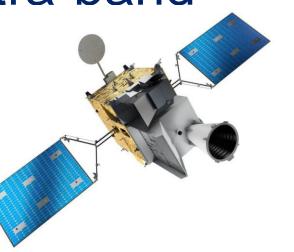


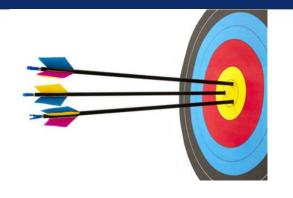
MAG: PSF bouncing effects

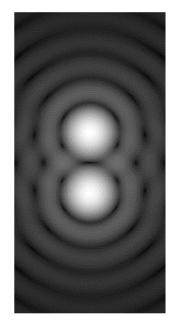
Dussarrat Pierre

EUM/RSP/PLN/20/1178416, v1 Draft, 26 May 2020

Introduction

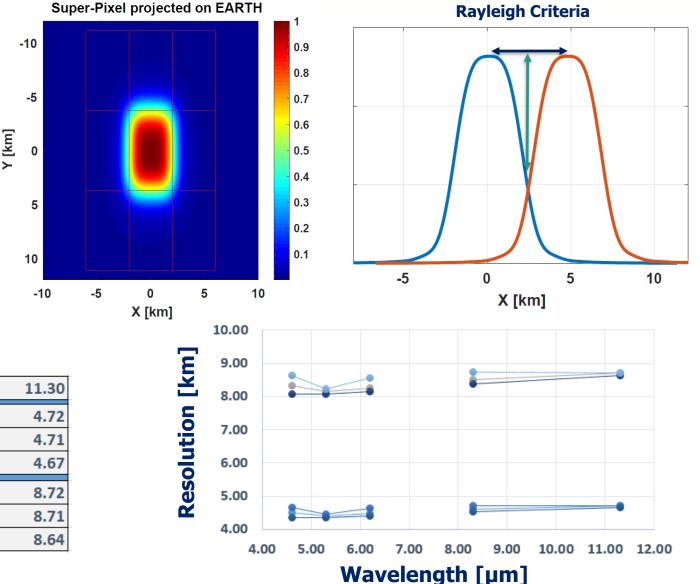

- Optical ghosts (or signal bouncing) are expected on IRS, specially in MWIR,
- Development of a tool enabling to assess their impacts,
- Three possible impacts are discussed,
- <u>Preliminary study</u>, waiting for the PFM- PSFs.



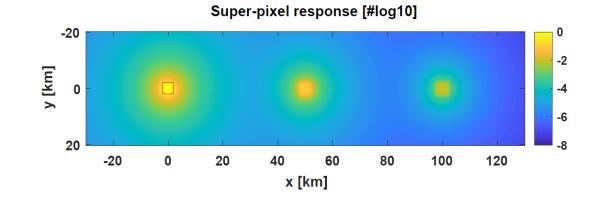


Outline

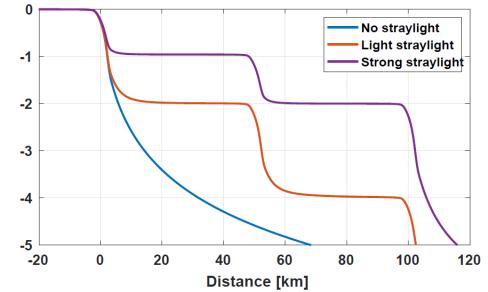
- Introduction
- Super-pixel PSF Description
- Spatial Resolution and Intra-band Co-registration
- Spectral calibration
- Conclusion



Super-pixel PSF Description without Straylight


- From: MTG-KT-IR-MA-0001/ MTG-KT-IR-RP-0036 (CDR data-pack)
- Focus on Europe (~Paris) @11.3µm:
 - Pixel = 90 μ m (4x4km)
 - Longitude = 0° (X)
 - Latitude = 50° (Y)
- Low dependency on wavelength and FOV :
 - Pixel size limited

Wavelength [µm]	4.60	5.30	6.20	8.30	11.30
Rayleigh X [km]	4.67	4.45	4.63	4.72	4.72
(Min - Mean - Max)	4.51	4.41	4.47	4.60	4.71
	4.36	4.36	4.41	4.54	4.67
Rayleigh Y [km]	8.64	8.23	8.56	8.73	8.72
(Min - Mean - Max)	8.34	8.16	8.26	8.50	8.71
	8.07	8.07	8.15	8.39	8.64

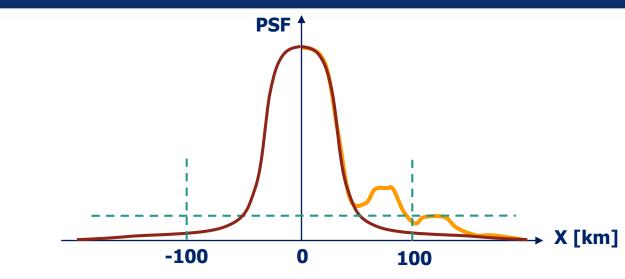


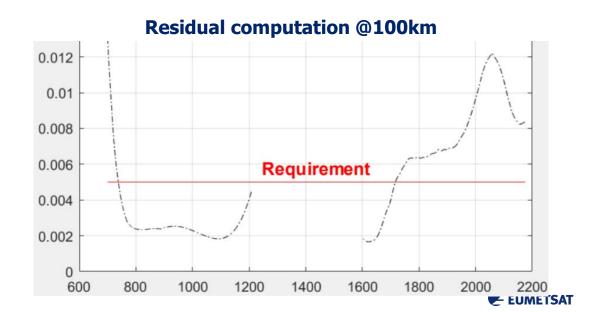
Super-pixel PSF with Bouncing (ghosts)

- 04/06/2020: No PSF available
- Requirements:
 - Residual: 1% at 50km and 0.5% at 100km (IRS-URD_1017)
- Information:
 - 50km bouncing
 - 100km straylight requirement close to be fulfilled
- Two scenarios have been considered:
 - Light straylight: 1% bouncing signal, requirements ok
 - Strong straylight: 10% bouncing signal, requirement 50km, 100km ~x2 spec

Residual computation [log10] Semi-illuminated scene

Spatial Resolution and Intra-band Co-registration

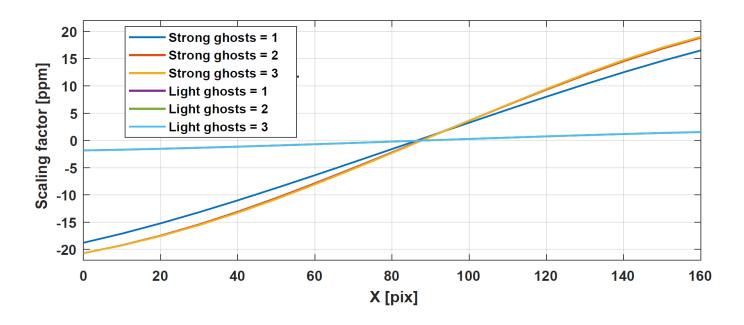

1) Spatial Localization


- Symmetry break = not usual straylight,
 -> Decreasing pedestal ≠ bