follows:

$$p_{k} = \frac{A_{k-\frac{1}{2}} + A_{k+\frac{1}{2}}}{2} + P_{S} \cdot \frac{B_{k-\frac{1}{2}} + B_{k+\frac{1}{2}}}{2}; 1 \le k \le N_{lev}$$
 Equation 6

where:

N_{lev}	is the number of levels of the profiles
A _n	are coefficients defined at half-levels
B _n	are coefficients defined at half-levels
N_{lev}, A_n and B_n	are stored in the header of each GRIB file

5 PROCESSING SEQUENCE SPECIFICATIONS

5.1 Input Data Preparation

The purpose of the input data preparation is to gather IASI L1C measurements and relevant collocated data in a common IASI_PRP file, which serves as input for the further processing. The format of the IASI_PRP files is HDF5 and the IASI L1C spectra are represented as PC scores in order to limit their size and noise filter the radiances. The collocated data includes AVHRR cluster radiance mean and standard deviations (already included in the IASI L1C files), AMSU and MHS radiances, ECMWF forecast data as well as land fraction and surface elevation mean and standard deviation within each IASI field of view. The IASI principal component compression products IASI_PCS and IASI_PCR are also generated as part of the input data preparation.

The datasets which are copied or derived directly from the input IASI L1C file are found in the HDF5 group /L1C. The collocated data are organised in four additional HDF5 groups:

- /Maps,
- /Amsu,
- /Mhs
- /Nwp

according to the origin of the data. Table 11 below provides an initial overview of the contents of the IASI PRP files, further details are provided in subsections that follow the table.

ID	Data Type	DIM 1	DIM 2	DIM 3	DIM 4	Units	Description
/L1C/							
CloudFraction	uint8	LINE	PIX			%	Cloud fraction in IASI FOV from AVHRR 1B in IASI FOV (from GEUMAvhrr1BCldFrac)
EUMQflag	uint8	LINE	PIX				Quality indicator. If the quality is good, it gives the coverage of snow / ice (from GEUMAvhrr1BQual)
EarthSatDistance	uint32	LINE					Distance of satellite from Earth center
FLG_SATMAN	uint8	LINE					Satellite manoeuvre flag ($0 = normal$, $1 = manoeuvre$)
InstrumentMode	uint8	LINE					161=normal
LandFraction	uint8	LINE	PIX			%	Land and coast fraction in IASI FOV from AVHRR 1B (from GEUMAvhrr1BLandFrac)
Latitude	float	LINE	PIX			degrees_north	Latitude of IFOV
LineNumber	int32	LINE					Scanline number in file
Longitude	float	LINE	PIX			degrees_east	Longitude of centre of IFOV
QFlag	uint8	LINE	PIX				Quality flag. Bit1: Band 1 L1C, Bit2: Band 2 L1C, Bit3: Band 3 L1C, Bit4: Band 1 PCC, Bit5: Band 2 PCC, Bit6: Band 3 PCC
SatAzimuth	float	LINE	PIX			degrees	Satellite azimuth angle
SatZenith	float	LINE	PIX			degrees	Satellite zenith angle
SensingEndTime_day	uint16	LINE				days	UTC-based scanline stop time. Days since 1 January 2000
SensingEndTime_msec	uint32	LINE				msec	UTC-based scanline stop time. Milliseconds in day
SensingTime_day	uint16	LINE				days	UTC-based scanline start time. Days since 1 January 2000
SensingTime_msec	uint32	LINE				msec	UTC-based scanline start time. Milliseconds in day
SunAzimuth	float	LINE	PIX			degrees	Sun azimuth angle
SunZenith	float	LINE	PIX			degrees	Sun zenith angle

ID	Data Type	DIM 1	DIM 2	DIM 3	DIM 4	Units	Description
/L1C/Avhrr/							
RadAnalMean	float	LINE	PIX	CLUSTER	AVH_CH	$W/(m^2 \times sr)$ and $W/(m^2 \times m^{-1})$	Mean AVHRR radiance within the three main radiance analysis clusters
RadAnalStd	float	LINE	PIX	CLUSTER	AVH_CH	$W/(m^2 \times sr)$ and $W/(m^2 \times sr \cdot m^{-1})$	Standard deviation of AVHRR radiance within the three main radiance analysis clusters
RadAnalWgt	float	LINE	PIX	CLUSTER			Fraction of IASI FOV covered by main AVHRR radiance analysis clusters
T4_mean	float	LINE	PIX			$W/(m^2 \times sr \times m^{-1})$	Overall mean value of AVHRR channel 4
T4_std	float	LINE	PIX			$W/(m^2 \cdot sr \cdot m^{-1})$	Standard deviation of AVHRR channel 4
T5_mean	float	LINE	PIX			$W/(m^2 \times sr \times m^{-1})$	Overall mean value of AVHRR channel 5
T5_std	float	LINE	PIX			$W/(m^2 \times sr \times m^{-1})$	Standard deviation of AVHRR channel 5
/L1C/PCscores/							
Band1/P1	int32	LINE	PIX	B1P1			Band 1 PCScores coded with 4 bytes
Band1/P2	int16	LINE	PIX	B1P2			Band 1 PCScores coded with 2 bytes
Band1/P3	int8	LINE	PIX	B1P3			Band 1 PCScores coded with 1 byte
Band2/P1	int32	LINE	PIX	B2P1			Band 2 PCScores coded with 4 bytes
Band2/P2	int16	LINE	PIX	B2P2			Band 2 PCScores coded with 2 bytes
Band2/P3	int8	LINE	PIX	B2P3			Band 2 PCScores coded with 1 byte
Band3/P1	int32	LINE	PIX	B3P1			Band 3 PCScores coded with 4 bytes
Band3/P2	int16	LINE	PIX	B3P2			Band 3 PCScores coded with 2 bytes
Band3/P3	int8	LINE	PIX	B3P3			Band 3 PCScores coded with 1 byte
RadianceSum	float	LINE	PIX	BND		W/(m ^{2 ×} sr × m ⁻¹)	Sum of reconstructed radiances in each band
ResidualRms	float	LINE	PIX	BND			Noise normalized residual RMS in each band
/Maps/							
Height	float	LINE	PIX			meter	Average Height (from GTOPO30)
HeightStd	float	LINE	PIX			meter	Standard deviation of height
LandFraction	uint8	LINE	PIX			%	Map based land fraction (quad tree map)

ID	Data Type	DIM 1	DIM 2	DIM 3	DIM 4	Units	Description
/Amsu/							
Radiance	float	LINE	EFV	AMS_CH		$W/(m^2 \times sr \times m^{-1})$	AMSU Radiance
Latitude	float	LINE	EFV			degree	AMSU latitude
Longitude	float	LINE	EFV			degree	AMSU longitude
FLG_AMSUBAD	uint8	LINE	EFV				AMSU availability/quality flag
/Mhs/							
Radiance	float	LINE	PIX	MHS_CH		$W/(m^2 \times sr \times m^{-1})$	MHS radiance co-located to IASI IFOV
FLG_MHSBAD	uint8	LINE	PIX				MHS availability/quality flag
/Nwp/							
Latitude	int16	GRID				degrees_north	Latitude of NWP grid point (scaling factor = 0.5)
Longitude	int16	GRID				degrees_east	Longitude of NWP grid point (scaling factor $= 0.5$)
0	float	GRID	LEV			kg/kg	Ozone volume mixing ratio
Sp	float	GRID				hPa	Surface pressure
Т	float	GRID	LEV			К	Air temperature
Та	float	GRID				К	Air temperature (2m)
Ts	float	GRID				К	Surface temperature
U	float	GRID				m/s	Windspeed (zonal)
V	float	GRID				m/s	Windspeed (meridional)
W	float	GRID	LEV			kg/kg	Water vapour volume mixing ratio
Wa	float	GRID				Κ	Dew point temperature (2m)
Index	uint16	LINE	PIX	DLO	DLA		Index to match grid points to IFOVs
PV_a	double	LEV+1				Ра	ECMWF model level definitions, vector A of Equation 6.
PV_b	double	LEV+1					ECMWF model level definitions, vector B of Equation 6.

Table 11: Structure and content of the PRP files.

As can be seen in the table, most of the data are organised according to IASI scan line (LINE) and pixel number (PIX). The collocated ECMWF forecast data are a major exception, here the fields are kept at the original ECMWF grid points, but only grid points surrounding IASI IFOVs are retained. The data set /Nwp/index indentifies the four surrounding grid points of each IASI IFOV. See Section 5.1.5 for further details of the collocation. Furthermore, the AMSU measurements are kept at their original resolution with 30 fields of view per scan line. See Section 5.1.8 for further details of this collocation.

The dimensions used in the table above are summarised in Table 12. The values are configurable and given as indication of the implementation in version 6.0. For example, both the total number of PC scores in each band and the number of these that are stored with 4 bytes, 2 bytes, and 1 byte is configurable and could change in future versions.

ID	Value	Description			
LINE	variable	IASI scan lines			
PIX	120	IASI IFOV number within scan line			
CLUSTER	3	AVHRR cluster (3 main clusters)			
AVH_CH	6	AVHRR channel number			
B1P1	1	Band 1 PC score, stored with 4 bytes			
B1P2	41	Band 1 PC score, stored with 2 bytes			
B1P3	48	Band 1 PC score, stored with 1 bytes			
B2P1	2	Band 2 PC score, stored with 4 bytes			
B2P2	61	Band 2 PC score, stored with 2 bytes			
B2P3	57	Band 2 PC score, stored with 1 bytes			
B3P1	1	Band 3 PC score, stored with 4 bytes			
B3P2	44	Band 3 PC score, stored with 2 bytes			
B3P3	45	Band 3 PC score, stored with 1 bytes			
AMS_CH	15	AMSU channel number			
MHS_CH	5	MHS channel number			
GRID	variable	ECMWF grid point			
LEV	137	ECMWF model "full" level. The current ECMWF model uses 137 levels; but this can change.			
DLO	2	Longitude direction of 4 surrounding ECMWF grid points			
DLA	2	Latitude direction of 4 surrounding ECMWF grid points			

Table 12: Configurable parameters and dimensions of the data stored in the PRP files.

5.1.1 IASI L1C Principal Components Compression

Two output products are generated by the IASI L1C Principal Component Compression (PCC) function, namely the product types PCS (Principal Component Scores) and PCR (Principal Component Residuals) respectively. In both Instances, the INSTRUMENT_ID = IASI and PROCESSING_LEVEL = 1C.

- 1. *Product type PCS*: This product contains a copy of a subset of the MDR fields identified in the L1 PCS product format specification [PCCPFS]:
 - geolocation,
 - L1C quality flags,
 - satellite
 - sun angles

These are taken from the input IASI_xxx_1C product as well as the PC scores from which noise-reduced radiances can be reconstructed.

2. *Product type PCR*: This product contains the noise-normalised difference between the original radiances in the IASI_xxx_1C product and the noise-reduced radiances reconstructed from the IASI_PCS_1C product. The format is specified in this document [PCCPFS].

The principal component scores as well as the radiance sum and residual RMS in each IASI band are also written to the IASI_PRP file. The purpose of the IASI L1C PCC is to apply Principal Component Compression (PCC) to IASI L1C radiance spectra. PCC works by representing multidimensional data, like IASI spectra, in a lower dimensional space, which accounts for most of the variance seen in the data. This space is spanned by a truncated set of the eigenvectors of the data covariance matrix. By noise-normalising the spectra prior to the application of the compression technique, the ability to fit the data is enhanced by avoiding giving too much weight to variance caused by noise.

The PCC is applied individually to each of the three IASI spectral bands.

One eigenvector file for each of the spectral bands is needed for the application of the PCC. The file names of the eigenvector files used for the compression are included in the PCS (and PCR) products— the same files must be used to reconstruct noise-reduced radiances from the PC scores. The eigenvector files are static auxiliary data files are as follows:

- IASI_EV1
- IASI_EV2
- IASI EV3

The format of the eigenvector files is specified in Section 5.1 and the reconstruction steps are shown in Section 5.8.4. The sequence of operations for compression and encoding the PCS and PCR products is described in Section 5.1.1.1 to Section 5.1.1.6. Besides the eigenvectors, a number of parameters configure these algorithms; these are detailed in the XML configuration file described in Section 8.4.

5.1.1.1 Decoding of Level 1C spectra

Before compression, the L1C radiances shall be decoded using the information provided in the IASI GIADR-SCALEFACTORS record [IASIL1PFS].


```
Input sets:
P = [0 .. IDefScaleSondNbScale [
K = [1 .. 8461]
KP(K,P) = [IdefScaleSondNsFirst(P) - IdefNsfirst ..
IdefScaleSondNsLast(P) - IdefNsfirst] * P
Input data:
GSlcSpect(K) (mixed units) // from IASI L1C MDR
IdefSondScaleFactor(P) // from IASI GIADR-SCALEFACTORS
Output:
R(K) (unit: W/m<sup>2</sup>/sr/m<sup>-1</sup>)
Algorithm:
R(K) = sum(KP(K,P), GSlcSpect(K)*pow(10, -IdefSondScaleFactor(P)
```

Figure 7: Pseudo code I. (decoding of radiances).

5.1.1.2 Computation of PC Scores

NBSxP1 + NBSxP2 + NBSxP3 PC scores shall be computed for band x, corresponding to the NBSxP1 + NBSxP2 + NBSxP3 first eigenvectors in band x as shown in the pseudo code in Figure 8. NBSxP1, 2, 3 refer to the number of scores to be encoded in 4, 2 and 1 bytes, respectively. See also Table 12 and Section 5.1.1.3.

```
Input sets:
K = [FirstChannel .. FirstChannel+NbrChannels [
P = [1 .. NBSxP1 + NBSxP2 + NBSxP3]
Input data:
R(K) [unit: W/m<sup>2</sup>/sr/m<sup>-1</sup>] // decoded radiance as per section
5.2
Noise(K) [unit: W/m<sup>2</sup>/sr/m<sup>-1</sup>] // from eigenvector file
Eigenvectors(K,P) // from eigenvector file
Output:
PcScoresBx(P) // PC scores in band x
Algorithm:
PcScoresBx(P) = sum(K, (R(K)/Noise(K) - Mean(K))*Eigenvectors(K,P))
```

Figure 8: Pseudo code II (compression of radiances in band x).

5.1.1.3 PFS Encoding of PC Scores

Before the PC scores enter the product they must be quantised; they must be divided by the quantisation factor and rounded to the nearest integer.

Within each band, three different types are used for encoding the PC scores in the IASI_PCS_1C product:

- signed 4-byte Integer,
- signed 2-byte Integer
- signed byte

This is because the range of the PC scores decreases rapidly with PC rank and therefore a higher number of bytes are required to encode the leading PC scores than the subsequent PC scores.

If a quantised PC score falls outside the range of its type, the *undefined* value as specified in GPFS] shall be used for this particular score as well as for the corresponding ResidualRMS. Furthermore, this event will be flagged in the DEGRADED_PROC_MDR field. See the pseudo code in Figure 9.

Note: It is expected that the number of fields of each type will be configured such that this will not happen.

```
Input sets:
P1 = [1 \dots NBS \times P1]
P2 = [NBSxP1 + 1 .. NBSxP1 + NBSxP2]
P3 = [NBSxP1 + NBSxP2 + 1 .. NBSxP1 + NBSxP2 + NBSxP3]
P = [1 \dots NBSxP1 + NBSxP2 + NBSxP3]
Input data:
                                    // output from pseudo-code II
PcScoresBx(P)
SQ = ScoreQuantisationFactor(x) // from config file
Output:
PcScoresBxP1(P1)
                                     // for MDR-PCS
PcScoresBxP2(P2)
                                     // for MDR-PCS
PcScoresBxP3(P3)
                                     // for MDR-PCS
Algorithm:
PcScoresBxP1(P1) = round(PcScoresBx(P1)/SQ)
PcScoresBxP2(P2) = round(PcScoresBx(P2)/SQ)
PcScoresBxP3(P3) = round(PcScoresBx(P3)/SQ)
```

Figure 9: Pseudo code III (encoding of PC scores in band x).

5.1.1.4 Residual and Residual RMS

The residual is computed as the noise-normalised difference between the decoded L1C radiances and the reconstructed radiances based on the quantised PC scores as shown in the pseudo code in Figure 10. If the compression failed in a band—this is indicated by having a quantised PC score falling outside the range of its type—the residual in the band shall be set to zero and the ResidualRMS to *undefined* value specified in GPFS].

```
Input sets:
K = [FirstChannel .. FirstChannel+NbrChannels[
P1 = [1 .. NBSxP1]
P2 = [NBSxP1 + 1 .. NBSxP1 + NBSxP2]
P3 = [NBSxP1 + NBSxP2 + 1 .. NBSxP1 + NBSxP2 + NBSxP3]
P = [1 \dots NBSxP1 + NBSxP2 + NBSxP3]
Input data:
R(K) [unit: W/m^2/sr/m^{-1}]
                                   // decoded radiance as per section 5.2
Noise(K) [unit: W/m2/sr/m-1]
                                   // from eigenvector file
                                   // from eigenvector file
Mean(K)
                                   // from MDR-PCS
PcScoresBxP1(P1)
                                   // from MDR-PCS
PcScoresBxP2(P2)
                                   // from MDR-PCS
PcScoresBxP3(P3)
                                  // from eigenvector file
Eigenvectors(K,P)
SQ = ScoreQuantisationFactor(x) // from config file
Output:
Residual(K) // noise normalised residual before quantisation
ResidualRMS
               // ResidualRMS in band x
Algorithm:
Residual(K) = R(K)/Noise(K) -
               ( Mean(K)
                 + SQ*sum(P1, PcScoresBxP1(P1)*Eigenvectors(K,P1))
                 + SQ*sum(P2, PcScoresBxP2(P2)*Eigenvectors(K,P2))
                 + SQ*sum(P3, PcScoresBxP3(P3)*Eigenvectors(K,P2)) )
ResidualRMS = sqrt(sum(K, Residual(K)*Residual(K))/NbrChannels)
```

Figure 10: Pseudo code IV (Residual and ResidualRMS in band x)

5.1.1.5 Detection of outlier spectra

For detection of outliers, the residual RMS is adjusted by subtracting the sum of all individual radiances multiplied by a configurable scalar, outlierSlope. The result is compared to a pixel - (detector) dependent threshold as detailed in the pseudo-code in Figure 11.

Note: A spectrum is considered an outlier if isOutlier is true for at least one of the three IASI bands.


```
Input sets:
K = [FirstChannel .. FirstChannel+NbrChannels [
Detector = [1 \dots 4]
Input data:
R(K) [unit: W/m<sup>2</sup>/sr/m<sup>-1</sup>] // decoded radiance as per section
5.2
ResidualRMS
                                   // ResidualRMS in band x
OutlierThreshold(Detector)
                                    // Detector dependent threshold
value
                                    // from config file
                                    // Slope from config file
OutlierSlope
                                     // Pixel number
D
Output:
isOutlier
                                     // Boolean indicator of outlier
spectra
Algorithm:
isOutlier = (ResidualRMS - OutlierSlope*sum(K, R(K))) > OutlierThreshold(D)
```

Figure 11: Pseudo-code V (detection of outlier spectra, band x).

5.1.1.6 PFS Encoding of PC Residuals

Before the PC residuals enter the PCR product they must be quantised. Quantised means divided by the quantisation factor and rounded to the nearest integer.

If a quantised residual falls outside the range of its type (-127 to 127), it shall be set to the *undefined* value defined in document GPFS].

```
Input sets:
K = [1 .. 8461]
<u>Input data:</u>
Residual(K) // output from pseudo-code IV
RQ = ResidualQuantisationFactor(x) // from config file
<u>Output:</u>
PccResidual(K) // for MDR-PCR
<u>Algorithm:</u>
PccResidual(K) = round(Residual(K)/RQ)
```

Figure 12: Pseudo code VI (encoding of PC residuals).

5.1.2 Acceptance and collocation of AVHRR scenes analysis

As part of the IASI level 1 processing, the AVHRR pixels within each IASI field of view are identified and divided in up to seven distinct clusters IASIL1spe. For each of these clusters, the standard deviation and mean of the radiances of each AVHRR channel is provided in the IASI L1C files together with the fractional coverage and centre of gravity.

The flag **FLG_AVHRRBAD** indicates whether the AVHRR radiance analyses is available and reflects the quality and readiness of collocated AVHRR radiances for processing:

- It is set to 1 if the IASI L1C flag GEUMAvhrr1BQual bit 8 is on.
- It is set to 2 if no radiance clusters have been analysed.

Note: In IASI L1C product, *GCcsRadAnalNbClass* = 0) **FLG_AVHRRBAD** is otherwise set to 0, reflecting the availability of good AVHRR information which is the condition for further use in subsequent functions of the IASI L2 processor.

For the PRP files, the clusters are sorted in order of decreasing fractional coverage and only the first three clusters are kept.

For the two infrared AVHRR channels 4 and 5, the overall radiance mean and standard deviation within each IASI IFOV is computed from the individual cluster mean and standard deviations as well as their fractional coverage. For each of the channels, let W_i , M_i and S_i be the fractional coverage, mean and standard deviation radiance in cluster *i* (i = 1..7). The corresponding IASI IFOV mean radiance MI is computed as follows:

$$MI = \sum_{i=1..7} W_i M_i \qquad Equation 7$$

and the corresponding IASI IFOV radiance standard deviation SI is computed as follows:

$$SI = \sqrt{\sum_{i=1..7} W_i (S_i^2 + (M_i - MI)^2)}$$
 Equation 8

5.1.3 Topography information within the IFOV

In each IASI IFOV, the PSF-weighted mean \bar{z} and the standard deviation σ_z of the surface altitude within the footprint is computed after Equation 9 then Equation 10. The footprint is represented by a grid of variable dimensions N_Y and N_Z . A grid cell (i;j), $i = 1..N_Y$ and $j = 1..N_Z$, is associated to the value of the point spread function $\Psi_{i,j}$. The computation of the geolocation of each PSF grid cell is detailed in Section 6.2. The height of each of these grid cells, $z_{i,j}$, is looked up in the Gtopo30 database.

$$\bar{z} = \frac{\sum_{j=1}^{N_Z} \sum_{i=1}^{N_Y} \Psi_{i,j} \cdot z_{i,j}}{\sum_{j=1}^{N_Z} \sum_{i=1}^{N_Y} \Psi_{i,j}}$$
Equation 9

$$\sigma_{z} = \sqrt{\frac{\sum_{j=1}^{N_{z}} \sum_{i=1}^{N_{Y}} \Psi_{i,j} \cdot (z_{i,j} - \bar{z}_{p})^{2}}{\sum_{j=1}^{N_{z}} \sum_{i=1}^{N_{Y}} \Psi_{i,j}}}$$

Equation 10

$$\sigma_{z} = \sqrt{\frac{\sum_{j=1}^{N_{z}} \sum_{i=1}^{N_{z}} \sum_{i=1}^{N_{y}} \Psi_{i,j}}{\sum_{j=1}^{N_{z}} \sum_{i=1}^{N_{y}} \Psi_{i,j}}}$$

$$\sum_{j=1}^{N_Z} \sum_{i=1}^{N_Y} \Psi_{i,j} = \mathbf{1}$$

This can be computed once for all when processing a product file.

5.1.4 Land-sea mask within the IFOV

The PSF-weighted fractional land coverage within each IASI IFOV $\overline{\Lambda}$ is computed by looking up the land/sea mask $\lambda_{i,i}$ for each PSF grid cell (i;j) whose geolocation is detailed in Section 6.2. The land/sea mask database is organised as a quad tree and distinguishes between land, sea and coast See [LSM . In this context, we treat coast as land and weight their contribution to the fractional land coverage by the PSF value $\Psi_{i,i}$.

$$\bar{\Lambda} = \frac{\sum_{j=1}^{N_Z} \sum_{i=1}^{N_Y} \Psi_{i,j} \cdot \lambda_{i,j}}{\sum_{j=1}^{N_Z} \sum_{i=1}^{N_Y} \Psi_{i,j}}$$

$$\lambda_{i,j} = \begin{cases} 1 \text{ if land} \\ 1 \text{ if coast} \\ 0 \text{ is ocean} \end{cases}$$

$$Equation 11$$

The PSF should be normalised; therefore it is in denominator in Equation 11.

 $\sum_{j=1}^{N_Z} \sum_{i=1}^{N_Y} \Psi_{i,j} = \mathbf{1} \text{ is true.}$

This can be computed one time for all values when processing a product file.

5.1.5 Acceptance of IASI L1C data

The quality indicator *GQisFlagQual* in the IASI L1c products shall be inspected.

Procedure:

Condition	action
bad measurements are reported	the processing flag FLG_IASIBAD is set to 1 and no processing is performed.
 the IASI L1C flag <i>GQisFlagQual</i> indicates good measurements but: Latitude is outside [90°S; 90°N] or longitude is outside [180°W; 180°E] 	the flag FLG_IASIBAD is set to 2.
 The satellite zenith angle is outside [0°; 60°] The reconstruction score exceeds a configurable threshold. (See ResidualRMS in Section 5.1.1.4.) 	
If the satellite is undergoing a manoeuvre as indicated in IASI L1C flags	no processing can take place this is reflected in the L2 flag FLG_SATMAN

5.1.6 Acceptance and Collocation of AMSU L1B

The AMSU Instrument is synchronised with IASI and the collocation is based simply on the sensing time of the two measurements. An AMSU line is collocated with a IASI line if the absolute difference between the record start times of the two measurement scan lines is less than two seconds. One AMSU FOV is used for the four IASI IFOVs it covers, so IASI pixel, p, is paired with AMSU pixel, p div 4. This is illustrated in Figure 6.

The status and availability of collocated AMSU measurements to each IASI pixel are recorded in the flag **FLG_AMSUBAD**.

Procedure:

Condition.	Condition						
no corresp	oonding AMS	U measurem	ent is available	2	FLG_AMSU	BAD is set to	o 2.
if any of the radiances are outside of the valid interval defined for each channel in Table 13. Only channels with value one the static auxiliary dataset COF_MWCHAN are considered for this test.					FLG_AMSUI	BAD is set to	o 1.
collocated AMSU measurements are only used for further processing if available and of good quality			FLG_AMSUI	BAD is set to	o 0.		
Channel	1	2	3	4	5	6	

Minimum	0.0005	0.0008	0.0033	0.0044	0.0049	0.0052	0.0052
Maximum	0.0018	0.0032	0.0075	0.0077	0.0074	0.0070	0.0068
8	9	10	11	12	13	14	15
0.0051	0.0052	0.0052	0.0053	0.0054	0.0057	0.0060	0.0081
0.0069	0.0075	0.0076	0.0080	0.0083	0.0086	0.0089	0.0244

Table 13: Valid intervals for AMSU radiances $(W/(m^2 . sr . m-1))$.

5.1.7 Acceptance and Collocation of MHS L1B

The MHS measurements are collocated with IASI by bilinear interpolation to the geo-location of centre of the IASI field of view. See specification in Section 6.8 The bilinear interpolation is performed in the coordinate system defined by MHS line and pixel numbers and the location of the IASI field of view within this coordinate system must be computed first. For this, the same method as was used to co-locate ATMS to CrIS is used. This method is described in Section 4 of [AAPP].

Procedure:

Step	Action
1	Let P denote the point corresponding to the IASI IFOV centre for which we want to find the coordinates in the MHS grid.
2	Let O denote the point corresponding to the MHS FOV centre for which the scan time is closest to the IASI scan time and where the scan angle is closest to the IASI scan angle.
3	Let A and B be points corresponding to the MHS FOVs in the same scan position as O, but in the previous and next scan lines respectively. Let C and D be points corresponding to the MHS FOVs in the same scan line as O, but in the previous and next scan position respectively.
4	Convert all latitude/longitude values of relevant MHS and IASI geolocations to Cartesian X/Y/Z co- ordinates. See Section 6.12. Taking the point O as the origin, the coordinates of point P, in units of the MHS grid (x, y) is given by Equation 12 and Equation 13:

$$x = 2 \frac{(\overrightarrow{OP} \times \overrightarrow{CD}) \cdot (\overrightarrow{AB} \times \overrightarrow{CD})}{\|\overrightarrow{AB} \times \overrightarrow{CD}\|^2}$$

$$y = -2 \frac{(\overrightarrow{OP} \times \overrightarrow{AB}) \cdot (\overrightarrow{AB} \times \overrightarrow{CD})}{\|\overrightarrow{AB} \times \overrightarrow{CD}\|^2}$$

Equation 13

where:

\overrightarrow{OP}	is a vector in Cartesian coordinates
\overrightarrow{AB}	is a vector in Cartesian coordinates
\overrightarrow{CD}	is a vector in Cartesian coordinates
×	denotes vector product (See Section 6.11.1.)
dot ·	denotes scalar product (See Section 6.11.)
	denotes Euclidean norm (See Section 6.10.)

The status of collocated MHS data is recorded in the flag FLG_MHSBAD.

Procedure:

Condition	action
no collocated MHS data is available	FLG_MHSBAD is set to 2.
any of the four MHS pixels used for the interpolation has any radiance value outside of the valid interval for each channel as specified in Table 14, or if the measurements are of bad quality according to MHS L1B quality flags as formulated in Equation 14.	FLG_MHSBAD is set to 1.
MHS radiances are used for further processing when available and are of good quality in all four pixels surrounding the IASI IFOV	FLG_MHSBAD is set to 0.

EIC MHSRAD = 1 if	$MHS rad_i < t_{1,i}$, or	Equation 14
$FLG_MHSBAD = 1$ if	$\{ MHS \ rad_i > t_{2,i} \}$	

Channel	1	2	3	4	5
Minimum	0.0080	0.0218	0.0431	0.0364	0.0335
Maximum	0.0243	0.0762	0.0891	0.0928	0.1054

Table 14: Valid intervals for MHS radiances $(W/(m^2 . sr . m-1))$.

5.1.8 Acceptance and Collocation of NWP forecasts

The NWP fields provided in the HDF5 group NWP in the PRP files originates from the ECMWF forecasts received operationally in the EPS ground segment. All NWP information is retained at the original horizontal and vertical grids used in the input GRIB files, but has been time-interpolated linearly from the two closest forecast times, which are available at three-hour intervals. See also Section 6.5.

For each IASI FOV, the indices of the four NWP grid points that surround it geographically are stored in /Nwp/index. This allows for easy bilinear interpolation of the NWP fields. The geo-location of the NWP grid points included in the PRP files are given in /Nwp/Longitude and /Nwp/Latitude. Currently, the forecasts are provided at 137 model levels, of which 91 levels are provided in the GRIB files received in the EPS ground segment. In the profile fields of PRP files, space is reserved for all forecast model levels and the value for the levels which are not received is set to zero.

5.2 Status flags setting

After the pre-processing step is completed, a number of status and processing flags need to be set. They will be used in the subsequent processing functions or stored in the final L2 products as additional information to the users.

5.2.1 FLG_AVHRRBAD

The flag **FLG_AVHRRBAD** indicates whether the AVHRR radiance analyses is available and reflects the quality and readiness of collocated AVHRR radiances for processing:

- It is set to 1 if the IASI L1C flag *GEUMAvhrr1BQual bit* 8 is on.
- It is set to 2 if no radiance clusters have been analysed.

Note: In IASI L1C product, *GCcsRadAnalNbClass* = 0. **FLG_AVHRRBAD** is otherwise set to 0, reflecting the availability of good AVHRR information which is the condition for further use in subsequent functions of the IASI L2 processor.

5.2.2 FLG_LANSEA

The flag **FLG_LANSEA** summarises the surface type from the topography values found in Equation 9 and Equation 10 and the land fraction (taken from Equation 11) information as follows:

	FLG_LANSEA				
Value	Reasons for setting				
0	Land fraction $\overline{\Lambda} < \tau_W$				
1	Land fraction $\overline{\Lambda} > \tau_L$ Topography variability $\sigma_z < \tau_{DEM}$				
2	Land fraction $\overline{\Lambda} > \tau_L$ Topography variability $\sigma_z > \tau_{DEM}$				
3	Land fraction $\tau_W \leq \overline{\Lambda} \leq \tau_L$ Topography variability $\sigma_z < \tau_{DEM}$				
4	Land fraction $\tau_W \leq \overline{\Lambda} \leq \tau_L$ Topography variability $\sigma_z > \tau_{DEM}$				

where:

$ au_W$	is a configurable threshold
$ au_L$	is a configurable threshold
$ au_{DEM}$	is a configurable threshold

5.2.3 FLG_NWPBAD

Values for this flag are outlined below.

Condition	action
good collocated NWP data is available	FLG_NWPBAD is set to 0.

the collocated NWP data contain some values exceeding predefined and configurable bounds	FLG_NWPBAD is set to 1.
no NWP data is available for collocation with the IASI IFOV	FLG_NWPBAD is set to 2.

5.3 Characterisation of the illumination conditions

The configuration and quality of some retrieval algorithms described in the following sections varies with the solar illumination conditions, which must be flagged for processing within the IASI L2 PPF and for information to the users. The flag **FLG_DAYNIT** summarises if the scene is observed during daytime, twilight, or night-time based on the solar zenith angle \hat{z}_{sun} read from IASI L1C files as follows:

$$\mathbf{FLG_DAYNIT} = \begin{cases} 0 \text{ if } \hat{z}_{sun} < \tau_{day} \\ 1 \text{ if } \hat{z}_{sun} > \tau_{night} \\ 2 \text{ if } \tau_{day} \leq \hat{z}_{sun} \leq \tau_{night} \end{cases}$$
 Equation 15

where: τ_{day} and τ_{night} are configurable thresholds.

Under certain sensing configurations, the IASI observations are contaminated by the specular reflection of the solar radiations on high reflective surfaces like plain water. This affects channels in the band 3. Because this contribution is poorly represented in the forward model, channels containing Solar contributions should be avoided for retrievals and the presence of Sun Glint flagged in **FLG_SUNGLNT** for L2 processing and information to the users. A sun glint is detected if:

$$\mu_n \ge 0.9999$$
 Equation 16

Or if:

$$0.9 \le \mu_n < 0.9999 \text{ AND } \frac{1}{4\cos\theta\cos\theta_0 |\mu_n^2 - \mu_n^4|}$$
 Equation 17

with:

Equation 18
$$\frac{\cos\theta + \cos\theta_0}{\sqrt{2(1 + \cos\theta_r)}}$$

and:

$$\cos \theta_r = \sin \theta . \sin \theta_0 . \cos \varphi + \cos \theta . \cos \theta_0 \qquad Equation 19$$

where:

θ	is the satellite zenith angle (positive).
$ heta_0$	is the Solar zenith angle (positive).
$\varphi = \varphi_{sat} - \varphi_{sun} $	is the relative satellite-solar azimuth angle. Positive between 0 and 180°.

5.4 All-sky statistical geophysical state estimate

5.4.1 Piece-wise linear retrieval principle

Piece-wise Linear Regression (PWLR) is a fast, statistical all-sky retrieval scheme, which has been developed for version 6 of EUMETSAT's operational IASI L2 processor. The retrieval uses IASI as well as co-located AMSU and MHS radiances as inputs and serves two purposes in the IASI L2 processing:

- to provide a high quality all-sky temperature and water vapour profile product
- to provide a-priori information used in the clear sky optimal estimation retrievals.

The retrieval is based on linear regression, but to capture non-linear relationships between the inputs and the outputs better, the input space is divided into several intervals. For each of these intervals, a separate set of linear regression coefficients is computed from the corresponding subset of the training set. Overall, a piecewise linear function from the input space into the output space is obtained. The piecewise linear regression retrieval errors are substantially smaller than the corresponding retrieval errors from linear regression. When MHS or AMSU data (or both) are not available, a IASI-only version of the PWLR is used. The origin of the measurements used in this first guess retrieval shall be reflected in the processing flag **FLG_INITIA** by setting its bits according to the availability and use of the respective measurements.

A further improvement of the scheme called PWLR³, which exploits horizontal correlation by using measurements from all four IFOVs within each EFOV as predictors, has been developed for version 6.2 and is described in this section.

5.4.2 Retrieved parameters

The retrieved parameters consist of the following parameters:

- surface pressure
- surface air temperature
- surface air dew point temperature
- surface skin temperature and emissivity
- atmospheric profiles of temperature, humidity and ozone

For the regression step, we have chosen to keep the profiles at the 137 (surface pressure dependent) model levels found in the ECMWF analysis files forming the training base. The water-vapour mixing ratios at each profile level, w, have been converted to dew point temperature as we expect to find a better linear relationship with the predictors using this unit. See Section 6.13. Also, the ozone profile mixing ratios have been converted to "dew point temperature" using the same formula as for water-vapour. The retrieved surface pressure is used to assign pressures to the model levels such that the profiles can be interpolated to a fixed pressure grid after the regression retrieval on model levels. Each regression retrieves the atmospheric state and associated quality indicators (estimates of absolute errors) in four adjacent IFOVs, represented by 186 values as specified in Table 15:

Values	Specification
4	The surface pressure in each of the four IFOVs
4	The surface air temperature in each of the four IFOVs
4	The surface air dew point temperature in each of the four IFOVs
4	The surface skin temperature in each of the four IFOVs

Values	Specification
4	The cloud signal 'OmC' (observation minus clear forward model calculation brightness
	temperature) in each of the four IFOVs. [currently not output in the global products, used in the
	L2Pcore SST products]
100	Temperature and water vapour profiles on model levels for all four IFOVs represented as PC scores
20	Ozone profiles on model levels for all four IFOVs represented as PC scores
20	Emissivity at 10 wavelengths for all four IFOVs represented as PC scores
4	Surface pressure quality indicator in each of the four IFOVs
4	(Surface air) Temperature quality indicator in each of the four IFOVs
4	(Surface air) Humidity (dewpoint temperature) quality indicator in each of the four IFOVs
4	Surface skin temperature quality indicator in each of the four IFOVs
4	- currently not used -
1	Ozone quality indicator (one for all four IFOVs)
1	Emissivity quality indicator (one for all four IFOVs)

Table 15: PWLR³ output vector

5.4.3 Regression predictors

Surface height, microwave radiances and infrared radiances constitute the predictors. The surface heights are represented as four values, $e^{-z_i/7000}$, where z_i is the surface height in meters of each of the four IFOVs.

The microwave radiances are represented as 26 PC scores computed from the 15 AMSU radiance collocated with the current EFOV followed by the 5 collocated MHS radiances for each of the four IFOVs with the EFOV (in order IFOV₁, IFOV₂, IFOV₃, IFOV₄).

The microwave PC scores p_i^{mw} ; j = 1..26 are computed using the formula:

$$p_j^{mw} = \sum_{i=1}^{35} E_{ji} (X_i - xmean_i) / xstd_i \qquad Equation \ 20$$

where the coefficients *E*, *xmean* and *xstd* are provided in the dataset EV_MW4 [8.2.13] and *X* is the vector of the 35 input radiances are detailed above.

The infrared radiances are represented as 200 PC scores computed from the 1200 (= 4*(90+120+90)) PC scores representing the IASI measurements in each of the four IFOVs within the EFOV (see section 5.1.1). In this case no normalisation is used such that the formula to compute the overall PC scores gets particularly simple:

$$p_j^{ir} = \sum_{i=1}^{1200} E_{ji} X_i \qquad Equation 21$$

The eigenvectors E are provided in the dataset COF_EV4IR [8.2.17] and X is the vector of the input PC scores for the four IFVOs (in order IFOV₁, IFOV₂, IFOV₃, IFOV₄). For each IFOV the order of the PC scores is Band1, Band 2, Band3. In the case that one or more of the IASI IFOVs is flagged as bad, a special set of eigenvectors (essentially excluding the bad IFOVs) must be used. A total of 15 different sets of eigenvectors are provided in COF_EV4IR, the one which should be used depends on which IFOV numbers within the EFOV are flagged as bad. If we define I_i ; i = 1, ..., 4 to be 0 if IFOV number i is good and 1 if it is bad, the expression $I_1 + 2$. $I_2 + 4$. $I_3 + 8$. I_4 determines the index

of the set of eigenvectors to use. So if all IFOVs are good the first (index 0) set will be used. If all IFOVs are bad, no retrieval is possible and no set of eigenvectors is provided for index 15.

In total, this gives a vector of 230 (4 elevations + 26 PCs μ -wave + 200 PCs IASI) predictors to be used in the regression retrieval. In the case of infrared only retrieval the number of predictors is 204 (4 elevations + 200 PCs IASI). All coefficients for the joint microwave/infrared regression are provided in the dataset MWIR, whereas the infrared only coefficients are provided in the dataset IRON.

5.4.4 Regression class identification

The purpose of having different retrieval classes is to divide the training set into several parts in such a way that the type of atmosphere and surface within each class is relatively homogeneous and a linear function can provide a good approximation of the relationship between the inputs and the outputs. Of course the class definition must be based on the value of the inputs only and it can be done in many different ways. For the current scheme, a total of 480 (= 15 scan steps \times 2 day/night \times 16 kmean clusters) classes have been used, which are defined as follows. The first 15 classes are defined based on the scan angle. The two EFOVs closest to nadir (i.e. position 14 and 15) belong to the first class, the next two (position 13 and 16) belong to the second class, and so on until the fifteenth class populated by EFOVs numbers 0 and 29. Next each of these 15 classes is divided into a day and a night class (sun zenith angle is greater than 90 degree). Each of these 30 classes is then divided into 16 further subclasses defined by k-means clustering. The final retrieval is obtained as the average of four individual retrievals, which differ only by the parameters which have been used in the clustering. For each of the four retrievals, the four first clustering predictors are $h_i = e^{-z_i/7000}$, where z_i is the surface height in meters of each of the four IFOVs. This is followed by the first *nbrMW* microwave PC scores and the first *nbrIR* IASI PC scores, where the number of PC scores used in each of the four retrievals differs as follows: (nbwMW = 4; nbrIR = 4), (nbrMW = 2; nbrIR = 8), (nbrMW = 2; nbrIR = 8)8; nbrIR = 2) and (nbrMW = 16; nbrIR = 16). Each clustering predictor is normalised by division with the standard deviation and the retrieval class, *i*, is chosen which minimizes

$$\sum_{j=1}^{4+nbrMW+nbrIR} (\frac{x_j}{cs_j} - centers_{ij})^2 \qquad Equation 22$$

Where:

x _j	are the clustering predictors, $x = (h_1,, h_4, pcMW_1,, pcMW_{nbrMW}, pcIR_1,, pcIR_{nbrIR})$
CS _j	are the standard deviations associated with each input element <i>j</i>
centers _{ij}	define the centers of each of the 16 subclasses.

The coefficients cs and centers are provided in the static auxiliary datasets MWIR and IRON [8.2.12].

5.4.5 Retrieval

The coefficients for the joint microwave / infrared regression are provided in four times 30 subgroups of the MWIR group [8.2.12] of the IASI_SAD [8.2] file. Each subgroup is named according the day/night classification, the scan angle class and nbrMW/nbrIR (the number of microwave/infrared PC scores used in the classification) – for example D_00_M16_I16 or N_14_M02_I08. Each of these groups contain the coefficients *cs* and *centers* for determining the regression class as well as 16 instances (one for each subclass) of the actual regression coefficients *R*, *ym* and *xm*.

Once the retrieval class is determined, a vector Y consisting of N = 186 parameters (see section 5.4.2) is retrieved by usual linear regression:

М	Equation 23
$Y_j = ym_j + \sum_{i=1}^{N} R_{ji}(X_i - xm_i)$	

where:

xm _i	is extracted from one of the MWIR or IRON subgroups in IASI_SAD
ym _j	is extracted from one of the ${\tt MWIR}$ or ${\tt IRON}$ subgroups in ${\tt IASI_SAD}$
R _{ji}	is extracted from one of the MWIR or IRON subgroups in IASI_SAD

The temperature and water vapour profiles are retrieved together represented as 100 PC scores defining the profiles in all four IFOVs. These eight profiles (4 temperature and 4 water-vapour) must be reconstructed using the eigenvectors found in the dataset EV_TW4 [8.2.15]. The retrieved profiles are defined at ECMWF model levels plus a level at surface pressure and we use the retrieved surface pressure to compute the pressure at each of the 137 model levels. Following reconstruction, the profiles are interpolated to the standard 101 fixed level pressure grid as explained in 6.3.

The ozone profiles are retrieved as 20 PC scores defining the ozone profiles in all four IFOVs. The four ozone profiles are reconstructed using the eigenvectors found in the dataset EV_0Z4 [8.2.14] and are provided at 137 model levels plus a level at surface pressure. Following reconstruction, the profiles are interpolated to the standard 101 fixed level pressure grid as explained in 6.3.

The water-vapour and ozone profiles are converted from dew point temperature to mixing ratio as explained in 6.13.

The retrieved temperature and water-vapour profiles must undergo a physical check at this stage, before they are further used by other subsequent functions in the IASI L2 processing chain. The check for super-saturation and over adiabatic conditions is explained in Section 5.8.7.

The retrieved surface emissivity is represented as 20 PC scores. When reconstructed (using the dataset EV_EM4 [8.2.16]), the emissivity, \tilde{e} , at 10 selected wavelengths in each of the four IFOVs is obtained. In the product the emissivity is not provided at these 10 wavelengths, but at 12 other wavelengths. For this transformation, the high resolution mean emissivity spectrum, \bar{e} , and eigenvectors, E, found in the dataset COF_EMS [8.2.10], are used. First the PC scores, p, which fit the given emissivities best is found by least squares solution of $\tilde{e} - \bar{e}_S = E_S p$ (where subscript S indicates subselection corresponding to the ten wavelengths of \tilde{e}). Then the emissivities at the 12 final wavelengths are reconstructed from these PC scores.

5.4.6 Retrieval quality indicators

For each retrieved parameter, a simple but useful quality indicator is obtained by regression against the absolute value of the retrieval error. This regression retrieval of the absolute value of the primary retrieval errors uses the same predictors and the same retrieval classes as the primary retrieval. The regression coefficients for the quality indicators are embedded in the overall regression coefficients and have been included for the parameters listed in Table 16 below.

Note: the quality indicators for surface pressure and emissivity are not presently provided for in the product.

Parameter	Quality Indicator	Product Field
surface pressure	not provided for	
surface skin temperature	FG_QI_SURFACE_TEMPERATURE	[IASIL2PFS]
surface air temperature	FG_QI_ATMOSPHERIC_TEMPERATURE	[IASIL2PFS]
surface air dew point temperature	FG_QI_ATMOSPHERIC_WATER_VAPOUR	[IASIL2PFS]
ozone	FG_QI_ATMOSPHERIC_OZONE	[IASIL2PFS]
surface emissivity	not provided for	

Table 16: Regression coefficients per paramater

For the quality indicators of surface pressure, surface skin temperature, surface air temperature and surface air dew point temperature an individual value for each of the four IFOVs is obtained, whereas for ozone and emissivity the quality indicator predicts the absolute error of the first PC score, representing all four IFOVs in the current EFOV, such that only a single value is obtained. If one or more of the four quality indicators provided in the product exceeds a threshold value, the PWLR³ retrieval of all parameters is rejected. The acceptance threshold values are as follows:

FG_QI_SURFACE_TEMPERATURE	
FG_QI_ATMOSPHERIC_TEMPERATURE	2.95
FG_QI_ATMOSPHERIC_WATER_VAPOUR	3.95
FG_QI_ATMOSPHERIC_OZONE	

Table 17: Acceptance threshold values for PWLR³ retrievals

The quantities retrieved with the all-sky statistical retrieval must be verified against configurable bounds. If a parameter retrieved with the statistical method is out of the expected range, the corresponding bit of the flag FLG_FGCHECK shall be raised and the exceeding value reset to the nearest bound. The profiles are treated as whole in FLG_FGCHECK. If the value of at least one pressure level is out of valid bounds then the entire profile is be flagged. The validity bounds are configurable and may vary with the geolocation and time in the year.

5.5 Clouds detection and retrieval

The identification of clouds in the IASI field of view is performed with three concurrent cloud tests described as follows:

Test	Full description in
NWP	Section 5.5.1
AVHRR	Section 5.5.2
ANN	Section 5.5.3

If a cloud is detected by at least one of the tests, its characterisation in terms of fractional coverage in the field of view and cloud top height is attempted using the χ^2 and CO₂-slicing methods in Section 5.5.4. The combination of these detection and retrieval results is interpreted in the cloud classification summary as explained in Section 5.5.5.

The execution and outcome of the following tests shall be reflected in the processing flag **FLG_CLDTST** by raising the corresponding bits.

5.5.1 IASI Window channel test

This cloud-detection test compares the measured radiances in window channels against clear-sky simulated radiances. The simulated clear-sky radiances are calculated with the fast radiative transfer model—also referred to as forward model RTTOV. This is extensively documented in [RTTOVguide] and [RTTOVval]. The atmospheric state vector input to the forward modelling is taken from the collocated NWP information. If this is not available as per flag **FLG_NWPBAD**, it is taken from the statistical retrieval. Specifications are in Section 5.4.

$$R_{CALC,k} - (R_{OBS,k} + b_k) > \tau_k \qquad Equation 24$$

where:

$R_{CALC,k}$	is the clear-sky calculated radiance at channel k , using RTTOV.
$R_{OBS,k}$	is the observed radiance in channel k .
b_k	is a bias correction offset, specific to channel k .
$ au_k$	is the threshold for cloud detection at channel k .

 b_k , τ_k and the channels k are configurable parameters defined in the auxiliary dataset COF_CLDDET specified in Section 8.2.1.

5.5.2 AVHRR test

This test relies on the evaluation of the presence of clouds within the IASI field of view using collocated imager data only. The resulting fraction of a IASI field of view covered by cloud is provided in the L1C files, by the field *GEUMAvhrr1BCldFrac*. If the integrated cloud amount exceeds a configurable threshold—set to 2 % in the processor Version 6—then the scene is declared cloudy according to the AVHRR test.

5.5.3 ANN Cloud detection

This test uses both IASI and collocated AVHRR measurements in combination and implements artificial neural networks to classify the scenes. The algorithm is detailed in the sub-sections following this section. The full equation is given in Section 5.5.3.4. This test returns a cloudiness estimate ranging from 1 to 4, based on the definitions below:

ANN test output	means
1	Clear
2	Partially cloudy, small cover
3	Partially cloudy, high cover
4	Fully cloudy

The scene is declared cloudy according to this test if the output exceeds a configurable threshold and the corresponding bit is set to *On* in **FLG_CLDTST**.

5.5.3.1 Principle

The artificial neural networks (ANN) are of the type multi-layer perceptron (MLP). Different architecture are designed for each of the *surface type/period of the day* combination:

- Sea/Day,
- Sea/Night,
- Land/Day,
- Land/Night.

The selection of the IASI channels is configured in the COF_CNN* groups of the IASI_SAD configuration file. See Section 8.2.5.

As for AVHRR measurements, there are two ANN inputs for each channel:

- *max(mean+std.dev)*
- *min(mean-std.dev)* computed over all AVHRR radiance clusters.

For cloud detection by day, channels 1, 2, 3a, 4 and 5 are used, leading to 10 ANN inputs. For cloud detection by night, channels 3b, 4 and 5 only are available, leading to 6 ANN inputs.

Inputs for the AVHRR channels 1, 2 and 3a are expressed in reflectances which are linked to the channels radiances by this equation:

$$A_i = \frac{R_i \times \pi}{F_i \times \cos(z_{sol})} \qquad Equation \ 25$$

where:

A_i	is the reflectance in the channel <i>i</i> .
R_i	the radiance in the channel <i>i</i> .
F_i	the solar irradiance in the channel <i>i</i> ,
Zsol	is the solar zenith angle

The values of the solar irradiance for the three channels are given in Table 18.

AVHRR Channel	Solar irradiance F _i (W/m ²)	
1	139.873215	
2	232.919556	
3a	14.01647	

Table 18: Solar irradiances for the AVHRR channels 1, 2 and 3a

Inputs for the AVHRR channels 3b, 4 and 5 are expressed in brightness temperatures which are linked to the channels radiances by the inverted Planck function:

$$BT_{i} = \frac{c_{2} \times v_{i}}{ln(1 + c_{1} \times \frac{v_{i}^{3}}{R_{i}})} \qquad Equation 26$$

where:

BT _i	is the brightness temperature
R_i	is the radiance
Vi	is wavenumber of the channel <i>i</i>
$c_1 = 1.1910427 \times 10^{-16} \text{ Wm}^2/\text{s}$	is a Planck constant
$c_2 = 1.4387752 \times 10^{-2} \text{ m K}$	is a Planck constant

Input/output vectors for the different surface type/period of the day configuration:

Sea/Day ANN	18 IASI inputs + 10 AVHRR inputs	= 28 inputs
Sea/Night ANN	18 IASI inputs + 6 AVHRR inputs	= 24 inputs
Land/Day ANN	18 IASI inputs + 10 AVHRR inputs	= 28 inputs
Land/Night ANN	18 IASI inputs + 6 AVHRR inputs	= 24 inputs

5.5.3.2 ANNs inner structure

Four different structures are defined:

Sea/Day ANN	two hidden layers: 12, 5 neurons
Sea/Night ANN	three hidden layers: 8 , 4×2 neurons
Land/Day ANN	two hidden layers: 12,5 neurons
Land/Night ANN	three hidden layers: 8 , 4×2 neurons

5.5.3.3 Activation, input and output scaling functions

The activation function of the input layer is the unity function. The neuron activation function of the hidden and output layers is the sigmoid function:

$$f(x) = \frac{1}{1 + e^{-x}} \qquad Equation \ 27$$

Neurons input and output scaling functions are linear:

- Input scaling : $F_{in}(input) = InScale \times input + InBias$
- Output scaling : *F*_{out}(output) = *OutScale* × output + *OutBias*

The parameters *InScale*, *InBias*, *OutScale* and *OutBias* are configurable and defined in the COF_CNN* auxiliary datasets defined in Section 8.2.5. In version 6, some of them are fixed:

- Input layer:
 - \succ InScale = 1

 \succ InBias = 0

- Hidden layers:
 - \succ InScale = 1
 - \triangleright OutScale = 1
 - \triangleright OutBias = 0
- Output layer:
 - \succ InScale = 1
 - \triangleright OutScale = 3
 - \triangleright OutBias = 1

5.5.3.4 ANN cloud test equation

The IFOV is declared cloudy if the following is true:

$$C > t$$
 Equation 28

where:

•

$$C = S^{out} * f\left(\sum_{i=1}^{N_H} w_i^{out} \cdot o_i^H + b^{out}\right) + B^{out}$$
 Equation 29

with

$$\begin{cases} o_{i}^{h} = f\left(\sum_{j=1}^{N_{h-l}} w_{ij}^{h} \cdot o_{j}^{h-l} + b_{i}^{h}\right) ; h = 2 ... H\\ o_{i}^{l} = f\left(\sum_{j=1}^{N_{in}} w_{ij}^{l} \cdot E_{j} + b_{i}^{l}\right) ; h = 1 \end{cases}$$
 Equation 30

and

$$E_i = S_i^{in} * e_i + B^{in}$$
 Equation 3.

where:

t	configurable threshold				
С	retrieved cloudiness ; $\mathbf{C} \in [1,4]$				
$S^{in/out}$; $B^{in/out}$	scaling coefficients of the networks inputs/output				
f	activation function defined in Equation 27.				
Н	number of hidden layers				
N_h	number of neurons in the hidden layer h				
w_i^{out}	weight of the connection between the output neuron and the $i^{\rm th}$ neuron in the last hidden layer.				

b^{out}	bias of the output neuron
o_i^h	activation value of the \mathbf{i}^{th} neuron in the \mathbf{h}^{th} hidden layer
w _{ij}	weight of the connection between the i^{th} neuron in the hidden layer h and its j^{th} predecessor in the preceding layer (input or previous hidden layer).
b_i^h	bias of the i^{th} neuron in the h^{th} hidden layer
E_i	i th normalised entry in the input layer
e_i	i th entry in the input vector

5.5.4 Effective cloud amount and cloud top height assignment

If clouds have been detected by at least one of the window tests, either AVHRR and ANN, as captured in **FLG_CLDTST**, the calculation of the cloud-top pressure and fractional cloud cover from the IASI spectrum is done on single IASI IFOVs with the CO₂-slicing method as described by Menzel and Stewart [Menzel83] and Smith and Frey [Smith90] and detailed in Section 5.5.4.1. This method has limitations with low-contrast scenes, for example in the presence of low clouds of similar temperature as the surface or with small cloud amount. Therefore, it is complemented in such situations with the χ^2 method explained in Section 5.5.4.2. The method was developed by Stubenrauch [Stub99].

The final choice of the method for cloud top height assignment shall be reflected in the processing flag **FLG_CLDFRM** by raising the corresponding bit.

Both the CO₂-slicing and χ^2 methods require as input an atmospheric state vector corresponding to the scene observed in the IASI IFOV. These are the temperature, humidity and ozone profiles as well as the surface pressure, skin and air temperature and the surface air humidity. This information shall come from the collocated NWP data (see Section 5.1.8) or alternatively from the PWLR retrieval if no good NWP information flagged **FLG_NWPBAD** (**FLG_NWPBAD** > 0) is available. The origin of the atmospheric data (either NWP or PWLR) shall be reflected in the flag **FLG_CLDFRM** by raising the corresponding bit.

5.5.4.1 The CO2-slicing method

The CO₂-slicing method is applied on a selected subset of N_S single IASI channels. The selection of this subset of channels is configurable but does not necessarily consist of subsequent channels and is specific to the CO₂-slicing method. For each channel of this subset the following expression is calculated for a number of possible cloud-top levels $n = 1..N_C$:

$$x_{k,n} = \frac{(R_{k}^{clr} - R_{k}^{cld,meas})}{(R_{k_{R}}^{clr} - R_{k_{R}}^{cld,meas})} - \frac{(R_{k}^{clr} - R_{k,n}^{bkc})}{(R_{k_{R}}^{clr} - R_{k_{R},n}^{bkc})}$$
Equation 32

where:

$R_k^{cld,meas}$	= measured radiance in a cloudy or partly cloudy IFOV in channel k				
$R_{k,n}^{bkc}$	= calculated outgoing blackbody radiance at space from the emission of the atmosphere above the level n at wavenumber k				
R_k^{clr}	= calculated radiance in channel k for a completely clear IFOV				
k _R	= reference channel number				
k	= IASI channel index				
п	= pressure level number				

The initial channel selection and the pressure level are configured in COF_SLIC (8.2.6).

Equation 32 shall only be evaluated for channels where the first term on the right side falls within the range of values obtained from the second term on the right side, where the range is derived separately for each channel for all possible cloud-top levels. Channels which do not fulfil this condition must be excluded from the further evaluation. If no channel survives this test, the one with the greatest weight as calculated from Equation 32 below shall be retained.

Furthermore, Equation 32 shall only be evaluated if the radiances are greater than their respective measurement noise and if the absolute values of the denominators are greater than three times the respective measurement noise of the respective radiance. The number N_S must be adjusted accordingly. If the number ends up as $N_S = 0$ the method fails and the χ^2 method is invoked, which shall be flagged in **FLG_CLDFRM.** See Section 5.5.4.2.

There is only one reference channel, k_{R} , which is specified in the user-configurable auxiliary dataset COF_SLIC (8.2.6) per month and geographic location, and which is different from the channels of the aforementioned set of channels.

Equation 32 is evaluated for a selected range of pressure levels n ,where $N_{P1} \leq n \leq N_{P2}$ and N_{P2} is selected such that it becomes the second pressure level above the surface. If the ratio of calculated radiance differences $(R_k^{clr} - R_{k,n}^{bkc}) / (R_{kR}^{clr} - R_{kR,n}^{bkc})$ shows inconsistent behaviour above some level whose pressure is lower than 400 hPa, N_{P1} is lowered to the highest level just below the beginning of that inconsistent behaviour. To be precise, it is lowered to the pressure level where the first derivative of that ratio (with respect to the pressure) first changes from negative to zero when searching the pressure domain upwards. For each channel of the selected subset, a cloud top pressure $p_{C,k}$ —and thus the corresponding level number $n_{pc,k}$ —is calculated according to this equation:

$$p_{C, k} = p(\min(|x_{k, n}|)) \qquad Equation 33$$

The cloud-top pressure that is finally assigned is the weighted mean of the cloud top pressure derived in single channels of the selected subset:

$$p_{C} = \frac{\sum_{k=1}^{N_{S}} w_{k}^{2} p_{C,k}}{\sum_{k=1}^{N_{S}} w_{k}^{2}}$$
Equation 34

where:

$$w_{k} = \frac{\tau_{p_{C,k}} \times \frac{\partial B_{k}}{\partial T(p_{C,k})} \times \frac{\partial T(p_{C,k})}{\partial \ln p_{C,k}} \times [R_{k_{R}}^{clr} - R_{k_{R}}^{cld}(n_{p_{C,k}})] - \tau_{p_{C,k_{R}}} \times \frac{\partial B_{k_{R}}}{\partial T(p_{C,k})} \times \frac{\partial T(p_{C,k})}{\partial \ln p_{C,k}} \times [R_{k}^{clr} - R_{k}^{cld}(n_{p_{C,k}})]}{[R_{k_{R}}^{clr} - R_{k_{R}}^{cld}(n_{p_{C,k}})]^{2}}$$
Equation 35

is the weighting function in channel k. The weighting function of a channel k is set to 0 if the following is true:

$$|w_k| \leq \beta \times \max(|w_j|), k = 1, \dots, N_S$$
 Equation 36

where β is a user-configurable constant.

The k identifies here the number of the IASI channel within the selected subset of N_S channels, renumbered from 1 to N_S . Expressions in Equation 35 are calculated as follows:

$$\frac{\partial T(p_{C,k})}{\partial \ln p_{C,k}} = \frac{[T(n_{p_{C,k}} - 1) - T(n_{p_{C,k}} + 1)]}{\ln(p(n_{p_{C,k}} - 1)/p(n_{p_{C,k}} + 1))}$$

$$\frac{\partial B_k}{\partial T(p_{C,k})} = \frac{c_1 \cdot c_2 \cdot \nu_k^4 \cdot \exp(c_2 \nu_k / T(n_{p_{C,k}}))}{T(n_{p_{C,k}})^2 \cdot (\exp(c_2 \nu_k / T(n_{p_{C,k}})) - 1)^2}$$
Equation 37
Equation 37

where:

\mathbf{c}_1	= $1.1910427 \times 10^{-16} \text{ W.m}^2 \text{.sr}^{-1}$ is a constant
c ₂	= 1.4387752×10^{-2} m K is a constant

The cloud-to-space radiances and transmittances and respective temperatures and derivatives to be calculated for Equation 35 must be represented for cloud-top pressures on a fine vertical grid that is usually not represented in the FRTM used. Therefore, corresponding values must be linearly interpolated in the log(pressure) coordinate. A cloud-top pressure $p_{C,k}$ is excluded from the calculation of p_C if the derived cloud fraction, as calculated from Equation 39 below with $p_{C,k}$ in place of p_C is greater than 1.04. Furthermore, only those $p_{C,k}$ which belong to the histogram class with the greatest population in a histogram of all $p_{C,k}$ at a class width of 50 hPa are entered into the equation. In the event of two classes with the same greatest population, the one with the lower

pressure is chosen. If a preliminary evaluation of Equation 34 gives a result greater than 570 hPa and if there is a temperature inversion, then a new histogram is calculated with class width of 100 hPa and $p_{C,k}$ values falling into the class with the greatest population are retained. In the event of two classes with the same greatest population, the one with the higher pressure is chosen.

With the cloud-top pressure calculated by the CO₂-Slicing Method the cloud-top temperature is to be determined using a known temperature profile. The source of this temperature profile shall be the collocated NWP forecasts detailed in Section 5.1.8. If this is not available or of bad quality as specified in FLG_NWPBAD, the all-sky first-guess retrieval. See Section 5.4.

An interpolation as described in Section 6.3 has to be applied to interpolate the cloud-top temperature in the vertical temperature profile. The temperature profile must be examined with respect to inversions below 500 hPa. The pressure levels between the base of the inversion and the level 30 hPa above the one whose temperature is identical to the temperature at the base must not be used to evaluate Equation 33. Once the cloud top temperature is known, the effective cloud amount (total fractional cloud cover) is to be calculated in a window channel:

where:

R_{kw}	= measured radiance in window-channel k_w	
R_{kw}^{clr}	= clear-sky radiance in IASI window-channel k_w	
B_{kW}	= Planck function in channel k_w	

The clear-sky radiance is calculated using profiles and surface parameters either from collocated NWP or from the PWLR. This choice is made in the configuration file.

The threshold value, highest pressure level, and reference channel numbers are tabulated functions of latitude zone, month of the year, and surface type. These values are configured in the COF_SLIC group of IASI SAD. See Section 8.2.6

5.5.4.2 The χ^2 method

This method consists of modelling the differences between measured and simulated clear radiances with a mono-layer cloud for channels selected in CO₂ lines. It is based upon the minimisation of a weighted- χ^2 function as reported by Stubenrauch et al [Stub99] and inspired by the minimum residual method of Eyre and Menzel [Eyre89], previously tested with HIRS data. The rationale of the minimum residual method is to find both the cloud top pressure *pc* and the equivalent cloud amount $\eta = f.\epsilon$, where f stands for cloud fraction and ϵ stands spectral mean cloud emissivity within CO₂ channels. This minimizes the residual:

$$\sum_{i} \{ [I^{clr}(v_i) - I^{cld}(p_k, v_i)] \eta(p_k) - [I^{clr}(v_i) - I^{meas}(v_i)] \}^2 \qquad Equation \ 40$$

where:

$I^{clr}(v_i)$	= the outgoing synthetic cloud-free
$I^{meas}(v_i)$	= measured radiances
$I^{cld}(p_k, v_i)$	= the outgoing radiance from a single blackbody on pressure level p_k
ν_i	= is the wave number at channel ii

The χ^2 -method has the advantage of always providing retrievals while the CO₂-slicing method is not applicable for approximately 30% of the IFOVs. According to Eyre and Menzel [Eyre89] the minimum residual method had shown good potential for high and middle level clouds when applied to HIRS channels, but poor performance for lower-level clouds.

5.5.5 Cloudiness summary

The various tests may conclude to contradictory clear/cloudy classifications because of different sensitivities and of the uncertainties associated with their respective methodologies (e.g. uncertainties in the *a priori* surface emissivity and temperature in the NWP test, lack of contrast between snow and clouds for the detection with AVHRR images or in the ANN classification). The different test results are consolidated into an enumerated flag, **FLG_CLDNES** that summarises the status of and the level of confidence in the clear-sky/cloudiness assessment within the IASI IFOV. This flag controls the choice of the subsequent retrieval methods in the processing chain.

This flag **FLG_CLDNES** is set as follows:

Reason for flagging			
No clouds detected with the NWP, AVHRR and ANN cloud tests			
Potential small cloud contamination (at least one cloud test detected a cloud) but a cloud could not be characterised with confidence	1		
Cloud detected and characterised. The retrieved equivalent cloud amount is lower than 80%	2		
Cloud detected and characterised. The retrieved equivalent cloud amount is higher than 80%	3		

The setting of the flag **FLG_CLDNES_** is specified in the following table. It relies on various inputs, namely the detection performed by the three individual cloud tests and these cloud characteristics: cloud top pressure (CTP) and cloud fraction (CFR) as retrieved with the

CO₂-slicing and the χ^2 methods described in Section 5.5.4.

Inputs			Information				
ANN	Win	AVHRR	Cloud parameters	FLG_CLDNES	Assessment	Final Retrieval	
0	0	0	Cloud retrieval not invoked	1	Clear, high confidence	PWLR ³ + OEM	
One of the tests disagree with the others:		U	Not a valid retrieval or CFR<25% CTP>750hPa	2	Clear, lower confidence	PWLR ³ + OEM	
e.g. (1,0,0) or (0,1,0) or (0,1,1)			CFR > 25% and CTP < 750 hPa	3	Cloudy	PWLR ³	
1	1	1 1	CFR < 80%		-		
1	1 1	1	1	CFR > 80%	4	Very cloudy	PWLR ³

Table 19: FLG_CLDNES settings.

5.5.6 Cloud top phase characterisation

In cloudy conditions, the cloud phase, ϕ , shall be determined. The discrimination of ice from water clouds makes use of the difference:

 $T_b(8\mu m)-T_b(11\mu m)$

compared to this difference:

 $T_b(11\mu m) - T_b(12\mu m)$

If this equation is true:

 $\{T_b(8\mu m) - T_b(11\mu m)\} - \{T_b(11\mu m) - T_b(12\mu m)\} > t_1 \qquad Equation 41$

then the cloud phase is ice ($\phi = 2$), else if:

$$t_1 > \{T_b(8\mu m) - T_b(11\mu m)\} - \{T_b(11\mu m) - T_b(12\mu m)\} > t_2 \qquad Equation \ 42$$

then the cloud is of mixed phase ($\phi = 3$). Otherwise, the cloud is of liquid phase ($\phi = 1$), where t_1 and t_2 are threshold values for this test. The threshold values are tabulated functions of latitude zones and month of the year. In clear situations the cloud phase must not be determined ($\phi = 0$).

5.5.7 Dust detection

For the aerosol detection, the Dust indicator has to be evaluated.

Given the radiance r and the auxiliary information:

- Geographic coordinates (lat, long),
- Surface type (OCEAN/LAND)

Surface type	flg_landsea
OCEAN	0
LAND	[1 5]

• Time (AM/PM)

TimeSolar Zenith AngleAM[0 90[PM[90 180]

the dust indicator is given by the following equation:

$$R = \sum_{i=0}^{n_dust} G(i) \cdot (r(ch(i)) - \mu(i)) - bias \qquad Equation 43$$

where:

G	= the gain matrix	
т	= is the background spectrum	
bias	= a value to be subtracted, to obtain the correct Dust indicator	
$ch = (ch(1),,ch(n_dust))$	= the vector of the n_dust wavelength channels that capture the majority of the aerosol information.	

These parameters are configurable and defined in the COF_DUST auxiliary datasets defined in Section 8.2.18.

5.5.8 Thin cirrus detection

Currently, no thin cirrus cloud test is available, but one is expected in the near future. The flag must be set to two by default.

5.6 Surface state

5.6.1 Sea-ice detection

The land-sea atlas is only a static land-sea mask. Without further information, the scenes containing sea-ice would be inconsistently processed along with retrieval algorithms configured for plain open water.

To avoid this, the presence of sea ice is evaluated for all IFOVs fully covered by oceans at latitudes higher than 45°. This is achieved with collocated AMSU measurements taken from [Grody]. This algorithm is applied only if AMSU collocated data of good quality are available, as reflected in the quality flag **FLG_AMSUBAD**.

To compute the sea ice fraction, the emissivity at AMSU Channel 1 (23.8 GHz) ems_1 is first retrieved from a linear combination of the brightness temperatures in the AMSU channels 1, 2 and 3; written as TB_1 , TB_2 and TB_3 in the following equation:

$$\varepsilon_1 = a + bTB_1 + cTB_2 + dTB_2$$
 Equation 44

where:

$$\begin{cases} a = 1.84 - 0.723.\,\mu; \\ b = -0.00088; \\ c = 0.0066 + 0.0029.\,\mu; \\ d = -0.00926 \end{cases} Equation 45$$

with

$$\mu = \cos(\hat{z}_{sat}) \qquad Equation \ 46$$

and \hat{z}_{sat} is the satellite zenith angle.

The theoretical emissivity of water, *ems_{water}*, is a function of the viewing angle:

$$\varepsilon_{water} = 0.1824 + 0.9048. \mu - 0.6221. \mu^2$$
 Equation 47

The emissivity of ice, *ems_{ice}*, is evaluated as follows:

$$\varepsilon_{ice} = \begin{cases} 0.93, & \text{if } (TB_1 - TB_2) < 5 K\\ 0.87, & \text{if } 5 < (TB_1 - TB_2) < 10 K\\ 0.83, & \text{if } 10 < (TB_1 - TB_2) \end{cases} \qquad Equation 48$$

Finally, the sea ice concentration *sea_{ice}* is expressed in percentage and is computed using Equation 44 to Equation 48, and Equation 49:

$$sea_{ice} = 100 * (\varepsilon_1 - \varepsilon_{water}) / (\varepsilon_{ice} - \varepsilon_{water}) 0.1824 + 0.9048.\mu - 0.6221.\mu^2$$
 Equation 49

5.6.2 Land surface emissivity

The land surface emissivity is retrieved with the PWLR³ method as described in 5.4.

Note: For emissivity product users, the full emissivity spectrum for all 8461 IASI channels can be constructed from the emissivity provided at selected wavelengths in the IASI L2 products. This is possible using a base of emissivity eigenvectors, like for instance defined in [UWIREMS].

$$\boldsymbol{\varepsilon} = \boldsymbol{\Omega}. \left(\widetilde{\boldsymbol{\Omega}}^T \widetilde{\boldsymbol{\Omega}} \right)^{-1} \widetilde{\boldsymbol{\Omega}}^T (\widetilde{\boldsymbol{\varepsilon}} - \langle \widetilde{\boldsymbol{\varepsilon}} \rangle) + \langle \boldsymbol{\varepsilon} \rangle \qquad Equation \ 50$$

where:

3	is the land surface emissivity spectra on all IASI channels
ĩ	is the land surface emissivity spectra in the selected channels for L2 products
$\langle \boldsymbol{\varepsilon} \rangle$	is the average emissivity in all IASI channels
$\langle \widetilde{\pmb{\varepsilon}} \rangle$	is the average emissivity in the selected channels
Ω	is the eigenvector spanning all the IASI channels
$\widetilde{\mathbf{\Omega}}$	is the eigenvectors spanning the selected IASI channels

 $\langle \boldsymbol{\varepsilon} \rangle$, $\langle \boldsymbol{\tilde{\varepsilon}} \rangle$, $\boldsymbol{\Omega}$ and $\boldsymbol{\tilde{\Omega}}$ are static configuration data, publicly available on line.

5.7 Atmospheric composition

5.7.1 ANN retrieval of trace gases

The state vector to be retrieved by the trace-gas retrieval is as follows:

 $\mathbf{x} = \left(\mathsf{C}_{\mathsf{CO}_2}, \mathsf{C}_{\mathsf{CH}_4}, \mathsf{C}_{\mathsf{N}_2\mathsf{O}}\right) \qquad Equation 51$

where C_{CO_2} , C_{CH_4} , C_{N_2O} are the total columnar amounts of the trace gases CO_2 , CH_4 , N_2O . The amounts have to be expressed in kg/m². A separate network of one output, the total columnar amount, is formulated for each gas. These quantities are retrieved with artificial neural networks (ANN). The nets consist of fully connected feed-forward networks with one entrance layer, two hidden layers, and one output layer of neurons. The parameters forming the input layer are as follows:

- a number of $N_R \leq 200$ IASI level 1c radiances
- the surface temperature and a coarse temperature profile, represented on $M \le 30$ levels.
- the surface pressure
- the secant of the satellite zenith angle

The transfer function of the hidden neurons is as follows:

$$f(z) = \tanh(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$
 Equation 52

and the transfer function of the output layer is as follows:

$$g(z) = z$$
 Equation 53

so that the global transfer function for the output O_q ; q = (CO₂, CH₄, N₂O) reads:

$$O_q = g \left\{ \sum_{k=1}^{S_2} w_{qk}^3 \cdot f\left(\sum_{j=1}^{S_1} w_{kj}^2 \cdot f\left(\sum_{i=1}^{N_1} w_{ji}^1 \cdot I_i' + b_j^1\right) + b_k^2\right) + b_q^3 \right\}$$
 Equation 54

where:

S_{I}	is the number of neurons in the first hidden layer
S_2	is the number of neurons in the second hidden layer
w_{ji}^1	weight for the connections between the successive layers
w_{kj}^2	weight for the connections between the successive layers
w_{pk}^3	weight for the connections between the successive layers

The biases associated with the neurons are combined into the vectors b_j^1 , b_k^2 , and b_l^3 , and for the first and second hidden layer and the output layer, respectively. The normalised input vector I' is computed from the raw inputs I with respective pairs of scaling coefficients (C_1 ; C_2) and the relation:

$$I_i' = 0.9 \times \frac{I_i - C_i^1}{C_i^2} \qquad Equation 55$$

where *i* refers to the i^{th} input element; $i = 1..N_I$.

The input vector writes:

$$I = (R'_{1}, ..., R'_{Na'}, R_{1}, ..., R_{Na'}, Ts, T_{1}, ..., T_{Nt'}, Ps, \hat{s})$$
Equation 56

where:

Na	Number of absorption channels
N_q	Number of baseline channels
R'm	Absorption in the m th selected absorption channel
R_p	Radiance in the p th selected baseline channel
Ts	Surface temperature
T_k	Temperature at the k th selected pressure level
Ps	Surface pressure
Ŝ	Secant of the satellite zenith angle.

The absorptions R'_i are defined as follows:

$$R'_i = B_i - R_i$$
 Equation 57

with B_i , the baseline radiance at selected channel *i*.

$$B_{i} = \frac{2hc^{2}v_{i}^{3}}{\exp\left(\frac{hcv_{i}}{k_{B}\overline{T}_{b}}\right) - 1}$$
Equation 58

and the mean baseline brightness temperature:

$$\overline{T_b} = \frac{1}{N_q} \sum_{n=1}^{N_q} \frac{hcv_q(n)}{k_B \ln\left(\frac{2hc^2v_q^3(n)}{R_q(n)} + 1\right)}$$
Equation 59

where:

k _B	= Boltzmann's constant
Н	= Planck's constant
С	= speed of light
N_q	= number of IASI channels defining the baseline
$v_q(n)$	= a baseline wavenumber
$R_q(n)$	= a baseline radiance
n	= an index in the array of channels used to define the baseline

The trace gas amounts resulting from Equation 54 are normalised values and have to be rescaled to physical units with associated pairs of de-normalisation coefficients $(D^l; D^2)$ and the following formula:

$$\bar{O}_q = O_q \cdot \frac{D_q^2}{0.9} + D_q^1 \qquad Equation \ 60$$

The number of neurons, the weights and biases, the input and output scaling coefficients as well as the channel and the pressure level selections named in this section are configurable constants. They are stored in the auxiliary datasets COF_TRG* See Section 8.2.9. The retrieved columnar amounts \bar{O}_q with this configuration come then in molecules per cm². They can be further converted to kg/m², the standard units for EPS IASI level 2 products as follows:

 $kg/m^2 = molecules/cm^2 \times m_q \times 10^4$ Equation 61

with m_q being the molecular mass of the respective gas $q = (CO_2, CH_4, N_2O)$.

The error covariance associated with this retrieval is assumed to be diagonal, and constant. The ANN retrieval of trace gases can be vulnerable to sun glint and must be flagged as such.

5.8 Optimal estimation retrieval of geophysical thermodynamic parameters

In clear sky situations, an optimal estimation retrieval is performed [Rodgers] The optimal estimation uses the all-sky statistical retrieval, not only as first guess (FG), but also as a-priori (background). The **FLG_CLDNES**, supplemented with two additional cloud tests (Section 5.8.2 and Section 5.8.1), is used for the selection of applicable clear-sky cases. Specifications for this selection are in Section 5.8.2 and Section 5.8.1.

5.8.1 AVHRR homogeneity test

This test assumes that clear-sky scenes are homogeneous to an extent in the infrared. A simple measure of the inhomogeneity η of AVHRR measurements within a IASI FOV is computed as follows:

$$\eta = \left(\frac{\sigma_4}{\mu_4} + \frac{\sigma_5}{\mu_5}\right)/2 \qquad Equation \ 62$$

where:

μ_4	is the overall mean radiance of AVHRR channel 4
μ_5	is the overall mean radiance of AVHRR channel 5
σ_4	is the standard deviation for mean radiance of AVHRR channel 4
σ_5	is the standard deviation for mean radiance of AVHRR channel 5

The scene is declared cloud-free according to this test if the inhomogeneity measure η is less than the configurable threshold defined in MaxInhomogeneity, from the configuration file iasi2_ppf.conf. The execution and the outcome of this test shall be reflected in the flag FLG_CLDTST.

5.8.2 IASI/AMSU test

This test compares the brightness temperature observed in channel 6980, T_{6980}^{obs} , with a clear-sky predicted value based on the collocated AMSU measurement, T_{6980}^{clr} .

The clear-sky predicted brightness temperature of IASI channel 6980, T_{6980}^{clr} , is computed as follows:

$$T^{clr}_{6980} = 44.007 - 0.272T_4 + 1.837T_5 - 0.738T_6 + 0.004c_{sz} + 6.391(1 - c_{view}) \quad Equation \ 63$$

where:

T_4	is the brightness temperatures of AMSU channel 4
T_5	is the brightness temperatures of AMSU channel 5
T_6	is the brightness temperatures of AMSU channel 6
C _{SZ}	is the cosine of the sun zenith angle
C _{view}	is the cosine of the AMSU scan angle

The scene is declared cloud-free according to this test if the following Equation 64 is true:

$$T_{6980}^{clr} - T_{6980}^{clr} > \tau$$
 Equation 64

where τ is configured in the field *MinIasiMinusAmsu* from the configuration file iasi2_ppf.conf described in Section8.3. The execution and the outcome of this test is reflected in the flag **FLG CLDTST**.

5.8.3 The cost function

The optimal estimation retrieval of the geophysical thermodynamic parameters is performed by minimisation of a cost function, J, consisting of two terms, the background (J_x) and the observation (J_y) terms, which we describe separately below.

 $J = J_x + J_y$ Equation 65

5.8.3.1 Background term of the cost function

Given the equation:

$$J_x = (x - x_a)^T S_x^{-1} (x - x_a) \qquad Equation \ 66$$

The state-vector $x \in \mathbb{R}^n$ represents the quantities to be retrieved:

- temperature profile (T),
- water vapour profile (W),
- ozone profile (O)
- surface skin temperature (Ts)

$$x = (T_1, ..., T_{N_T}, W_1, ..., W_{N_W}, O_1, ..., O_{N_O}, T_S)$$
 Equation 67

where:

N_T	number of levels in the profiles of temperature to be retrieved
N_W	number of levels in the profiles of water to be retrieved
No	number of levels in the profiles of ozone to be retrieved

 N_T , N_W and $N_O < 250$.

For the minimisation, the profiles are represented as principal component (PC) scores of the deviation with respect to the a-priori. In the IASI L2 PPF version 6, $x \in \mathbb{R}^n$ writes as follows:

 $x = (t_1, ..., t_{n_t}, w_1, ..., w_{n_w}, o_1, ..., o_{n_o}, T_S)$ Equation 68

where:

n _t	is the number of PCS used to represent the profiles of temperature
n_w	is the number of PCS used to represent the profiles of water vapour
n _o	is the number of PCS used to represent the profiles of ozone

The number of principal component scores used for each of the three types of profiles are configurable. In the IASI L2 PPF version 6,

 $n_T = 28, n_W = 18, n_O = 10.$

The total number of state-vector elements is $n = n_T + n_W + n_O + 1$. S_x is diagonal matrix.

The elements on the diagonal can be extracted from the static auxiliary dataset COF_STV. This dataset is defined in Section 8.2.8 and summarised in Table 20:

Stave-vector component	Dimension	Unit (of corresponding PCs)	Diagonal of Sx
x_T	n_T	Κ	/COF_STV/T_covariance
x_W	n_W	ln(ppmv)	/COF_STV/W_covariance
x_o	n_{O}	ln(ppmv)	/COF_STV/O_covariance
x_{Ts}	1	K	9K ²

Table 20: Elements on the diagonal can be extracted from the static auxiliary dataset COF STV.

As the PC scores used in the state-vector representation of the profiles are based on deviations from an a-priori profile given at the 101 fixed pressure levels RTTOV grid, the a-priori x_a in this representation is zero —except for the last element corresponding to Ts. The principal components required to expand the PC scores into profiles represented at 101 pressure levels are also given in the dataset COF_STV. See Section 8.2.8.

5.8.3.2 Observation term of the cost function

$$J_y = (F(x) - y)^T S_y^{-1} (F(x) - y)$$
 Equation 69

The IASI observations are represented as a subset of reconstructed IASI L1C radiances with the unit $mW/m^2/sr/cm^{-1}$. The channel selection currently consists of m = 139 channels, which are specified in COF_SY). A different observation error covariance matrix, S_y (unit: $(mW/m^2/sr/cm^{-1})^2$), is used over land and sea, they are provided in COF_SY_LAN [8.2.2] and COF_SY_SEA respectively [8.2.3].

 S_y is the combined measurement and forward model error. The channel selection is provided with an assumed IASI channel numbering from 0 to 8460.

The forward model F: $\mathbb{R}^n \to \mathbb{R}^m$ is composed of two functions:

- the state-vector representation function X: $R^n \to R^N$
- and the RTTOV 10.2 implemented function f: $R^N \rightarrow R^m$.

Here, N = 304, corresponding to the atmospheric temperature in K, the atmospheric water vapour concentration in ppmv and the atmospheric ozone concentration in ppmv. All are at 101 fixed pressure levels each. This includes the surface skin temperature. The state-vector representation function is computed individually for each component. For T we have $X_T = X_T^a + E_T x_T$, where $E_T \in$ $R^{N_T \times n_T}$ are the n_T leading principal components found in the dataset /COF STV/T eigenvectors [8.2.8] and X_T^a is the a priori temperature profile in K at 101 levels which is obtained by piecewise linear regression within each individual field of view (see Section 5.4). This is similar for W and O, except that the principal components are based on ln(ppmv) such that we get the following:

$$X_W = \exp(\ln(X_W^a) + E_W x_W)$$
 and $X_O = \exp(\ln(X_O^a) + E_O x_O)$,

where X_W^a and X_O^a are the a priori water vapour and ozone concentrations in ppmv at 101 levels.

The reconstructed radiances, y, are obtained from the IASI L1C PC scores provided in the PRP files. The eigenvector files (with format as described in section 8.1) are needed to reconstruct IASI L1C radiances from the PC scores, as described in the pseudo code in Figure 13:

```
K = [FirstChannel .. FirstChannel+NbrChannels[
P1 = [1 .. NBSxP1]
P2 = [NBSxP1 + 1 .. NBSxP1 + NBSxP2]
P3 = [NBSxP1 + NBSxP2 + 1 .. NBSxP1 + NBSxP2 + NBSxP3]
P = [1 \dots NBSxP1 + NBSxP2 + NBSxP3]
Input data:
Noise(K) [unit: W/m2/sr/m-1]
                                     // from eigenvector file
                                     // from eigenvector file
Mean(K)
                                     // from MDR-PCS
PcScoresBxP1(P1)
                                     // from MDR-PCS
PcScoresBxP2(P2)
                                     // from MDR-PCS
PcScoresBxP3(P3)
                                     // from eigenvector file
Eigenvectors(K,P)
Eigenvectors(K,P) // from eigenvector
SQ = ScoreQuantisationFactor(x) // from GIADR-IPCC
Output:
Radiance(K) [unit: W/m2/sr/m-1]
Algorithm:
Radiance(K) = Noise(K) * (
                          Mean(K)
                           + SQ*sum(P1, PcScoresBxP1(P1)*Eigenvectors(K,P1))
                           + SQ*sum(P2, PcScoresBxP2(P2)*Eigenvectors(K,P2))
                           + SQ*sum(P3, PcScoresBxP3(P3)*Eigenvectors(K,P2))
```

Figure 13: Pseudo code (reconstruction of radiances in band x0.

To suppress Instrument artefacts, this is followed by a projection onto the forward model subspace as defined by the first 62 vectors in IASI_EV1_1C_M02_FS.hdf5 and the first 77 vectors in IASI_EV2_1C_M02_FS.hdf5.

Note: No channels from Band 3 enter the retrievals.

Finally, the double-filtered radiances are bias-corrected. The bias correction to be applied:

 bc_i (for j=1..N),

is subtracted from the double-filtered measurement radiances. It is a linear function of the following:

- the M_1 leading PC scores in band 1,
- the leading M_2 PC scores in band 2
- the secant of the scan angle, $secz = \sec \hat{z}_{sat} = 1/\cos \hat{z}_{sat}$.

If x is a vector with $M_1 + M_2 + 1$ elements composed as described above:

$$p = \left(PCS_1^{B_1}, \dots, PCS_{M_1}^{B_1}, PCS_1^{B_2}, \dots, PCS_{M_1}^{B_2}, secz\right)$$

the bias correction can be computed as follows:

$$bc_j = \overline{bc_j} + \sum_{i=1}^{M1+M2+1} \mathcal{B}_{ji}(x_i - \overline{p_i}) \qquad Equation \ 70$$

where the coefficients \mathcal{B}_{ii} , \bar{p}_i and \bar{bc}_i are defined in COF_BC. Specifications are in Section 8.2.7.

5.8.4 The minimisation method and convergence criterion

The cost function $J(x) = J_x(x) + J_y(x)$ detailed in Equation 71 is smooth and for any point, x, we can compute its gradient:

 $g(x) \in \mathbb{R}^n$ in Equation 72

and its Hessian matrix,

 $H(x) \in \mathbb{R}^{n \times n}$ as per Equation 73.

The cost function and its first two derivatives (gradient and Hessian) write:

$$J_{n} = (F(x_{n}) - y)^{T} \cdot S_{y}^{-1} \cdot (F(x_{n}) - y) + (x_{n} - x_{a})^{T} \cdot C^{-1} \cdot (x_{n} - x_{a})$$

$$J_{n}' = K_{n}^{T} \cdot S_{y}^{-1} \cdot (F(x_{n}) - y) + S_{x}^{-1} \cdot (x_{n} - x_{a})$$

$$J_{n}'' = K_{n}^{T} \cdot S_{y}^{-1} \cdot K_{n}^{T} + S_{x}^{-1}$$
Equation 73

where:

x_n	is the atmospheric state at iteration <i>n</i>
J_n	is the cost function at iteration n
$F(x_n)$	is the forward model computation, or calculated radiances, with x_n See Section 5.8.5.
у	is the observation vector, from the measured radiances
K _n	is the derivative of the forward model function to the state vector components, also called Jacobians

The method is considered to have converged in these cases:

- if the norm as computed in Section 6.10 of the gradient, $\|\vec{g}\|$, is lower than a configurable threshold ConvergenceThreshold in the iasi2_ppf.conf. See Specifications in Section 8.3.
- or if the relative Newton step size, ||d||/||x||, is below 0.00000001.

Furthermore a configurable maximum number of iterations is imposed ("MaxIterations" in iasi2_ppf.conf (see Section 8.3). The minimisation function shall be exited when this maximum number of iterations is reached.

Minimisation of the cost function is only attempted if the initial value (computed for the first guess) is below a configurable threshold ("FGCostMax" in iasi2_ppf.conf). In case minimisation is attempted, two separate configurable thresholds, RTCostMax_X and RTCostMax_Y in iasi2_ppf.conf are applied to the resulting values of the background and observation terms of the cost function: $J_{x,n}$ and $J_{y,n}$ respectively. All of this sequence is detailed in Section 5.8.4. The optimal estimation retrieval is only accepted if both terms of the cost function are below their

respective thresholds. The overall minimisation and acceptance process is summarised in the pseudocode in Figure 14:

Note: The optimal estimation retrieval can be accepted –and therefore be available in the product– even if the iterations did not converge and the minimisation was stopped after reaching the maximum number of iterations.

01: $\alpha = 1; n = 0; x_0 = FG$ 02: if $(J(x_0) > \text{FGCostMax})$ then return /* do not attempt minimisation */ 03: while (n < MaxIterations) do 04: $d = H(x_n)^{-1}g(x_n)$ 05: if $(J(x_n - \alpha d) < J(x_n))$ then 06: $x_{n+1} = x_n - \alpha d; \alpha = 1$ 07: else 08: $\alpha = \frac{\alpha}{2}; \text{goto } 3$ 09: n = n + 110: if $\binom{(||g|| < \text{ConvergenceThreshold})}{\text{OR}(||d||/||x_n|| < 10^{-8})}$ then converged break 11: endwhile 12: if $((J_{x,n} < \text{RTCostMax_X}) \text{AND} (J_{y,n} < \text{RTCostMax_Y}))$ then accept_retrieval

x,n =) (y,n =)) ('-

Figure 14: The overall minimisation and acceptance process pseudo-code.

where:

d	is the step in the state space x , after the Newton descent
α	is the fraction of the step d to be applied to the state vector

The flag **FLG_ITCONV** is set according to the outcome of the optimal estimation as summarised in Table 11:

Value	Reason for flagging	
0	The FOV was not considered sufficiently clear for clear sky optimal estimation. FLG_CLDNES>2 or (at least) one of the two additional cloud test was not passed.	
1	The minimisation of cost function not attempted due to high cost of the first guess.	
2	The minimisation did not converge and the solution was not accepted.	
3	The solution was accepted, even though the minimisation did not converge.	
4	The minimisation converged, but the solution was not accepted.	
5	The solution was accepted and the minimisation converged.	

Table 21: Settings for flag FLG_ITCONV.

The number of iteration performed shall be copied into the flag FLG_NUMIT.

5.8.5 The radiative transfer model

RTTOV 10.2 is configured using coefficients based on LBLRTM v.12.2 with 101 levels, predictors version 7 and a creation date of 28 March 2013 is used as a radiative transfer model [RTTOVguide] With these coefficients, the trace gases CO_2 , CO, N_2O and CH_4 are not variable and their concentrations do not need to be input. The state vector input to RTTOV reads as follows:

$$x = (\boldsymbol{T}_1, \dots, \boldsymbol{T}_{N_T}, \boldsymbol{W}_1, \dots, \boldsymbol{W}_{N_W}, \boldsymbol{O}_1, \dots, \boldsymbol{O}_{N_O}, \boldsymbol{T}_S, \boldsymbol{T}_a, \boldsymbol{W}_a, \boldsymbol{P}_S, \hat{\boldsymbol{z}}_{sat}, \boldsymbol{h}, \boldsymbol{\varepsilon}_1, \dots, \boldsymbol{\varepsilon}_{N_k}) \quad Equation \ 74$$

Besides the optimal estimation state-vector parameters—in bold in Equation 74, there are only few parameters which need to be fed to RTTOV in order to compute the forward model radiances. These parameters are kept fixed for each field of view and their origins are specified below. The satellite zenith angle and the surface height are taken from the PRP file: the satellite zenith angle originates directly from the IASI L1C file, the surface height is co-located from the topography atlas as described in Section 5.1.3. The two-meter air temperature T_a and humidity W_a as well as the surface pressure P_S are taken from PWLR. The land surface emissivity ($\varepsilon_1, \ldots, \varepsilon_{N_k}$) in the N_k selected channels is reconstructed from the emissivities retrieved with the PWLR³ in section 5.4.

5.8.6 Retrieval error estimate and averaging kernels

The optimal estimation retrieval error covariance matrix estimate, S, is given by the inverse of the Hessian matrix, i.e.

 $S = (K^T S_y^{-1} K + S_x^{-1})^{-1}$ Equation 75

where:

$K \in \mathbb{R}^{m \times n}$	is the matrix of partial derivates (Jacobian) of the forward model
	$F: \mathbb{R}^n \to \mathbb{R}^m$ evaluated at the optimal solution. The forward model is
	introduced in Section 5.8.3.2.

This retrieval error covariance matrix refers to the error in the principal component space in which the retrieval was performed. See Section 5.8.3.1. The minimisation is performed assuming no cross-correlation between temperature, water-vapour and ozone profiles, such that *S* writes:

The diagonal blocks corresponding to temperature, water vapour and ozone are provided in the output product separately.

Note: The averaging kernel (in PC space), *A*, can be computed with this formula:

 $A = I - SS_x^{-1} \qquad Equation \ 77$

where:

Ι	is the identity matrix
S	is the computed after Equation 75 and Equation 76.
S_x^{-1}	is the background error covariance matrix introduced in Section 5.8.3.1 and configured in COF_STV Section 8.2.8.

Both the retrieval error covariance matrix and the averaging kernel expressed in the principal components of the atmospheric state S_{PC} and A_{PC} can be transformed to the 101 level pressure grid of RTTOV - S_{SV} and A_{SV} - by pre and post multiplication with the $N \times n$ matrix of atmospheric state eigenvectors V provided in COF_STV. This is defined in Section 8.2.8:

$S_{SV} = V S_{PC} V^T$	Equation 78
$A_{SV} = V A_{PC} V^T$	Equation 79

5.8.7 Check for physical adiabiatic and saturation conditions

The temperature and humidity profiles resulting from the optimal estimation and accepted as described in 5.8.4 shall be verified against physical boundary conditions. The profiles deviating the super-saturation and super-adiabatic conditions shall be modified and flagged accordingly in **FLG_PHYSCHECK**, as specified in the sections 6.14 and 6.15.

5.9 Optimal estimation retrieval of atmospheric composition parameters

5.9.1 FORLI-CO

The IASI L2 PPF integrates the FORLI algorithm [FORLI] as an external library for the retrieval CO profiles, forming the EUMETSAT AC SAF IASI CO products. The reader is invited to consult the FORLI-CO ATBD for a detailed description of the algorithm and implementation [FORLIatbd].

5.9.2 Brescia-SO₂

The IASI L2 PPF integrates the Brescia-SO₂ algorithm as an external library for the retrieval of SO₂ partial columns, forming the EUMETSAT AC SAF IASI SO2 products. The reader is invited to consult de Brescia-SO₂ ATBD for a detailed description of the algorithm and implementation [BresciaATBD].

5.10 Generation of the IASI L2Pcore product

The SST retrieved within the IASI L2 PPF is also recorded in isolation in the IASI L2Pcore products, which form the seed to the IASI L2P SST product. The IASI L2Pcore SST is encoded in netCDF and contains the core products elements after GHRRST (the Group for High Resolution SST) standards. It is then augmented at the EUMETSAT OSI SAF with additional meta and contextual information as required by GHRSST [*GHRSSTspe*]. The IASI L2Pcore contains the fields identified in Table 22.

Field	Description
Latitude	Latitude (degrees North)
Longitude	Longitude (degrees East)
Time	Reference time of SST data array
Sea_surface_temperature	Skin SST measurement values (full resolution)
Sst_dtime	Deviation of observation time from reference time
L2P_flags	Flag qualifying SST input data
SSES_bias	Single Sensor Error Statistics bias
SSES_standard _deviation	Single Sensor Error Statistics standard deviation uncertainty
Satellite_zenith_angle	Satellite zenith angle (degrees)
Solar_zenith_angle	Solar zenith angle (degrees)
Quality_level	L2P data quality, from 2 (first useable data) to 5 (best quality)
Wind_speed	10-metre ECMWF wind speed (m/s)
obs_minus_calc	Sum of observed minus calculated radiances in window region (experimental)
dust_index	Pseudo-quantitative dust index FLG_DUSTCLD (experimental)

Table 22: IASI L2Pcore SST field description

As per GHRSST standards, the retrieved SST are classified into quality classes:

- Quality Level 5: best
- Quality Level 4: good
- Quality Level 3: fair
- Quality Level 2: first usable quality
- Quality Level 1: bad

A single sensor error estimate (SSES) field provides the information on the bias (accuracy) and standard deviation (precision) associated with each quality class. This is determined off-line from routine monitoring against in situ drifting buoys, the OSTIA model and 3-way analyses with sondes and other satellite high spatial resolution products (e.g. AVHRR SST). The SSES are configured in the auxiliary dataset files IASI_L2P_xxx_* (Section 8.3).

The stratification per quality classes is done upon the 'OmC' cloud signal retrieved with the PWLR³ (see section 5.4) as follows:

Quality classes	OmC condition
Q5	OmC < 0.5
Q4	$0.5 \le OmC \le 1.$
Q3	$1 \le OmC \le 2$
Q2	$1 \le OmC \le 3$
Q1	$ OmC \ge 3$

5.11 Quality control of the final products

The quantities retrieved in complement to the first guess retrieval must be verified against configurable bounds before being copied into the final IASI L2 products. If a parameter retrieved with the statistical method is out of the expected range, the corresponding bit of the flag **FLG_RETCHECK** shall be raised and the exceeding value reset to the nearest bound. The profiles are treated as whole in **FLG_RETCHECK**, this means that if the value of at least one pressure level is out of valid bounds then the entire profile is be flagged. The validity bounds are configurable and may vary with the geolocation and time in the year.

6 GENERIC FUNCTIONS

While the first part of this document described the processing functions in sequence, this section contains the details and specifications for generic functions which may be invoked by different processing modules.

6.1 Instrument foot-print size and Earth coordinates

Let ζ be the satellite zenith angle at the observation point defined by the IASI IFOV centre and let θ be the scanning angle, defined from Nadir. The relationship between ζ and θ writes:

$$\zeta = \operatorname{asin}\left(\frac{\left(R_{\oplus} + h\right)}{R_{\oplus}}\sin\theta\right) \qquad Equation \ 80$$
$$\theta = \operatorname{asin}\left(\frac{R_{\oplus}}{\left(R_{\oplus} + h\right)}\sin\zeta\right) \qquad Equation \ 81$$

Let α be the angle defined by the sub-satellite point, the Earth centre and the IFOV centre. Then:

 $\alpha = \zeta - \theta$ Equation 82

And from Equation 81, it follows:

$$\alpha = \operatorname{asin}\left(\frac{\left(R_{\oplus} + h\right)}{R_{\oplus}}\sin\theta\right) - \theta \qquad Equation 83$$

The projection on the Earth ground of the field of view is, approximately, an ellipse:

- the semi-major axis in the scan direction is a_{scan}
- the semi-minor axis in the track direction is a_{track} ,

are approximated as follows:

$$a_{scan} = \frac{1}{2} \cdot R_{\oplus} \cdot |\alpha_1 - \alpha_2|$$
 Equation 84

Where α_1 and α_2 are the angles defined by the sub-satellite point, the Earth centre and the bounding points of the footprint in the scan direction.

Given ϑ_{scan} , the IFOV angular aperture in the scan direction, α_1 and α_2 can be computed with Equation 83 and the viewing angles $\theta_1 = \theta - \vartheta_{scan}/2$ and $\theta_2 = \theta + \vartheta_{scan}/2$, respectively.

$$a_{track} = \frac{1}{2} \cdot R_{\oplus} \cdot \vartheta_{track} \cdot \frac{\sin(\zeta - \theta)}{\sin \theta} \qquad Equation 85$$

Where ϑ_{track} is the IFOV angular aperture in the flight direction.

6.2 IPSF pixels weight and geolocation

The instrument point spread function defines the geometric distribution of the contribution to the IASI measurements within each IFOV and is different for each of the four detectors within an EFOV. For each detector the IPSF is sampled on a regular grid in viewing angle in the so-called cold space. The dimensions N_Y and N_Z are variable and are defined for each product in the fields *IDefPsfSondNbLin* and *IDefPsfSondNbCol* of the GIADR-quality in the IASI L1C products. Each grid cell is identified by its indices $i = 1..N_Y$ and $j = 1..N_Z$ and its angular coordinates \hat{y}_i and \hat{z}_j in the frame of reference summarised in Figure 15. \hat{y}_i and \hat{z}_j are stored in the fields *IDefPsfSondY* and *IDefPsfSondZ* of the L1C GIADR-quality. The IPSF weights $\Psi_{i,j}$ at grid points (i; j) are defined in the field *IDefPsfSondWgt* of the L1C GIADR-quality.

Figure 15: Definition of the PSF grid coordinates in the IASI Nadir viewing, adapted from IASIL1spe.

The geolocation of the centre of each of the IPSF grid cell in the IFOV u, $\lambda_u(i, j)$ and $\varphi_u(i, j)$, is computed from the geolocations of the centres of the four IFOVs assuming a local linear relationship between the geolocations and the (\hat{Z}, \hat{Y}) viewing angle coordinates. This is done in turn in each IFOV u = 1..4 using the 3-point barycentric interpolation with the two direct neighbours as listed in Equation 88. See also Section 6.9.

$$\lambda_{u}(i,j) = baryInterp\left(\left(\Lambda_{u}, \hat{Y}_{u}, \hat{Z}_{u}\right), \left(\Lambda_{v}, \hat{Y}_{v}, \hat{Z}_{v}\right), \left(\Lambda_{w}, \hat{Y}_{w}, \hat{Z}_{w}\right), \left(\hat{y}_{u,i}, \hat{z}_{u,j}\right)\right) \qquad Equation 86$$

$$\varphi_{u}(i,j) = baryInterp\left(\left(\Phi_{u}, \hat{Y}_{u}, \hat{Z}_{u}\right), \left(\Phi_{v}, \hat{Y}_{v}, \hat{Z}_{v}\right), \left(\Phi_{w}, \hat{Y}_{w}, \hat{Z}_{w}\right), \left(\hat{y}_{u,i}, \hat{z}_{u,j}\right)\right) \qquad Equation 87$$

where:

Λ_{14}	is the latitude of the centre of the IFOVs 1 to 4.	
$\Phi_{1.4}$	is the longitude of the centre of the IFOVs 1 to 4.	
\widehat{Y}_{14} is an angular coordinate of the centre of the IFOVs 1 to 4 in the viewing frame.		
\hat{Z}_{14}	is an angular coordinate of the centre of the IFOVs 1 to 4 in the viewing frame.	
$\lambda_u(i,j)$	is the latitude of the centre of the PSF grid cell (i;j) in the IFOV $u = 14$.	
$\varphi_u(i,j)$	is the longitude of the centre of the PSF grid cell (i;j) in the IFOV $u = 14$	
$\hat{y}_{u,i}$	is an angular coordinate of the centre of the PSF grid cell (i;j) in the IFOV $u = 14$.	
$\hat{z}_{u,j}$	is an angular coordinate of the centre of the PSF grid cell (i;j) in the IFOV $u = 14$.	

for u -	(1 then $v = 2$ and $w = 4$	Equation 88
	2 then $v = 1$ and $w = 3$	-
j 01 u –	$ \begin{array}{l} 1 then v = 2 and w = 4 \\ 2 then v = 1 and w = 3 \\ 3 then v = 2 and w = 4 \\ 4 then v = 1 and w = 3 \end{array} $	
	4 then $v = 1$ and $w = 3$	

The baryInterp function is the 3-point barycentric interpolation function.

Close to the poles, the latitude and longitude coordinates are not monotone continuous functions and the barycentric interpolation cannot be applied to the original geolocations. The interpolation must be performed in a Polar azimuthal projection. If the latitude of one of the four IFOVs is above 87 degrees (|lat| > 87 deg) then the geolocations of the four IFOVs ($\Lambda_{1..4}, \Phi_{1..4}$) must be transformed into Polar azimuthal coordinates ($\Upsilon_{1..4}^{Paz}, Z_{1..4}^{Paz}$) using Equation 89 and Equation 90. The barycentric interpolation as listed in Equation 86 to Equation 88 to Equation 87 is performed with these Polar azimuthal coordinates instead of the original latitudes and longitudes. The resulting PSF grid interpolated Polar coordinates $\upsilon_u^{Paz}(i,j)$ and $\zeta_u^{Paz}(i,j)$ are transformed back to latitudes and longitudes with Equation 91 and Equation 92.

The Polar azimuthal projection writes:

$\upsilon = (90 \lambda) * \cos \varphi$	Equation 89
$\zeta = (90 \lambda) * \sin \varphi$	Equation 90

where $(\upsilon; \zeta)$ are the projected coordinates of the point at latitude λ and longitude φ .

The conversion from Polar projected coordinates to latitudes and longitudes writes:

$$|\lambda| = \left(90. -\sqrt{\upsilon^2 + \zeta^2}\right) \qquad Equation 91$$

$$\varphi = sign(\zeta) * \cos^{-1}\left(\frac{\upsilon}{\sqrt{\upsilon^2 + \zeta^2}}\right) \qquad Equation 92$$

6.3 Vertical interpolations of atmospheric temperature and constituent profiles

The temperature, water-vapour and ozone profiles are interpolated according to the following interpolation schemes. The temperature varies approximately linearly with the height, whereas the pressure decreases exponentially with height, so that a suitable interpolation of temperature T at pressure p in a pressure-level grid reads as follows:

$$T = T_0 + \frac{T_1 - T_0}{\ln(\frac{p_1}{p_0})} \cdot \ln(\frac{p}{p_0})$$
 Equation 93

where:

p_0	is a pressure level surrounding <i>p</i> .
p_1	is a pressure level surrounding <i>p</i> .
T_0	is a corresponding temperature value.
T_1	is a corresponding temperature value.

The water-vapour mixing ratio W decreases exponentially with height, so that the interpolation at p on a pressure grid is double-logarithmic $(p_0 > p > p_1)$:

$$\ln W = \ln W_0 + \frac{\ln \left(\frac{W_1}{W_0}\right)}{\ln \left(\frac{p_1}{p_0}\right)} \cdot \ln \left(\frac{p}{p_0}\right) \qquad Equation 94$$

where:

p_0	is a pressure level surrounding <i>p</i> .
p_1	is a pressure level surrounding <i>p</i> .
W_0	is a corresponding water vapour value.
W_1	is a corresponding water vapour value.

Ozone profiles are interpolated in the same way as water-vapour.

6.4 Vertical integration of atmospheric constituent concentrations

Let p_i and μ_i be the pressure and mixing ratio of a given atmospheric constituent defining a vertical profile on N_{lev} levels. With p_i and μ_i expressed in hPa and kg/kg, respectively, the partial columnar amount c_i in kg/m² of this atmospheric constituent in the layer between two pressure levels $p_i > p_{i+1}$ is given by the formula:

$$c_i = \frac{\bar{\mu}(p_i - p_{i+1})}{g(\bar{z}, \phi)}; i = 0..N_{lev} - 2$$
 Equation 95

where:

$\bar{\mu} = \frac{\mu_i - \mu_{i+1}}{2}$	Equation 96
$\bar{z} = (z_i - z_{i+1})/2$	Equation 97

are the average mixing ratio and altitude of the layer defined by pressure levels p_i and p_{i+1} .

$g(\bar{z},\phi)$ is the local gravitational acceleration depending on latitude, ϕ		is the local gravitational acceleration depending on latitude, $\boldsymbol{\varphi}$
	$\bar{Z},$	is height as defined in Equation 105.

The conversion from pressure levels to height in Equation 97 is done as described in Section 5.13.5, starting from the surface level, whose elevation is known (5.1.3). Alternatively, it may also be approximated as follows:

$$\bar{z} = -4000 \left(\log\left(\frac{p_{\rm i}}{1013}\right) + \log\left(\frac{p_{\rm i+1}}{1013}\right) \right) \qquad Equation 98$$

To compute the integrated total columnar amount TC of an atmospheric constituent, all partial columnar amounts of layers between the successive pressure levels on which the mixing ratio profile is provided must be computed as in Equation 95 and summed. To compute the partial columnar amount c_{surf} in the layer between the surface pressure and the first pressure grid level above the surface on which the profile is defined, the mixing ratio is assumed constant in this layer and equal to the mixing ratio at the first pressure grid level above the surface. Hence:

 $c_{surf} = \mu_0 (P_S - p_0) / g(\bar{z}, \phi) \qquad Equation 99$

where:

P_S	is the surface pressure
Ī	$=(z_{surf}-z_0)$
Z _{surf}	is the surface elevation
<i>z</i> ₀	is the height of the first pressure grid level

Finally, the total column writes:

$$TC = c_{surf} + \sum_{i=0}^{N_{lev}-2} c_i$$
 Equation 100

6.5 Conversion from pressure to height levels

The conversion between pressure and height levels is done with the barometric equation. It is important that this equation is applied layer-wise as it represents an integration where constant temperature and humidity is assumed between the two consecutive levels defining a layer. The height difference between two levels *i* and *j* with known pressures p_i and p_j is given by the following:

$$z_i - z_j = \frac{-R_L \bar{T}_v}{g(z_i, \phi)} . \ln\left(\frac{p_i}{p_j}\right) \qquad Equation \ 101$$

Alternately, for known heights and the ratio of the pressures at levels *i* and *j* is as follows:

p_i _ arm	$(-g(z_i,\phi)(z_i -$	$-z_j)$	Equation 102
$\frac{1}{p_j} = exp$	$R_L \overline{T}_{\nu}$)	

where:

R_L	= 287.06 J. K^{-1} . kg ⁻¹ is the gas constant for dry air
\bar{T}_{ν}	is the layer mean virtual temperature, represented as Equation 103

$$\bar{T}_{v} = (T_{v,i} + T_{v,i})/2 \qquad Equation \ 103$$

where:

$$T_{\nu,i} = T_i (1 + 0.608q_i)$$
 Equation 104

with:

T_i	the temperature (in K) at level i
q_i	is the specific humidity at level i (in kg/kg).

The acceleration due to gravity g (in m.s⁻²) is a function of geographic latitude ϕ and height z (in m):

The form of Equation 101 and Equation 102 requires that the calculations always begin at a level with known start values of z and p. Usually, surface pressure and surface height are the known start values and Equation 101 and Equation 102 are iterated towards the top of the atmosphere. The surface height for each IASI IFOV is retrieved as specified in 5.1.3 from the topography atlas.

6.6 Linear interpolation

The linear interpolation of a function y(x) at point x from the function values y_0 and y_1 at points x_0 and x_1 writes:

$y = y_0 + (y_1 - y_0) \frac{(x - x_0)}{(x_1 - x_0)}$	Equation 106
$y = y_0 + (y_1 - y_0) \frac{1}{(x_1 - x_0)}$	

6.7 Bilinear interpolation

The bi-linear interpolation of a function f(x,y) at the point (x;y) from the function values f_{00} , f_{01} , f_{11} and f_{10} at points $(x_0; y_0)$, $(x_0; y_1)$, $(x_1; y_1)$, $(x_1; y_0)$ on a regular 2D-grid writes:

$$f(x,y) = \alpha_{00} (x_1 - x)(y_1 - y) + \alpha_{10} (x - x_0)(y_1 - y) + \alpha_{01} (x_1 - x)(y - y_0) + \alpha_{11} (x - x_0)(y - y_0)$$
Equation 107

where $\alpha_{ij} = \frac{f(x_i, y_j)}{(x_1 - x_0)(y_1 - y_0)}$

6.8 Three-point barycentric interpolation

The barycentric interpolation of a function f at the coordinate point (x, y) from the function values f_1, f_2, f_3 at coordinate points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ writes:

$$f(x, y) = \frac{\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3}{\alpha_1 + \alpha_2 + \alpha_3}$$
 Equation 108

where:

$\alpha_1 = (x_2 - x)(y_3 - y) - (x_3 - x)(y_2 - y)$	Equation 109
$\alpha_2 = (x_3 - x)(y_1 - y) - (x_1 - x)(y_3 - y)$	Equation 110
$\alpha_3 = (x_1 - x)(y_2 - y) - (x_2 - x)(y_1 - y)$	Equation 111

6.9 Euclidean norm

The Euclidean norm of a vector $\vec{V} = [v_1, v_2, ..., v_n]$ of dimension *n*, noted $\|\vec{V}\|$, writes:

$$\|\vec{V}\| = \sqrt{\sum_{i=1}^{n} v_i^2} \qquad Equation 112$$

6.10 Dot product

The dot product, also called scalar product, of two vectors:

 $\overrightarrow{U} = [u_1, u_2, \dots, u_n]$ and

 $\vec{V} = [v_1, v_2, \dots, v_n]$

of dimension *n* writes:

$$\vec{U} \cdot \vec{V} = \sum_{i=1}^{n} u_i v_i$$
 Equation 113

6.10.1 Vector product

The vector product, also called cross product, of two vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ in Cartesian coordinates (x,y,z) writes:

$$\overrightarrow{V_1} \times \overrightarrow{V_2} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \times \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} y_1 z_2 - y_2 z_1 \\ z_1 x_2 - z_2 x_1 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}$$
 Equation 114

6.11 Geolocation conversion to Cartesian coordinates

In the Cartesian coordinate system, the x-axis goes through (longitude, latitude = 0,0), the y-axis goes through (longitude, latitude = 90,0) and the z-axis goes through the poles. The conversion of longitude φ and latitude λ to Cartesian co-ordinates (*x*, *y*, *z*) writes:

$$\begin{cases} x = R_{\oplus} \cos \lambda \cos \varphi & Equation 115 \\ y = R_{\oplus} \cos \lambda \sin \varphi \\ z = R_{\oplus} \sin \lambda & \end{cases}$$

Where R_{\oplus} is the Earth radius.

6.12 Water-vapour density definitions and relationships

The humidity concentrations can be expressed in different units. We detail here the representations used in various functions of the processor and detail their relationships.

The water-vapour pressure, p_{H_2O}

The vapour pressure of moist air is defined as the partial pressure of the water-vapour present in the air mass. It is said to be with respect to liquid (or ice) water if the air mass is over a plane surface of liquid (or ice) water at the same temperature and pressure.

The water-vapour saturation pressure, e_s

The water-vapour saturation pressure is defined as the water-vapour pressure where two phases of water co-exist in neutral equilibrium. It is said to be with respect to liquid (or ice) water if the air mass is over a plane surface of liquid (or ice) water at the same temperature and pressure. The saturation water-vapour pressure, e_s , is given by the integrated Clausius Clapeyron equation, as formulated by the Goff Gratch equations [SmithMet].

Over water, the saturation water-vapour pressure in hPa is as follows:

$$\log_{10}(e_{S}) = -7.90298 * \left(\frac{T_{S}}{T} - 1\right) + 5.02808 * \log_{10}\left(\frac{T_{S}}{T}\right)$$

$$-1.3816 * 10^{-7} * \left(10^{11.344*\left(1 - \frac{T}{T_{S}}\right)} - 1\right) +$$

$$8.1328 * 10^{-3} * \left(10^{-3.49149*\left(\frac{T_{S}}{T} - 1\right)} - 1\right) + \log_{10}(e_{wS})$$

$$Equation 116$$

where:

Т	= the temperature in K.
T_S	= 373.16 <i>K</i>
e_{wS}	= 1013.246 hPa

Over ice, the saturation water vapour pressure in hPa is as follows:

$$\log_{10}(e_S) = -9.09718 * \left(\frac{T_0}{T} - 1\right) - 3.56654 * \log_{10}\left(\frac{T_0}{T}\right) + 0.876793 * \left(1 - \frac{T}{T_0}\right) + \log_{10}(e_{i0})$$
 Equation 117

where:

$T_{ heta}$	= 273.16 K.
e_{i0}	= 6.1071 hPa.

Specific humidity, q

The specific humidity is the ratio of water-vapour mass to the air parcel's total mass, approximated as the mixing ratio of the mass of water-vapour in an air parcel to the mass of dry air for the same parcel. It is expressed in kg/kg.

$$q = \frac{M_{H_2O}}{M_L} \cdot \frac{p_{H_2O}}{p - p_{H_2O}}$$
 Equation 118

Conversely, p_{H_2O} can be retrieved from q as follows:

$$p_{H_2O} = \frac{p}{1 + \frac{M_{H_2O}}{M_L} \cdot \frac{1}{q}}$$
 Equation 119

where:

M_{H_2O}	= $18.01534 \ g/mol$ is the Molar mass of water.
M_L	= 28.964 g/mol is the Molar mass of dry air.
p	= total atmospheric pressure of water-vapour in the air parcel
p_{H_2O}	= partial atmospheric pressure of water-vapour in the air parcel

Volume mixing ratio, w

Another representation of water-vapour density is the volume mixing ratio, w. It is usually expressed in parts per million by volume or ppmv. It relates to the mass mixing ratio q (in kg/kg) as follows:

$$w = 10^6 \cdot \frac{M_L}{M_{H_2O}} \cdot q \qquad Equation 120$$

or

$$w = 10^6 \cdot \frac{p_{H_2O}}{p - p_{H_2O}}$$
 Equation 121

and

$$p_{H_2O} = \frac{10^{-6} \cdot w \cdot p}{1 + 10^{-6} \cdot w} \qquad Equation \ 122$$

Dew point Temperature, T_{dew}

The dew point temperature is the saturation temperature for the water-vapour in the air parcel at initial pressure and moisture content. It can be approximated with the following formula:

$$T_{dew} = \frac{T_n}{\frac{m}{\log(p_{H_2O}/A)} - 1}$$
 Equation 123

where:

T_n	is a configurable parameter
т	is a configurable parameter
Α	is a configurable parameter

The Relative Humidity, %RH

The relative humidity of an air-water mixture is defined as the ratio of the partial pressure of watervapour present at a given temperature and pressure, p_{H_2O} , to the partial pressure of the water present at saturation for the given temperature and pressure, e_S . These are defined after Equation 116 and Equation 117. Thus the relative humidity of air is a function of both water content and temperature. It is expressed in percentage and writes as follows:

$$\% RH = 100. \frac{p_{H_2O}}{e_S} \qquad Equation 124$$

6.13 Check for Supersaturation of Water Vapour

The check for super saturation requires the comparison of the retrieved water-vapour amount with its saturation value. For each pressure level of a given profile, the saturation mixing ratio q_S is computed with Equation 118 using as p_{H_2O} the saturation water-vapour pressure e_S from Equation 116 and Equation 117. If the actual mixing ratio q is higher than q_S , then it is reset to q_S and the correction for super-saturation is recorded in the flag **FLG_PHYSCHECK**.

Bit 1 of **FLG_PHYSCHECK** shall be set if the super-saturation is found in the first guess watervapour profile. See Section 5.4. The bit 3 of **FLG_PHYSCHECK** shall be set if the super-saturation is found in the water-vapour profile retrieved with the optimal estimation as specified in Section 5.8.

6.14 Check for Super-Adiabatic Layering

The adiabatic layering between an upper and a lower level with temperatures T_0 and T_1 and pressure levels P_0 and P_1 , respectively, with $P_1 < P_0$ is given by the following:

$$b = \left(\frac{T_{0,adia}}{T_{1,adia}}\right) = \left(\frac{P_0}{P_1}\right)^{R_L/c_p}$$
 Equation 125

where:

 $R_L = 287.06 J. kg^{-1}. K^{-1}$ is the specific gas constant for dry air. $c_p = 1004.71 J. kg^{-1}. K^{-1}$ is the specific heat of dry air at constant pressure.

If the ratio $T_0/T_1 < b$, then a correction term has to be calculated according to the following:

$$a = \frac{bT_1 - T_0}{1+b}$$
 Equation 126

If *a* is greater than the standard deviation of the temperature, then T_0 has to be increased by *a* and T_1 must be decreased by *a*. The correction is reported in the flag **FLG_PHYSCHECK** by setting the bit 2 to on if the check and correction applies to the first guess retrieval, as described in Section 5.4. Also bit 4 must be set if this applies to the temperature profile retrieved with the optimal estimation. See Section5.8.

7 PROCESSING AND QUALITY FLAGS

A collection of processing flags records the configuration and mode in which the different retrieval functions are executed. They capture the availability and quality of the expected input data (e.g. measurements, model data). The flags also detail the classification of the scene sensed by IASI and reflect the quality of the L2 products. This information is intended to the users of the IASI L2 products to support the selection of the IASI L2 products to use, depending on their applications. The processing and quality flags are also used within the L2 PPF itself, to trigger calls to different functions and configurations.

Flag name	Description
FLG_AMSUBAD	Availability and quality of AMSU measurements
FLG_AVHRRBAD	Availability and quality of AVHRR measurements
FLG_CLDFRM	Origin of characterisation of the cloud formations
FLG_CLDNES	Cloudiness assessment summary
FLG_CLDTST	Details of cloud tests executed and their results
FLG_DAYNIT	Discrimination between day and night
FLG_DUSTCLD	Indicates presence of dust clouds in the IFOV
FLG_FGCHECK	Check that geophysical parameters from the first guess are within bounds
FLG_IASIBAD	Availability and quality of IASI L1 measurements
FLG_INITIA	Indicates the measurements used in the first guess retrieval
FLG_ITCONV	Convergence and acceptance of the OEM result
FLG_LANSEA	Specifies surface type
FLG_MHSBAD	Availability and quality of MHS measurements
FLG_NUMIT	Number of iterations in the OEM
FLG_NWPBAD	Availability and quality of NWP data
FLG_PHYSCHECK	Indicates potential corrections for superadiabatic and supersaturation conditions
FLG_RETCHECK	Check that geophysical parameters from the OEM are within bounds
FLG_SATMAN	Indication of satellite manouevre
FLG_SUNGLNT	Identification of sun glint
FLG_THICIR	Thin cirrus cloud test
	Table 23: IASI Level 2 processing and quality flags

Table 23: IASI Level 2 processing and quality flags

The flags can be of enumerated type of encoded in bit streams. When bit streams are specified, the bit 1 refers to the lowest weight-there is no bit 0 and bit N = 2N-1. Table 23 summarises the flag list and signification. A detailed explanation for each flag is given in the following individual tables, in alphabetic order.

7.1 Quality Flag: FLG_AMSUBAD

Value	Meaning
0	The expected AMSU measurements are available, of good quality and collocated with IASI for processing.
1	AMSU-A data are available but of degraded quality (according to AMSU L1 flags or QC tests) and not used for processing.
2	No coincident (time and space) AMSU measurements available for processing.

7.2 Quality Flag: FLG_AVHRRBAD

Value	Meaning
0	The expected AVHRR radiance analyses are available and of good quality for processing.
1	The radiance clusters are available but of degraded quality (according to IASI L1c flags or QC tests) and not used for processing.
2	No radiance clusters available for processing.

7.3 Quality Flag: FLG_CLDFRM

Value	Meaning
0	No cloud products retrieved.
Bit 1	Height assignment performed with NWP forecasts.
Bit 2	Height assignment performed with statistical first guess retrieval.
Bit 3	Cloud products retrieved with the CO ₂ -slicing.
Bit 4	Cloud products retrieved with the χ^2 method.

7.4 Quality Flag: FLG_CLDNES

Value	Meaning
1	The IASI IFOV is clear.
2	Small cloud contamination possible.
3	The IASI IFOV is partially covered by clouds.
4	High or full cloud coverage.

7.5 Quality Flag: FLG_CLDTST

Value	Meaning
Bit 1	IASI Window cloud test executed.
Bit 2	IASI Window cloud test indicates a cloud.
Bit 3	AMSU cloud test executed.
Bit 4	AMSU cloud test indicates a cloud.
Bit 5	AVHRR integrated cloud fraction assessed.
Bit 6	AVHRR integrated cloud fraction indicates a cloud.
Bit 7	IASI-AVHRR ANN cloud test executed.
Bit 8	IASI-AVHRR ANN cloud test indicates a cloud.
Bit 9	AVHRR heterogeneity test executed.
Bit 10	AVHRR heterogeneity test indicates a cloud.
Bit 11	Spare
Bit 12	Spare
Bit 13	Spare
Bit 14	Spare
Bit 15	Spare
Bit 16	Spare

7.6 Quality Flag: FLG_DAYNIT

Value	Meaning
0	Day
1	Night
2	Twilight

7.7 Quality Flag: FLG_DUSTCLD

Value	Meaning
[0 .; 25.4] (scale factor 10)	The FLG_DUSTCLD is a scalar unitless indicator providing a pseudo- quantitative information of the dust load in the IASI pixels. The values typically range between 0 and 10, but can reach higher values in exceptional dust outbreaks. The presence of dust is suspected when the index in greater than approximately two.
All bits set	Test not executed

7.8 Quality Flag: FLG_FGCHECK

Value	Meaning
0	Retrieved values are within valid bounds.
Bit 1	Temperature profile is out of valid bounds.
Bit 2	Water-vapour profile is out of valid bounds.
Bit 3	Ozone profile is out of valid bounds.
Bit 4	Surface temperature is out of valid bounds.
Bit 5	Surface emissivity is out of valid bounds.
Bit 6	CO concentration is out of valid bounds.
Bit 7	N ₂ O concentration is out of valid bounds.
Bit 8	CH4 concentration is out of valid bounds.
Bit 9	CO ₂ concentration is out of valid bounds.
Bits 10-16	Spare

7.9 Quality Flag: FLG_IASIBAD

Value	Meaning
0	The IASI measurements and side information are available and of good quality for L2 processing
1	The IASI L1c products are of degraded quality according to IASI L1c flags, no L2 processing.
2	Quality control indicates that the IASI L1c data are of degraded quality (not indicated by the IASI L1c flags), no L2 processing.

7.10 Quality Flag: FLG_INITIA

Value	Meaning
0	Default value, no OEM attempted
Bit 1	IASI included
Bit 2	AMSU included
Bit 3	MHS included
Bits 4-8	Spare

7.11 Quality Flag: FLG_ITCONV

Value	Meaning
0	OEM not attempted.
1	OEM aborted because first guess residuals too high.
2	The minimisation did not converge, sounding rejected.
3	The minimisation did not converge, sounding accepted.
4	The minimisation converged but sounding rejected.
5	The minimisation converged, sounding accepted.

7.12 Quality Flag: FLG_LANSEA

Value	Meaning
0	The IASI IFOV is completely covered by water.
1	The IASI IFOV is completely covered by land, variability of the surface topography is low.
2	The IASI IFOV is completely covered by land, variability of the surface topography is high.
3	The IASI IFOV covers land and water, the variability of the surface topography is low.
4	The IASI IFOV covers land and water, the variability of the surface topography is high.
5	The IASI IFOV contains sea-ice.

7.13 Quality Flag: FLG_MHSBAD

Value	Meaning
0	The expected MHS measurements are available, of good quality and collocated with IASI for processing.
1	MHS data are available but of degraded quality (according to MHS L1 flags or QC tests) and not used for processing.
2	No coincident (time and space) MHS measurements available for processing.

7.14 Quality Flag: FLG_NUMIT

Value	Meaning
0	No iterations
Ν	Number of iterations

7.15 Quality Flag: FLG_NWPBAD

Value	Meaning
0	The expected NWP forecasts are available, of good quality and collocated with IASI for processing.
1	The expected NWP forecasts are available but of suspect quality, not used for processing.
2	No coincident NWP forecasts available for processing.

7.16 Quality Flag: FLG_PHYSCHECK

Value	Meaning
0	No superadiabatic or supersaturation found.
Bit 1	Superadiabatic conditions in the first guess.
Bit 2	Supersaturation conditions in the first guess.
Bit 3	Superadiabatic conditions in the OEM retrieval.
Bit 4	Supersaturation conditions in the OEM retrieval
Bit 5 –8	Spare

7.17 Quality Flag: FLG_RETCHECK

Value	Meaning
0	Retrieved values are within valid bounds.
Bit 1	Temperature profile is out of valid bounds.
Bit 2	Water-vapour profile is out of valid bounds.
Bit 3	Ozone profile is out of valid bounds.
Bit 4	Surface temperature is out of valid bounds.
Bit 5	Surface emissivity is out of valid bounds.
Bit 6	CO concentration is out of valid bounds.
Bit 7	N ₂ O concentration is out of valid bounds.
Bit 8	CH4 concentration is out of valid bounds.
Bit 9	CO ₂ concentration is out of valid bounds.
Bits 10-16	Spare

7.18 Quality Flag: FLG_SATMAN

Value	Meaning
0	The platform is not undergoing a manoeuvre.
1	The platform is undergoing a manoeuvre, nominal processing.
2	The platform is undergoing a manoeuvre, no processing.

7.19 Quality Flag: FLG_SUNGLNT

Value	Meaning
0	No Sun glint
1	IASI observes in Sun glint.

7.20 Quality Flag: FLG_THICIR

Value	Meaning
0	No thin cirrus detected.
1	Thin cirrus detected.
2	Test failed or not executed.

8 STATIC CONFIGURATION DATASETS

8.1 IASI EV*

The eigenvector files are used for the compression as well as the reconstruction of Level 1C radiances. There is one file for each of the three IASI bands. The three eigenvector file types (IASI_EV1, IASI_EV2 and IASI_EV3) all share the same format. They are HDF5 files containing three Attributes and four Datasets, all belonging to the root group, as detailed in Table 21 below:

All entities, except noise, have no unit measure. The unit of noise is W/m²/sr/m⁻¹.

The eigen values are provided for comparison only and are not used for compression or reconstruction.

Name	Туре	Data Type	Rank	Dim 1	Dim 2	Description
/FirstChannel	Attribute	32-bit integer	0			Channel number (between 1 and 8461) of the first channel of the band.
/NbrChannels	Attribute	32-bit integer	0			Number of channels in the band.
/NbrEigenvectors	Attribute	32-bit integer	0			Number of eigenvectors included in the file. Can be greater, but not smaller, than the number of PC scores (for the corresponding band) included in the L1 PCS product.
/Noise	Dataset	64-bit floating-point	1	/NbrChannels		Random component of the Instrument noise assumed for the noise normalisation within the PC compression scheme. [unit: $W/m^2/sr/m^{-1}$]
/Mean	Dataset	64-bit floating-point	1	/NbrChannels		Noise-normalised radiance means assumed for the PC compression scheme.
/Eigenvalues	Dataset	64-bit floating-point	1	/NbrEigenvectors		The eigenvalues corresponding to the eigenvector included in the file. Not used for compression/ reconstruction.
/Eigenvectors	Dataset	64-bit floating-point	2	/NbrEigenvectors	/NbrChannels	The eigenvectors used for the compression/reconstruction of IASI L1C radiances.

Table 24: HDF5 objects contained in the eigenvector files.

8.2 IASI_SAD

The IASI_SAD static auxiliary dataset is an HDF5 file organised in several groups serving as configuration and coefficients for various aspect of the IASI L2 processor. In this section each group is presented in a subsection.

8.2.1 COF_SY

ID	Туре	DIM1	DIM2	Description
nbrChannels	Int32	1		Number of channels used in the optimal estimation observation vector
channels	Int32	nbrChannels		Channel index numbers (in [08460]) of used channels
observationErrorCovariance	Double	nbrChannels	nbrChannels	Observation error covariance matrix

8.2.2 COF_SY_LAN

ID	Туре	DIM1	DIM2	Description
observationErrorCovariance	Double	nbrChannels	nbrChannels	Observation error covariance matrix over land

8.2.3 COF_SY_SEA

ID	Туре	DIM1	DIM2	Description
observationErrorCovariance	Double	nbrChannels	nbrChannels	Observation error covariance matrix over sea

8.2.4 COF_CLDDET

ID	Type	DIM1	DIM2	DIM3	DIM4	Description
L	Int32	1				Number of latitude zones for threshold
М	Int32	1				Number of month intervals for threshold
Ν	Int32	1				Number of cloud detection channels
biasCorrection	Double	Ν				Bias correction (K) for cloud detection channels
channel	Int32	Ν				Selected cloud detection channels
differenceThreshold	Double	4	L	Μ	Ν	 Threshold difference, per type: LandDay LandNight SeaDay SeaNight latitude zone, month interval and channel.
latitudeId	Double	L				Latitude zone definition
monthId	Int32	М				Month interval definition

8.2.5 COF_CNN*

ID	Туре	DIM1	DIM2	Description
L	Int32	1		Number of neural network layers
Ν	Int32	1		Number of inputs
N1	Int32	1		Number of input IASI channels
N2	Int32	1		Number of input AVHRR channels
S	Int32	1		Number of neural network weights
Т	Int32	1		Number of neural network nodes
U	Int32	L		Number of nodes per layer
avhrrChannels	Int32	N2		Identification of input AVHRR channels
bias	Double	Т		NN node bias
iasiChannels	Int32	N1		Identification of input IASI channels
inputOffset	Double	Ν		Offset applied to inputs
inputSlope	Double	Ν		Scaling applied to inputs
threshold	Double	1		Cloud identification threshold
weights	double	S		Neural network weights

Four groups follow this pattern..

Group	Control Name
land at day (DL)	COF_CNNDL
water at day (DW)	COF_CNNDW
land at night (NL)	COF_CNNNL
water at night (NW)	COF_CNNNW

8.2.6 COF_SLIC

ID	Туре	DIM1	DIM2	Description
Κ	Int32	1		Number of CO2 channels
Channel	Int32	K		CO2 channels
highestLevelNbr	Int32	1		Level index of highest possible cloud
radianceBias	Double	8461		Radiance bias for CO2 slicing
referenceChannel	Int32	1		Reference channel
windowChannel	Int32	1		Window channel

8.2.7 **COF_BC**

ID	Туре	DIM1	DIM2	Description
Ν	Int32	1		Number of channels (equal to /COF_SY/nbrChannels)
M1	Int32	1		Number of band 1 PC scores used
M2	Int32	1		Number of band 2 PC scores used
coefs	Double	Ν	M1+M2+1	Regression operator
xmean	Double	M1+M2+1		Input mean values
ymean	Double	Ν		Output mean values

8.2.8 **COF_STV**

ID	Type	DIM1	DIM2	Description
T_covariance	Double	30		Background temperature error covariance (along first 30 eigenvectors)
T_eigenvectors	Double	30	101	First 30 eigenvectors of background temperature error covariance
W_covariance	Double	30		Background temperature error covariance (along first 30 eigenvectors)
W_eigenvectors	Double	30	101	First 30 eigenvectors of background temperature error covariance
O_covariance	Double	30		Background temperature error covariance (along first 30 eigenvectors)
O_eigenvectors	Double	30	101	First 30 eigenvectors of background temperature error covariance

8.2.9 **COF_TRG***

ID	Type	DIM1	DIM2	Description
K	Int32	1		Number of absorption channels
L1	Int32	1		Number of inputs
L2	Int32	1		Number of first layer inputs
L3	Int32	1		Number of second layer inputs
L4	Int32	1		Number of outputs
М	Int32	1		Number of baseline channels
Ν	Int32	1		Number of temperature pressure levels
absorbtionChannel	Int32	K		Identification of absorption channels
absorbtionScale	Double	2	K	Offset and scale for absorption channels
b1	Double	L2		Offset for first layer inputs
b2	Double	L3		Offset for second layer inputs
b3	Double	L4		Offset for output layer
baselineChannel	Int32	М		Identification of baseline channels
baselineScale	Double	2	М	Offset and scale of baseline channels
molecularMass	Double	1		Molecular mass
outputScale	Double	2		Offset and scale for output
pressureLevel	Int32	Ν		Identification of temperature levels
surfacePressureScale	Double	2		Offset and scale for surface pressure

ID	Type	DIM1	DIM2	Description
temperatureScale	Double	2	1+N	Offset and scale for temperature
w1	Double	L2	L1	Weights first layer
w2	Double	L3	L2	Weights second layer
w3	Double	L3		Weights output layer
zenithScale	Double	2		Offset and scale for zenith angle

These four groups all follow this pattern:

- COF TRGCO
- COF_TRGCH4
- COF TRGN2O
- COF TRGCO2

8.2.10 COF_EMS

ID	Туре	DIM1	DIM2	Description
Ν	Int32	1		Number of emissivity eigenvectors
eigenvector	Double	Ν	8461	Emissivity eigenvectors at IASI spectral resolution
mean	Double	8461		Mean emissivity spectrum

8.2.11 COF_MWCHAN

ID	Type	DIM1	DIM2	Description
amsuChannels	Int32	15		Indication of which AMSU channels to check (1 means check, 0 means do not check)
mhsChannels	Int32	5		Not used yet

8.2.12 MWIR/IRON

Both the MWIR and the IRON group contain 120 subgroups which all have the same format as shown below. The subgroup names follow the pattern

<daynight>_<scanclass>_M<nbrMW>_I<nbrIR>

Where:

<daynight></daynight>	= either 'D' for day or 'N' for night
<scanclass></scanclass>	= indicates the scan class (see section 5.4.4)
<nbrmw></nbrmw>	= the number of microwave PC scores used for classification
<nbrir></nbrir>	= the number of infrared PC scores used for classification

ID	Туре	DIM1	DIM2	DIM3	Description
R	Double	16	230	186	Regression coefficients
centers	Double	4+nbrMW+nbrIR	16		
cs	Double	4+nbrMW+nbrIR			
xm	Double	16	230		
ym	Double	16	186		

8.2.13 EV_MW4

ID	Type	DIM1	DIM2	Description
Е	Double	35	35	Microwave eigenvectors (for AMSU plus four time MHS)
Mean	Double	35		Microwave mean radiances
Std	Double	35		Microwave radiance normalisation factors

8.2.14 EV_OZ4

ID	Type	DIM1	DIM2	Description
Е	Double	20	552	Ozone eigenvectors (4 IFOVs a 138 levels)
Mean	Double	552		Ozone mean profiles (4 IFOVs a 138 levels)

8.2.15 EV_TW4

ID	Type	DIM1	DIM2	Description
Е	Double	100	1096	Temperature and humidity eigenvectors (4 IFOVs a 138 levels)
Mean	Double	1096		Temperature and humidity mean profiles (4 IFOVs a 138 levels)

8.2.16 EV_EM4

ID	Type	DIM1	DIM2	Description
Е	Double	20	40	Emissivity eigenvectors (4 IFOVs a 10 wavelengths)
Mean	Double	40		Emissivity mean profiles (4 IFOVs a 10 wavelengths)

8.2.17 COF_EV4IR

ID	Туре	DIM1	DIM2	DIM3	Description
Е	Double	15	300	1200	15 sets of PC score eiegenvectors

8.2.18 COF_DUST

ID	Туре	DIM1	DIM2	DIM3	Description
channels	Int	n_dust			Channels used for dust indicator evaluation
gain_ocean	Double	n_dust			Gain matrix when surface type is ocean (for AM and PM)
gain_land_AM	Double	n_dust			Gain matrix when surface type is land for AM
gain_land_PM	Double	n_dust			Gain matrix when surface type is land for PM
mi_ocean	Double	n_dust			Background spectrum when surface type is ocean (for AM and PM)
mi_land	Double	n_dust			Background spectrum when surface type is land (for AM and PM)
bias_land_AM	Double	721	1441		Bias to be subtracted for land (for AM)
bias_land_PM	Double	721	1441		Bias to be subtracted for land (for PM)

Where n_dust is the number of channels used for the dust detection.

8.3 IASI_L2P

The IASI_L2P static auxiliary dataset is an HDF5 file containing the bias and standard deviation look-up table for the production of the IASI L2Pcore SST files. It is made of one group named COF_L2PLUT.

ID	Туре	DIM1	DIM2	Description
bias	Double	4	1	SST bias for each quality class from "best" "first usable quality"
standardDeviation	Double	4	1	SST standard deviation for each quality class from "best" to "first usable quality"

8.4 iasi2_ppf.conf

A configuration file of XML format, iasi2_ppf.conf, completes the static auxiliary datasets described in the previous section. It contains the paths to static databases, Installed with the PPF itself, and specifies the values of a few additional parameters, mostly thresholds, as well as switches triggering alternative retrieval functions and configurations.

An example of this file is given Figure 16.

```
<!-- Configuration file for the IASI2 PPF.-->
<Iasi2PpfConfig>
 <Processing>
   <DoBiasCorrection>yes</DoBiasCorrection>
   <DoFSFilter>yes</DoFSFilter>
   <UseSSTRegression>no</UseSSTRegression>
    <UseMWIRPWLRforCo2Slicing>no</UseMWIRPWLRforCo2Slicing>
    <SADFile>wo</SADFile>
   <MaxIterations>3</MaxIterations>
   <ConvergenceThreshold>1</ConvergenceThreshold>
    <FGCostMax> 500 </FGCostMax>
    <RTCostMax X> 20 </RTCostMax X>
    <RTCostMax Y> 300 </RTCostMax Y>
   <CloudTestAvhrrThreshold>0.02</CloudTestAvhrrThreshold>
    <CloudTestNwpThresholdOffset>0</CloudTestNwpThresholdOffset>
    <MaxInhomogeneity>0.04</MaxInhomogeneity>
    <MinIasiMinusAmsu>-1</MinIasiMinusAmsu>
    <nbrScoresB1> 90 </nbrScoresB1>
    <nbrScoresB2> 120 </nbrScoresB2>
    <nbrScoresB3> 80 </nbrScoresB3>
   <ForwardModelEv1File>/home/iasi2/PPF-
IASI2/data/pcc/IASI EV1 1C M02 FS.hdf5</ForwardModelEv1File>
   <ForwardModelEv2File>/home/iasi2/PPF-
IASI2/data/pcc/IASI EV2 1C M02 FS.hdf5</ForwardModelEv2File>
    <ForwardModelEv3File>/home/iasi2/PPF-
IASI2/data/pcc/IASI EV3 1C M02 FS.hdf5</ForwardModelEv3File>
    <ZhouPath>/home/iasi2/PPF-IASI2/data/dz_regression_v4/</ZhouPath>
    <EmissivityPath>/home/iasi2/PPF-IASI2/data/atlas ems/</EmissivityPath>
    <LandSeaFile>/home/iasi2/PPF-
```


</lasi2PpfConfig>

Figure 16: A configuration file of XML format, iasi2 ppf.conf.

8.5 ipcc_ppf_M0[12].conf

The IASI PCC function needs additional configuration not contained in the eigenvector (IASI_EVx) files. This function is described in Section 5.1.1. These additional pieces of information shall be read from the XML configuration files $ipcc_ppf_M0[12].conf.$ A sample file is shown in Figure 17. The additional pieces of information are as follows for each band: x = 1,2,3):

- Number of scores (per storage width). (nbrScoresBxP1, nbrScoresBxP2, nbrScoresBxP3)
- Outlier threshold (on the normalised residual RMS for detector 1). (outlierThresholdBxD1)
- Outlier threshold (on the normalised residual RMS for detector 2). (outlierThresholdBxD2)
- Outlier threshold (on the normalised residual RMS for detector 3). (outlierThresholdBxD3)
- Outlier threshold (on the normalised residual RMS for detector 4). (outlierThresholdBxD4)
- Outlier slope. (outlierSlopeBx)
- Quantisation factor for the scores. (scoreQuantisationFactorBx)
- Quantisation factor for the residuals. (residualQuantisationFactorBx)

```
<IpccPpfConfig>
```

```
<Processing>
   <nbrScoresB1P1> 1 </nbrScoresB1P1>
<nbrScoresB1P2> 41 </nbrScoresB1P2>
   <nbrScoresB1P3> 48 </nbrScoresB1P3>
   <nbrScoresB2P1> 2 </nbrScoresB2P1>
   <nbrScoresB2P2> 61 </nbrScoresB2P2>
   <nbrScoresB2P3> 57 </nbrScoresB2P3>
   <nbrScoresB3P1> 1 </nbrScoresB3P1>
   <nbrScoresB3P2> 44 </nbrScoresB3P2>
   <nbrScoresB3P3> 45 </nbrScoresB3P3>
   <outlierThresholdB1D1> 1.1232 </outlierThresholdB1D1>
   <outlierThresholdB1D2> 1.1804 </outlierThresholdB1D2>
   <outlierThresholdB1D3> 1.1539 </outlierThresholdB1D3>
   <outlierThresholdB1D4> 1.1029 </outlierThresholdB1D4>
   <outlierThresholdB2D1> 1.1318 </outlierThresholdB2D1>
   <outlierThresholdB2D2> 1.0161 </outlierThresholdB2D2>
   <outlierThresholdB2D3> 1.0131 </outlierThresholdB2D3>
   <outlierThresholdB2D4> 1.0261 </outlierThresholdB2D4>
   <outlierThresholdB3D1> 0.9825 </outlierThresholdB3D1>
   <outlierThresholdB3D2> 0.9482 </outlierThresholdB3D2>
   <outlierThresholdB3D3> 1.0333 </outlierThresholdB3D3>
   <outlierThresholdB3D4> 1.0386 </outlierThresholdB3D4>
   <outlierSlopeB1> 0.0305687 </outlierSlopeB1>
   <outlierSlopeB2> 0.220026 </outlierSlopeB2>
   <outlierSlopeB3> 3.54998
                               </outlierSlopeB3>
   <scoreQuantisationFactorB1> 0.5 </scoreQuantisationFactorB1>
   <scoreQuantisationFactorB2> 0.5 </scoreQuantisationFactorB2>
   <scoreQuantisationFactorB3> 0.5 </scoreQuantisationFactorB3>
   <residualQuantisationFactorB1> 0.5 </residualQuantisationFactorB1>
   <residualQuantisationFactorB2> 0.5 </residualQuantisationFactorB2>
   <residualQuantisationFactorB3> 0.5 </residualQuantisationFactorB3>
 </Processing>
</IpccPpfConfig>
```

Figure 17: XML configuration files ipcc ppf M0[12].conf.

APPENDIX A: EXTENDED DOCUMENT CHANGE RECORD

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
Issue 3, Draft A	15/11/2000	DCN.SYS. DCN.025	Re-structuring of the document.
Issue 4, RevisionA	04/01/2001		Sect. 5.11.7.5.3.4: Added detailed specification of check for super saturation of water vapour
			Sect. 5.11.7.5.3.4: Added detailed specification of check for super adiabatic layering
			Sect. 5.11.7.5.2: Added detailed specification of checks and corrections for super saturated and super adiabatic situations
			Sect 5.11.6.2: AMSU-MHS-IASI interchannel regression cloud clearing method has been removed
			Sect. 3.2.2.7.2: Removed inter-channel regression cloud clearing method
			Sect. 5.11.7.5.2: Added detailed specification of artificial neural network for trace gas retrieval
			Sect 2.1: Changed first sentence
			Sect 1.11.1: Added applicable document
			Sect 1.11.2: Added reference document
			Sect 1.6: Changed sentence
			Sect 2.2: Update of table 2
			Sect 3.1.3.1: editorial changes
			Sect 3.2.2.2: change of wording
			Sect 5.3.2.8: Table 4 re-arranged and more details included
			Sect 5.3.5: Completed ALG.A0.50 according to Table 4?, detailed ALG.A0.30
			Sect 5.5: ALG.A2.10 deleted, ALG.A2.60: included missing verb
			Sect 4.1: detailed REQ.IASI.PGS.L2.000100, completed REQ.IASI.PGS.L2.00300 according to Table 4
			Sect 5.6.2: Added detail in ALG.A32.50
			Sect 5.6.3: Corrected number of ALG.A33.10
			Sect 5.7.2: Added requirement to ALG.A42.10, added detail to ALG.A42.30
			Sect 5.7.3: Added requirement to ALG.A43.10
			Sect 5.7.4: Added requirement to ALG.A44.10
			Sect 5.7.5: Added requirement to ALG.A45.10
			Sect. 5.11.7.5.3.4: Added requirement to calculate ozone columnar amount

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Sect. 5.7.5: Updated Flag FLG_HIRSBAD
			Sect 5.9: Added detail to general description
			Sect. 5.9.2: Refinement of ALG.A62.10
			Sect 5.9.4: Changed title to reflect contents
			Sect. 5.10.5: Replaced "cloud mask" by "scenes analysis"
			Sect. 5.11.1: Requirement ALG.A81.10 refined and extended
			Sect. 5.11.2.1: Added requirements to ALG.A4821.40
			Sect. 5.11.2.1: Refinement of ALG.A4821.50
			Sect. 5.11.3.1.2: Removed requirement from ALG.A8312.20
			Sect 5.11.3.1.5: Refinement of ALG.A8314.07
			Sect. 5.11.3.2: Refinement of ALG.A832.05
			Sect. 5.11.3.2: Refinement of ALG.A832.10, and added requirement
	01/03/2001		Sect 5.11.3.3: Corrected reference number of ALG.A8233.20 to A833.20
			Sect. 5.11.5.4: Refinement of requirement ALG.A854.40
			Sect. 5.11.2.1: Added requirement ALG.A4821.35
			Entire document: Moved scientific details and algorithms to section 6.
			Sect. 5.11.2.1: Added requirement to ALG.A4821.50
			Sect. 5.11.7.5.2: Removed requirement ALG.A8752.70
			Sect 5.11.7.5.2: Removed algorithm description from ALG.A487534.30 and combined with ALG.A487534.50
			Sect 5.11.7.5.2: Removed requirement ALG.A487534.60
			Sect 5.11.2: Changed body text including requirement to numbered item ALG.A4821.A5
			Sect 5: Moved all SADT diagrams to Section 3
			Sect 4: Moved all operations concept to section 3
			Section 5 becomes section 4
			Section 4: Moved all flag descriptions to annex
	02/03/2001		Section 4.6.2, ALG.A0.110: Refinement and relaxation of requirement
			Section 4.6.2, ALG.A0.120: refinement
			Section 4.6.2, ALG.A0.130: refinement
			Section 4.7, added requirement ALG.A1.25
			Section 4.7, ALG.A1.50: refinement
			Section 4.7, ALG.A1.60: refinement

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 4.8, ALG.A2.20: refinement
			Section 4.8, ALG.A2.50: refinement
			Section 4.8, ALG.A2.60: refinement
	21/03/2001		Section 1.11.2: added reference
			Section 4.12.4, ALG.A64.20: refinement
			New Section 5.4 on bilinear interpolation
	27/03/2001		Refinement of Section 5.5
			Refinement of Section 5.8
			Refinement of Section 5.1
	02/04/2001		Update of Section 5.3, describing predictors for trace gases
			Section 4.14.3.2, ALG.A4832.30: refinement
			Section 4.14.3.2, ALG.A4832.35: refinement
	03/04/2001		Section 4.14.7.5.3.3, ALG.A87533.60: refinement and added requirement
			Section 5.16:Added detail on trace-gas profile scaling
	04/04/2001		Section 5.7: Refined description of cloud detection tests
			Section 5.8: Refined description of CO2 slicing method
			Section 5.9: Refined description of threshold values
			Section 10: Refined description of threshold values
	05/04/2001		Annex: Removed flag FLG_FRTM
			Sect. 4.14.2, ALG.A82.5: Removed choice of FRTM
			Sect. 4.14.2, ALG.A82.10: Refinement
			Sect. 4.14.2, ALG.A82.20: Refinement
			Sect. 4.14.30, ALG.A82.30: Removed
			Sect. 4.14.2, ALG.A82.40: Removed requirement
			Sect. 4.14.2.1, ALG.A4821.07: Refinement
			Annex: Removed IASI_L2_PGS_SEL_FRTM
			Sect. 4.14.7.3.1, ALG.A8731.10: Refinement
			Sect. 4.14.7.3.1, ALG.A8731.20: Refinement
			Sect 4.14.7.3.2.1: Removed FRTM choice
			Sect. 4.14.7.5.3.4, ALG.A87534.100: Refinement
			Sect. 3.1.2: Updated figures 8 and 18
			Sect. 4.14.3.3: Removed explicit cloud clearing, choice of clear, cloudy, or variational cloud clearing is made
			Sect. 4.14.3.3: ALG.A853.10: Refined
			Sect: 4.14.5.4: Removed section
			Sect 4.14.6: Section replaced by section

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			4.14.6.2
			Section 4.14.6.1: Removed section
			Section 4.14.6.2: Removed section
			Sect. 4.14.6, ALG.A862.20: refined
			Annex: removed FLG_CLDCOR
	09/04/2001		Sect. 3.1.2: Removed figure on decomposition of A86
			Sect 3.1.2: Removed figure on decomposition of A85
			Sect 3.1.2: Updated decomposition of A8
			Sect. 4.14.5: Renamed section and changed functionality to selection of retrieval type
			Sect. 4.14.5.1: Made requirement explicit algorithm ALG.A851.10
			Sect. 4.14.7.5.3.4, ALG.A487534.70: Changed requirement
			Sect. 4.14.7.5.3.4: Renamed second requirement to ALG.A487534.20
			Sect. 4.14.5.1: Section removed, renamed ALG.A851.10 to ALG.A85.10
			Sect. 4.14.5.2: Section removed, renamed ALG.A852.10 to ALG.A85.20
			Sect. 4.14.5.3: Section removed, renamed ALG.A853.10 to ALG.A85.30
			New section 5.16, describing super and pseudo channels
			New section 5.18, describing selection of iterative retrieval
	10/04/2001		Sect 4.7, ALG.A1.60: refined, PSF extracted from dataflow
			Sect 4.7, ALG.A1.70: refined
			New section 5.3 describing the PSF
			New section 5.3.1 describing the calculation of the fractional land cover
			New section 5.3.2 describing the calculation of the weighted fractional surface type cover
			New section 5.3.3 describing the calculation of the mean surface height and the surface height distribution
			Section 4.8, ALG.A2.30: refined
			Section 4.8, ALG.A2.40: removed
			Section 4.8, ALG.A2.60: refined
			Section 4.8, ALG.A2.70: refined
			Sect. 4.14.7.5.2, ALG.A8752.150: refined

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Added section 5.17.1 describing the initialisation
			of the iterative retrieval and of the FRTM
	12/04/2001		Sect. 5.17.1: Added description of sea surface emissivity calculation
			Added section 5.19, describing the radiance tuning. The introductory part of section 4.9.3 has been shortened accordingly
			Section 3.1.2: removed function A8751 from Figure 17
			Section 4.14.7.5.1: removed, ALG.A8751.10 de-scoped and renamed to ALG.A8752.10 and moved to section 4.14.7.5.2
			Added new Annex: Contents description of user- configurable auxiliary databases
	23/04/2001		Annex C: Refinement
	24/04/2001		Section 4.14.7.5.2.6: Section renamed, ALG.A87536.40 refined
			Added section 5.20, describing interpolation to user levels
			Section 3.1.2: Updated figure 3.1.2
			Section 4.9.2: Added requirement ALG.A32.70 on handling missing or corrupted channels
	25/04/2001		Section 4.14.7.5.2.6: Refinement of ALG.A87536.40
	04/05/2001		Section 4.14.3.2: Refinement of ALG.A832.50
			Section 4.14.3.2: Refinement of ALG.A832.70
	07/05/2001		Combined section 4.8 with section 4.7
			New section 4.8: Acceptance and validation of NWP forecast
	08/07/2001		Moved requirements of sections 4.2, 4.3, 4.4, 4.5 into section 4.6, which became new section 4.2
			Section 4.5.2, refined ALG.A32.40
			Section 4.6.2, refined ALG.A42.20
			Section 4.6.3, refined ALG.A43.20
			Section 4.6.4, refined ALG.A44.20
			Section 4.6.5, refined ALG.A45.20
			Section 4.7.2, refined ALG.A52.20
			Section 4.10.3.2, refined ALG.A832.15
			Section 4.10.3.2, refined ALG.A832.40
			Section 4.6.10, refined ALG.A862.20
			Section 4.10.7.2.3, removed ALG.A8723.20
			Section 4.14.7.5.2.6, refined ALG.A87536.10

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 4.14.7.5.2.6, refined ALG.A87536.20
			Section 4.14.7.5.2.6, added ALG.A87536.65
	10/05/2001		New section 1.11.3, listing references to background information
			Sections 3 and 4: Removed HIRS level 1 dataflow as input from the PF
			Section 3: removed subsection on operations concept
			Moved subsections giving the product generation overview from section 3 to 4.
			Section 4.2.2: Split ALG.A0.130 into sub-requirements
			Section 4.2.2: Removed requirement ALG.A0.150
			Section 4.2.2: Removed sub-req. 10 of ALG.A0.10
			Removed section 4.2.3
			Section 4.3, split ALG.A1.25
			Section 4.3, split ALG.A1.60
			Section 2.2.2, added ALG.A0.180
			Section 4.3, split ALG.A1.120
			Section 4.3, split ALG.A1.130
			Section 4.4, split ALG.A1.10
			Section 4.4, refined ALG.A1.30
			Section 4.5.2, split ALG.A32.50
			Section 4.6.2, split ALG.A42.20
			Removed section 4.6.5
			Section 4.8.4, split ALG.A64.20 into sub- requirements
			Section 4.9.5, split ALG.A75.10
			Section 4.9.5, split ALG.A75.20
			Section 4.9.5, split ALG.A75.40
			Section 4.9.5: Added requirement ALG.A75.35
			Section 4.10.1: Removed requirement ALG.A81.20
			Section 4.10.2, split ALG.A82.05
			Section 4.10.2.1, split ALG.A821.20
			Section 4.10.2.1, split ALG.A821.35
			Section 4.10.2.1, split ALG.A821.50
			Section 4.10.3.1.3, removed requirement from ALG.A8313.10
			Section 4.10.3.1.5, split ALG.A8314.07
			Section 4.10.3.1.5, split ALG.A8314.08
			Section 4.10.3.1.5, split ALG.A8314.40

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 4.10.3.1.5, split ALG.A8314.90
			Section 4.10.3.1.5, split ALG.A8314.130
			Section 4.10.3.2, refined ALG.A832.05
			Section 4.10.3.2, split and refined ALG.A832.10
			Section 4.10.3.2, split ALG.A832.15
			Section 4.10.3.2, split and refined ALG.A832.40
			Section 4.10.3.3, removed ALG.A833.10
			Section 4.10.3.3, split ALG.A833.20
			Section 4.10.3.4, removed ALG.A843.10
			Section 4.10.4.1, split ALG.A841.30
			Section 4.10.4.2, split ALG.A842.20
			Section 4.10.4.3, refined ALG.A843.40
			Section 4.10.5, split ALG.A85.30
			Section 4.10.6, split ALG.A862.60
			Section 4.10.7.3.1, split ALG.A8731.20
			Section 4.10.7.3.2.2, removed ALG.A87322.60
			Section 4.10.7.3.2.3, refined ALG.A87323.10
			Section 4.10.7.3.2.3, removed ALG.A87323.30
			Section 4.10.7.5.1, split and refined ALG.A8752.10
			Section 4.10.7.5.1, split ALG.A8752.40
			Section 4.10.7.5.1, split ALG.A8752.80
			Section 4.10.7.5.1, split ALG.A8752.120
			Section 4.10.7.5.1, refined ALG.A8752.125
			Section 4.10.7.5.1, split ALG.A8752.130
			Section 4.10.7.5.1, refined ALG.A8752.140
			Section 4.10.7.5.1, split and refined ALG.A8752.150
			Section 4.10.7.5.2.2, refined ALG.A87532.10
			Section 4.10.7.5.2.2, refined ALG.A87532.30
			Section 4.10.7.5.2.3, removed ALG.A87533.10
			Section 4.10.7.5.2.3, removed ALG.A87533.20
			Section 4.10.7.5.2.3, new requirement ALG.A87533.05
			Section 4.10.7.5.2.3, removed ALG.A87533.30
			Section 4.10.7.5.2.3, new requirement ALG.A87533.15
			Section 4.10.7.5.2.3, new requirement ALG.A87533.25
			Added section 5.17.2
	11/05/2001		Section 4.10.7.5.2.3, refined ALG.A87533.60
			Section 4.10.7.5.2.3, split ALG.A87533.70

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 4.10.7.5.2.3, refined ALG.A87533.80
			Section 4.10.7.5.2.3, refined ALG.A87533.100
			Section 4.10.7.5.2.4, split ALG.A87534.20
			Section 4.10.7.5.2.4, split ALG.A87534.70
			Section 4.10.7.5.2.4, split ALG.A87534.75
			Section 4.10.7.5.2.4, split ALG.A87534.110
			Section 4.10.7.5.2.4, refined ALG.A87534.160
			Section 4.10.7.5.2.4, split ALG.A87534.190
			Section 4.10.7.5.2.4, split and refined ALG.A87534.210
			Section 4.10.7.5.2.4, split ALG.A87534.220
			Section 4.10.7.5.2.4, split and refined ALG.A87534.230
			Section 4.10.7.5.2.4, split and refined ALG.A87534.250
			Section 4.10.7.5.2.6, split ALG.A87536.40
			Section 4.10.7.5.2.6, split ALG.A87536.50
			Table 3 revised and moved to section 4.1.1.8
	15/05/2001		Section 4.2.2, refined ALG.A0.50
			Section 4.2.2, refined ALG.A0.60
			Section 4.2.2, refined ALG.A0.10
			Section 4.2.2, refined ALG.A0.110
			Section 4.5.1, refined ALG.A31.30
			Section 4.10.2.1, new requirement ALG.A821.08
			Section 4.5.1, new requirement ALG.A31.40
			Section 4.5.1, refined ALG.A31.30
			Section 4.5.2, refined ALG.A32.30
			Section 5.4.2, moved ALG.A32.50, ALG.A52, ALG.A55, ALG.A58 to section 4.2.2, renamed to ALG.A0.190, ALG.A0.200, ALG.A0.210, ALG.A0.220
			Section 4.2.2, new ALG.A0.230
			Section 4.5.3, new ALG.A33.20
			Section 4.5.4 removed
			Section 4.6.2, removed ALG.A42.25
			Section 4.7.1, refined ALG.A51.10
			Section 4.7.1, new ALG.A51.20
			Section 4.7.3 removed
			Section 4.8.1, split and refined ALG.A61.10
			Section 4.8.2, split and refined ALG.AA62.10
			Section 4.9.4, removed ALG.A74.10

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 4.9.4, refined ALG.A74.20
			Section 4.10.1, split and refined ALG.A81.10
			Section 4.10.2, removed ALG.A82.20
			New section 5.5 describing the interpretation of the AVHRR radiance analysis
	17/05/2001		Section 4.9.5, new ALG.A75.05
			Section 4.9.5, refined ALG.A75.15
			Section 4.10.2.1, refined and split into ALG.A821.40
			Section 4.10.2.1, removed ALG.A8312.20
			Section 4.10.3.1.3, refined ALG.A8313.20
			Added section 5.7, describing calculation of brightness temperature Section 4.10.3.1.5, refined ALG.A8315.40
			Section 4.10.3.1.5, refined ALG.A8315.100
			Section 4.10.3.1.5, refined ALG.A8315.140
			Section 4.10.3.1.5, refined ALG.A8315.160
			Section 4.10.4, refined ALG.A841.10
			Section 4.10.5, removed ALG.A85.20
			Section 4.10.5, refined ALG.A85.30
			Section 4.10.6, refined and split ALG.A862.20
			Section 4.10.6, new ALG.A862.70
			Section 4.10.7.2, split and refined
			Section 4.10.7.21 removed
			Section 4.10.7.2.2 removed
			Section 4.10.7.2.3 removed, requirements moved to section 4.10.7.5.2.1
			Section 4.10.7.2.4 removed
			Added section 5.23.2, describing valid bounds on cloud parameters
			Added section 5.26 on quality control
			Section 4.10.7.3.1, ALG.A8731.10 removed
			Section 4.10.7.3.2.1, ALG.A87321.40 removed
			Section 4.10.7.3.2.2 removed
			Section 4.10.7.3.2.1 removed
			Section 4.10.7.3.2.3 removed
			Section 4.10.7.5.1, ALG.A8752.40 refined
			Section 4.10.7.5.1, ALG.A8752.110 removed
			Section 4.10.7.5.1, ALG.A8752.50 removed
			Section 4.10.7.5.1, ALG.A8752.100 removed

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 4.10.7.5.1, ALG.A8752.90 removed
			Section 4.10.7.5.2.3, ALG.A87533.120 removed
			Section 4.10.7.5.1, ALG.A8752.40 refined
			Section 4.10.7.5.1, ALG.A8752.100 removed
			Section 4.10.7.5.1, ALG.A8752.90 removed
			Section 4.10.7.5.1, ALG.A8752.110 removed
			Section 4.10.7.5.2.3, ALG.A87533.120 removed
			Section 4.10.7.5.2.4, ALG.A87534.70 removed
			Section 4.10.7.5.2.4
			Section 4.10.7.5.2.4
	21/05/2001		Section 4.10.7.5.2.2
			Section 3.2
	23/05/2001		Section 5.6.2, detailed description of Jacobians
	28/05/2001		28/05/2001 Added section 5.3 on line and pixel numbering
			scheme
	30/5/2001		Added section 3.3.1, PGF States and Transitions
			Added requirement ALG.A0.25 Removed Annex F
Issue 5, Draft	25/09/2001		
			Section 1.7: Removed statement on two concurrent
			numbering schemes Section 5.13: Refinement
			Section 5.19: Correction and refinement
			Section 5.23.1: Refinement of trace-gas retrieval
			Section 4.3, ALG.A1.60: Correction of typo
			Section 4.10.1, ALG.A81.10: Refinement
			Section 4.10.3.1.5, ALG.A8315.07: Correction of typos
			Section 5.7, Equation 15: Correction of equation 15
			Section 5.12: Correction of equation 228
			Section 5.23: Correction of equation 252
			Section 4.6.4, ALG.A44.20: Correction of typo
			Section 4.6.5, ALG.A46.10: Renamed to ALG.A45.10
			Section 4.8.3, ALG.A63.10: Correction of typo
-			Section 4.9.5, ALG.A75.35: Correction of typos
			Section 1.6: Adapted to Issue 5, revision 0. Changed text related to TBC and TBD
			Section 1.10: Updated list of acronyms
			Section 4.8.4, ALG.A64.30: Renamed to make numbering unique

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 5.7.2, equations 19,22,23: Corrections
			Section 5.7: Refinements
			Section 5.22: Changed definition and calculation of super channels
	04/10/2001		Annex C.: Changed upper limit of number of levels to 100
	31/10/2001		Section 4.10.7.5.2.4: Deleted requirement ALG.A87534.90
			Section 5.23.3: Added details
			Section 5.23.4: Added details
			Section 5.26: Added details
			Section 4.10.7.5.2.4: Added detail to ALG.A87534.250
			Section 4.10.7.5.2.4: Changed ALG.A87534.110
			Section 5.23.1: Added details
			Section 4.10.3.2: Changed ALG.A832.50
			Section 4.10.3.2: Changed ALG.A832.10
			Section 4.10.3.2: Changed ALG.A832.15
			Section 5.10: Added details
			Annexes B and C: Corrected description of IASI_L2_PGS_COF_SLIC
			Annexes B and C: Added description of IASI_L2_PGS_THR_CLCMP
			Section 5.11: Added details
			Annex C: Completed description of IASI_L2_PGS_COF_CLDPHA
			Annexes B and C: Description of IASI_L2_PDS_THR_DAYNIT has been added
			Section 4.10.3.1.4: Changed ALG.A8315.07
			Section 5.23: Correction of equations
			Section 5.25: Added detail
			Section 4.5.3: Added requirements to ALG.A33.10 and ALG.A33.20
			Section 4.10.3.1.4: Function A8314 deleted
			Section 4.8.4: Added detail to ALG.A64.22
			Section 4.8.4: Added detail to ALG.A64.24
			Section 4.8.4: Added detail to ALG.A64.26
			Section 4.7.2: Added detail to ALG.A52.20
			Section 4.9.5: Added requirements to ALG.A75.10
			Section 4.9.5: ALG.A75.50

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
	01/11/2001		Section 3.2: Updated figures 2, 7, and 10
			Section 5.15: Text included
			Section 5.16: Text included
	06/12/2001		Section 4.5.1: Changed introductory sentence
			Section 4.5.2, ALG.A32.50: Refinement
			Section 4.8.2, ALG.A62.20: Removed requirement
			Section 4.8.3, ALG.A64.22: Refinement
			Section 4.8.3, ALG.A64.24: Refinement
			Section 4.8.3, ALG.A64.26: Refinement
			Section 4.10.3.1.3, ALG.A8313.10 refined
			Added section 5.7.2 describing band correction
			Section 4.10.3.1.5, ALG.A8315.130: removed duplicated requirement
			Section 4.10.3.2, ALG.A832.06: Refinement
			Annexes B and C: Removed IASI_L2_PGS_THR_IACLD and changed IASI_L2_PGS_THR_IACLR
			Section 4.10.3.2, ALG.A832.30 refined
			Annex C: Updated IASI_L2_PGS_COF_SLIC
			Section 4.10.3.3, ALG.A833.10: Changed reference to database
			Annexes B and C: Removed ASI_L2_PGS_THR_CLTHR
			Section 4.10.7.3, ALG.A8731.20:changed requirement
			Annex E: Change of FLG_CHNSEL
			Entire document: replaces IASI pixels by IASI IFOVs
			Section 4.10.7.5.1: Re-phrased introductory sentence
			Section 4.10.7.5: Changed introductory remarks
			Section 4.10.7.5.2.1: Function A87531 is obsolete and has been emptied, the section is not removed to keep the numbering scheme intact
			Section 4.10.7.5.1, ALG.A8752.120: refinement
			Section 4.10.7.5.2.2, ALG.A87532.30: refinement
			Section 4.10.7.5.1, ALG.A8752.140 renamed to ALG.A8752.05
			Section 4.10.7.5.1, ALG.A8752.05: removed part of the requirements
	10/12/2001		Section 4.10.7.5.2.3, ALG.A87533.25: refinement
			Section 4.10.7.5.2.4, ALG.A87534.260 removed
			Section 4.10.7.5.2.3, ALG.A87533.15: refinement

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 5.23: Added details
			Section 4.10.7.5.2.3, ALG.A87533.25: refinement
	11/12/2001		Section 5.7.2: Corrected equations 133, 134, and 135
			Section 5.7: Added note to equation 77
			Section 5.7 and subsections: Removed equation (45) and replaced P by p in all equations
			Section 5.7: Added details
			Section 5.7.2: Corrected equation (88)
			Section 5.7.2: Added details
	12/12/2001		Section 5.2: Refinement
			Section 1.5: Refinement
			Section 1.11.3: Added detail
			Section 5.3: Refinement
			Section 5.4.2: Added detail, refinement
			Annex C: Added details
			Section 5.17: Simplified equations
			Section 5.6: Added details
			Section 5.9: Corrected equation (213)
			Section 4.10.6, ALG.A862.20 refined
			Annex B and C: Added IASI_L2_PGS_DAT_VARCLR
			Section 5.14: Added details
			Section 5.18: Text included
			Section 5.25: Refinement
			Section 5.7.2: Removed comment following equation
			Section 5.7.2: Removed comment following equation
			Section 5.14: Added detail and changed equations
	10/01/2002		Section 5.7.3: Corrected equation (133)
			Section 5.7.3: Corrected expressions in Table 8
	15/01/2002		Section 5.4: Added detail
	17/01/2002		Section 5.17: Modifications on water-vapour and ozone retrieval
			Section 5.9: Modification of EOF residual check
			Section 4.3, ALG.A1.25: Refinement
			Annex A: Update with new symbols
			Annex D: FLG_FINCHC updated and combined with FLG_CLDRET
			Section 4.10.5, ALG.A85.30: FLG_CLDRET
			replaced by flag FLG_FINCHC

Issue/Revisio	n Date	DCN No.	Changed Pages / Paragraphs
			Section 4.10.7.5.2.4, ALG.A487534.75:
			FLG_CLDRET replaced by FLG_FINCHC
			Section 4.10.6, ALG.A862.20: FLG_CLDRET
			replaced by FLG_FINCHC
			Section 5.23: Added detail
			Section 4.10.7.5.2.6, ALG.A87536.50: Removed redundant information
			Appendix C: Updated IASI_L2_PGS_DAT_VGRD
			Section 4.10.7.5.2.2, ALG.A87532.10: Added requirement
			Annex D: Corrected IASI_L2_PGS_THR_AVH
			Annex D: Updated IASI_L2_PGS_THR_FRTCLR
			Annex D: Updated IASI_L2_PGS_THR_CLDDET
			Section 4.9: Rephrased remark on PSF in introductory paragraph
			Section 5.7: Removed Table 7
			Section 4.10.7.5.1, ALG.A8752.40: Refinement and replacement of FLG_PRECHC by FLG_FINCHC
			Section 4.10.2, ALG.A82.05: Replaced IASI_L2_PGS_SEL_PRESEL by IASI_L2_PGS_TYP_INI
			Annexes B and C: Removed IASI_L2_PGS_SEL_PRESEL
			Annex D: Removed flag FLG_PRECHC
			Annexes B and C: Added IASI_L2_PGS_COV_NWP
			Section 4.10.7.5.2.4, ALG.A87534.20: Added extraction of NWP covariance matrix
			Section 4.2.4, ALG.A0.200: Added requirement
	30/01/2002		Section 5.23: Added convergence checks
			Section 4.10.7.5.2.6, ALG.A87536.65: Added requirement
			Annexes B and C: Added IASI L2 PGS DAT GTSLEV
			Section 5.7: Changed predictors for FRTM
			Section 5.7.3: Changed Jacobians according to changed predictors in FRTM
	31/01/2002		Inclusion of section 5.30 describing the error covariance compression and the information there generated for the product
			Section 4.10.7.5.32.6, ALG.A87536.30: Refinement
			Annexes B and C: Added IASI_L2_PGS_STERR
Issue 5	07/02/2002		Section 4.10.7 and subsections:

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Annex E: Changed FLG_IASIBAD
			Section 4.5.2, ALG.A32.50: Refinement and added information
			Section 4.2.2, ALG.A0.230: Modification
			Section 4.3, ALG.A1.60: Typo corrected
			Section 5.7: Removed Curtis-Godson approximation for calculation of layer-mean values
			Section 4.10.3.1.3, ALG.A8315.20: Resolved duplicated number of requirement
			Section 4.10.2, ALG.A82.05: Changed dataset name
			Section 4.10.7.2, ALG.A872.10: Refinement
			Section 4.10.7.5.2, ALG.A87532.50: Removed requirement because of duplication of ALG.A872.10
			Section 4.10.7.5.2.4: Corrected numbering of algorithms beginning with ALG.A4.
			Section 5.7: Added information related to gamma- correction of transmittance
			Section 5.9, Equation (228) corrected.
			Section 5.20: Refinement
			Annex D: Corrected entry in IASI_L2_PGS_COF_FRTM
			Added new section 5.31 on the use of flags
			Removed flag FLG_IASIGEO from Annexes D and E
			Section 4.3, ALG.A1.50: FLG_IASIGEO replaced by FLG_IASIBAD, refinement
			Annex E: Refined FLG_ATOVINT
			Annexes B and C: Removed IASI_L2_PGS_SEL_CHAN
			Section 4.8.4, ALG.A64.24: Added requirement
			Section 64, ALG.A64.26: Added requirement
			Annexes B and C: Removed IASI_L2_PGS_COF_WINCOR and updated IASI_L2_PGS_THR_WINCOR
			Section 4.10.3.1.5, ALG.A8315.130: Replaced IASI_L2_PGS_COF_WINCOR by IASI_L2_PGS_THR_WINCOR
			Annex B: Removed
			IASI_L2_PGS_THR_ADIAB
			Annex C: IASI_L2_PGS_DAT_CLIM: corrected
			Annex C: IASI_L2_PGS_THR_DESSTR: corrected
			Annex C: IASI_L2_PGS_TYP_INI: updated

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Annex E: FLG_FGCHECK corrected
			Annexes D and E: Flag FLG_FGSUPAD has been removed
			Annexes D and E: Flag FGSUPSAT has been removed
			Annex D: Removed flag FLG_INTCLR
			Section 5.6: Added information
			Section 5.2: Removed cloud top pressure, cloud phase and cloud emissivity from state vector
			Annex C: added information to IASI_L2_PGS_SEL_SUPCH
			Section 5.23: Added information on measurement covariance update during variational cloud clearing
			Section 4.3
			Section 4.3
			Annex C: Removed IASI_L2_PGS_COF_IPSF
			Section 4.9.3, ALG.A73.20: Updated
			Section 4.10.7.5.1, ALG.A8752.05: Added information
			Section 4.10.1, ALG.A81.10: Refinement
			Section 3.2: Updated figure 8
			Section 4.10.7.5.1, ALG.A8752.05: Added detail
			Section 4.10.3.1.5, ALG.A8315.08: Refinement
			Annex C: Added IASI_L2_PGS_COF_ANN
			Annex C: Updated IASI_L2_PGS_TYP_HTASS
			Annexes B and C: Updated IASI_L2_PGS_DAT_GTSLEV
			Annex C: Updated IASI_L2_PGS_DAT_VARCLR
			Section 5.15: Added information
			Section 5.23.1: Added information on initialisation of temperature
	12/02/2002		Annex E: Updated FLG_INITIA
			Section 5.1: Note added how to discriminate between AMSU-A1 and AMSU-A2
			Combined sections 5.13 and 5.24 into section 5.13
			Section 4.10.2.1: Moved ALG.A821.10 to section
			4.5.3 and renumbered it to ALG.A33.05
			Section 4.5.3: Refinement of ALG.A33.05,
			ALG.A33.10, and ALG.A33.15
			Annexes B and C: Updated IASI_L2_PGS_COF_ISRF
			Section 3.2: Updated figure 3

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 5.22: Added information
			Section 4.10.7.5.2.3, ALG.A87533.50: Refined
			Annex E: Updated FLG_ITRBOU
			Section 4.10.7.5: Added requirement ALG.A8752.170
			Annexes B and C: Added IASI_L2_PGS_COV_CLDPAR
Issue 5, Rev 1	21/02/2002	EUM.EPS.SYS. DCR.0.2.114	Annexes B and C: Updated IASI_L2_PGS_THR_STERR
			Annex C: Updated IASI_L2_PGS_THR_CLDPHA
			Section 3.2: Removed mention of pseudo channels from caption to figure 14
			Section 5.7: added detail and corrected equation (28)
			Section 5.7: changed equation (32) and added information
			Annexes B and C: Added items to IASI_L2_PGS_COF_SOL
			Section 5.7, before equation (44): changed "cloud levels" to "levels"
			Section 5.7.3: Completed equation (94)
			Section 5.7.3: Completed equation (103)
			Section 5.3.7: Corrected derivatives in table 7
			Section 5.3.7: Moved partial derivative wrt emissivity up before table 7
			Section 5.7.3: Corrected equations
			Section 5.23: Changed state vector for cloudy cases
			Section 4.10.2.1, ALG.A821.15: Added requirement
			Section 4.2.3: ALG.A0.190 renumbered to ALG.A0.240
			Section 4.2.4: ALG.A0.200 renumbered to ALG.A0.250
			Section 4.2.5: ALG.A0.210 renumbered to ALG.A0.260
			Annex C: Updated IASI_L2_PGS_DAT_LEMI
	28/03/2002		Section 5.7: Removed obsolete equation (83)
			Section 5.7.3, Table 7: Corrected predictor derivative
			Section 5.1: Corrected equation (1)
			Section 5.27: Corrected equation (285)
			Section 1.3: Added detail
			Section 3.4.1: Typos corrected
			Section 4.1: Removed introductory paragraph
			Section 3.3.1: Typo corrected

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 3.3.1: Typo corrected
			Section 4.1.1.3: Removed incorrect detail
			Section 4.1.1.4: Removed incorrect detail
			Section 4.1.1.5: Removed incorrect detail
			Section 4.1.1.8, Table 3: Added detail
			Section 4.1.1.8: Added detail on product quality
			Sections 4.1.2 – 4.1.6: Corrected typos
			Section 4.2.1, ALG.A0.10: Added detail to numbers 4, 8, and 15
			Section 4.2.1, ALG.A0.20: Added detail and removed requirement
			Section 4.2.2, ALG.A0.40: Typo corrected
			Section 4.2.2, ALG.A0.120: Typo corrected
			Section 4.4, ALG.A2.30: Added detail
			Section 4.5.1, ALG.A31.30: Typo corrected
			Section 4.8.1, ALG.A61.10: Added detail
			Section 4.8.4, ALG.A64.10: Added detail
			Section 4.10.2.1, ALG.A821.40: Added detail
			Section 4.10.3.1.5, ALG.A8315.170: Removed TBC
			Section 4.10.7.1.1, ALG.A8711.10: Added detail
	30/04/2002		Section 5.29: Added detail
			Section 5.10: Added detail and corrected equations
			Section 4.10.7.1.2, ALG.A8712.10: Changed requirement to simplify calculation
			Section 4.10.7.3.2, ALG.A8732.40 and ALG.A8732.50: Changed requirements to simplify calculations
			Section 4.10.7.5.2.2: Changed requirement ALG.A87532.30 to simplify calculations
			Section 5.31: Added detail
			Section 5.23: Added detail
			Section 5.19: Added detail to ANN trace gas retrieval (equations modified)
			Annex C: Update of dataset contents
			Annex B and C: Renamed IASI_L2_PGS_THR_STERR into IASI_L2_PGS_COF_STERR and updated data set
			Annex E: Updated FLG_STERR
			Section 4.10.7.5.2.6, ALG.A87536.65: Refinement
			Section 4.9: Added detail

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 4.9.4, ALG.A74.20: Added detail
	06/05/2002		Section 5.23: Changed cloud top temperature to pressure
			in state vector
Issue 5 Rev 2	07/06/2002	EUM.EPS.SYS. DCR.02.131	Section 3.2, Updated Figure 7
			Section 4.10.2.1, ALG.A821.08: Corrected detail
			Annex C: Corrected entry in IASI_L2_PGS_THR_GLWAVE
			Section 4.10.7.3.1, ALG.A8731.20: Changed details
			Section 5.15: Added detail
			Section 5.16: Added detail
			Section 5.7: Changed details
	12/06/2002		Section 5.7.1: Changed details
			Section 5.23.3: Corrected equation
			Annex D: Updated IASI_L2_PGS_THR_NWP
			Annexes C and D: Inclusion of IASI_L2_PGS_DAT_NWPLEV
			Added new section 5.34 describing NWP data contents
			Section 5.20: Added detail
			Section 4.4, ALG.A2.30: Added detail
			Section 4.4, ALG.A2.40: Added detail
			Section 5.8: Completed algorithm description
			Section 5.29: Added detail
			Section 4.3, ALG.A1.122: Refinement
			Section 5.4.3.1: Refinement
			Section 5.12: Correction included
18/06/20			Annex C: Correction of IASI_L2_PGS_THR_CIRDET
	18/06/2002		Annexes B and C: Added IASI_L2_PGS_DAT_EMIS
			Section 5.23.1: Added detail
			Annex C: Added detail to IASI_L2_PGS_COF_SOL
			Section 5.7: Added detail
			Section 5.10: Added detail
			Annex C: Removed entry from IASI_L2_PGS_DAT_LEMI
			Annex C: Completed IASI_L2_PGS_DAT_CEMI
			Section 4.10.2: Corrected ALG.A82.05
			Added new section 5.35 on Integrity of IASI Data
			Annex E: Updated definition of FLG_RETCHC

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 4.10.1, ALG.A81.10: Minor change
			Section 5.23: Added detail
			Section 5.29: Equation corrected
			Annex C: Corrected IASI_L2_PGS_COV_CLDPAR
			Section 5.1: Corrected references
			Annex D: Added flag description for FLG_SFCAVH
			Section 5.9: Added detail
			Section 5.18: Added detail
			Section 5.19: Added detail
			Section 4.10.1: Corrected ALG.A81.10.1
			Annex E: Updated FLG_RETCHC
			Section 4.10.7.2, ALG.A872.10.3: Added flag update
			Section 4.10.3.3, ALG.A833.20: Added flag update
Issue 5, Rev 3	16/08/2002	EUM.EPS.SYS. DCR.02.154	Correction of coefficients in equation 295
			Section 4.3, ALG.A1.25: Added information
			Section 5.4: Correction of equation (8)
			Section 5.4: Added new equation (6a)
			Section 4.10.7.5.1, ALG.A8752.05.1: Changed requirement
			Section 5.7.4: Correction of equation (141)
			Section 5.17: Removed TBC
			Section 5.23: Correction of equation (267)
			Section 5.4.2: Correction of table 4
			Annex C: Added info to IASI_L2_PGS_THR_DESSTR
			Annex C: Added info to IASI_L2_PGS_THR_POLCLD
			Annex C: Added info to IASI_L2_PGS_COF_IASAMS
			Annex C: Added info to IASI_L2_PGS_COF_IASINT
			Annex C: Added info to IASI_L2_PGS_DAT_CLIM
			Annexes B and C: Added dataset ASI_L2_PGS_DAT_NWPLEV
			Annex C: Added info to IASI_L2_PGS_DAT_USLEV
			Annex C: Added info to dataset IASI_L2_PGS_THR_HORCO
Issue 5, Rev 4	07/03/2003	EUM.EPS.SYS. DCR.03.062	Section 4.3, ALG.A1.30: Refinement for clarification
			Section 5.19: Correction of equations for ANN trace gas retrieval and definition of input and scaling parameters by adding five equations

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Annex C: Completion of data set definition for IASI_L2_PGS_COF_TRGAS
			Annex C: Correction of maximum number of IASI_L2_PGS_COF_ANN
			Section 5.15: Removed unnecessary entries from table related to setting of flag FLG_FINCHC
Issue 5, Rev 5	31/03/2004	EUM.EPS SYS.DCR. 04.019	Section 1.10.2: Added reference document [RD-501].
			Annex B: Added reference to RD-501
			Annex B: Removed contents, added reference to RD-501
			Section 5.22: Added paragraph on handling of missing channels
			Section 5.18: Added description of input and output scaling and comments for clarification
			Section 5.1: Added transformation of IASI L1C channel numbering into IASI Level 2 channel numbering.
			Section 5.29: removed TBW, added detailed description of entropy encoded eigenvector scores compression method
			Section 5.35: added description on setting of flag FLG_IASIBAD and implied consequences for the processing
			Section 1.10.2: Added reference documents
			Section 4.10.7.5.2.7: Removed ALG.A87534.80
			Section 5.15: Changed setting of flag FLG_FINCHC
			Section 5.7: removed TBD
			Section 4.9.5: changed ALG.A75.50
			Added section 5.30.1: Setting of flag FLG_RETCHC
			Added section 5.30.2: Setting of flag FLG_ATOVCMP
			Added section 5.30.3: Setting of flag FLG_ATOVCLR
			Added section 5.30.4: Setting of flag FLG_CLDSUM
			Section 4.10.3.1.3: Changed ALG.A8313.20
			Section 4.10.3.1.3: Removed ALG.A8313.10
			Annexes D and E: removed FLG_THICOR
			Section 4.10.4.2: Section deleted
			Section 4.10.4.3: Section deleted
			Section 4.10.2.1: changed ALG.A821.15
			Section 4.10.2.1: changed ALG.A821.40.2
			Section 5.5: Added handling of case: points on a line
			Section 5.23.3: Added clarification to equation (286)

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			Section 5.27: Added clarification
			Added section 5.30.5: Setting of flag FLG_QUAL
			Added section 5.37 on vertical grids
			Section 5.19: Correction of equation 248, added clarification on network structure
			Section 5.21: Added clarification to equation 262
			Section 5.4: Typo correction before eq. 10
			Section 5.9: Added clarifications and information
			Section 5.9: Correction of equations 204 to 208
			Section 5.9: Changed threshold for eq. 231
			Section 5.4: Correction of equations 5, 6, 8
			Section 5.15: Added clarification
			Added section 5.30.6: Setting of flag FLG_INITIA
			Section 4.10.7.5.2.3: Deleted requirements ALG.A87533.80.2, ALG.A87533.80.3 Changed ALG.A87533.50.3
			Section 5.23.1: Removed redundant method for emissivity calculation over water
			Section 5.23: Added information
			Section 5.15: Removed requirement to iterate parameters not chosen for iterative retrieval
			Section 4.2.1: Added further data sets to ALG.A0.110
			Section 5.23.1: Added clarification how to treat incomplete profiles at low pressure values
			Section 4.10.3.1.5, ALG.A8315.10: Removed reference to IASI_L2_PGS_THR_FRTCLR
			Section 4.10.3.1.5, ALG.A8315.25: Replaced reference to IASI_L2_PGS_THR_FRTCLR by IASI_L2_PGS_THR_CLDDET
			Annex B: Removed reference to IASI_L2_PGS_THR_FRTCLR
			Section 4.10.3.1.5, ALG.A8315.20: Replaced reference to IASI_L2_PGS_SEL_WINTST by IASI_L2_PGS_THR_CLDDET
			Annex B: Removed reference to IASI_L2_PGS_SEL_WINTST
			Section 5.18: Clarified use of data set IASI_L2_PGS_COF_ANN and changed the table to give meaning of identifiers
			Section 5.9: Added clarification on number of surface

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			conditions for test B
			Section 5.9: Added clarification on number of surface conditions for test C
			Section 5.23: Clarification of data set IASI_L2_PGS_COF_SCAL with respect to surface temperatures
			Section 5.23.1: Clarified handling of incomplete profiles for initialisation
Issue 5, revision 6	17/05/2004	EUM.EPS. SYS.DCR. 04.044	Section 5.29: Waiving implementation of method 4
Issue 6, Revision	08/08/2007		Section 5.7: Removed description of fast radiative transfer model, added reference to RTIASI-4 and PCRTM
			Section 5.7.3 removed – obsolete
			Section 5.10: included corrections, added tests/ selections for correct functionality, and added clarifications
			Section 5.11: included correction and added clarification
Issue 5, revision 6	17/05/2004	EUM.EPS. SYS.DCR. 04.044	Section 5.29: Waiving implementation of method 4
Issue 6, Revision	08/08/2007		Section 5.7: Removed description of fast radiative transfer model, added reference to RTIASI-4 and PCRTM
			Section 5.7.3 removed – obsolete
			Section 5.10: included corrections, added tests/ selections for correct functionality, and added clarifications
			Section 5.11: included correction and added clarification
			Section 5.7.3 removed – obsolete
			Section 5.10: included corrections, added tests/ selections for correct functionality, and added clarifications
			Section 5.11: included correction and added clarification
			Section 4.10.2.1: Updated ALG.A821.07 in line with changes in Section 5.7
v5G	20/03/2009	ODT_DCR_23	Annex B: Auxiliary datasets listing is now replaced by reference to document RD-501 which includes same tables (thus avoiding duplication of editing effort and possible inconsistencies creeping in).
V6	17/08/2010		Merging of v. 6.0 and v. 5G. Also some cosmetic updates (formatting, and to page header/footer).
V7	10/09/2010	ODT_DCR_209	Section 4.10.3.1.5: Deletion or replacement of several test functions. Chapter 5: Extensive updates, especially to following sections:

Issue/Revision	Date	DCN No.	Changed Pages / Paragraphs
			 Sec. 5.9 Cloud detection tests: Several tests removed or replaced with new tests. Sec. 5.10 CO2 slicing method: Various text clarifications; finer search of the pressure domain for the mode of CTP estimates from single channels; dynamic assessment of the upper bound of the pressure domain, based on forecasts. Sec. 5.17 EOF regression retrieval: Addition of an alternative regression scheme description for parameters other than SST. Sec. 5.19 ANN retrieval of trace gases: Scientific algorithm improvements to fix the scan angle dependency and failures over ice/desert surfaces and elevated terrains. Sec 5.23: New section inserted "Noise filtering of radiances". Annex E: Updates to FLG_CLDTST &FLG_IASICLD (deletion of unwanted bit descriptions).Reference RD-501 replaced by new document (same information but in spreadsheet format).Typo corrections, and editorial updates throughout document layout/formatting, sequential renumbering of equations. (Note: only significant corrections have been marked with change bars.)
v 7A	03/02/2014		DocX version created to replace Framemaker version. Subversion used for new Word document Dotx version. No changes to text in body of document. Annexes changed to name Appendix to match technical document template. No change to contents.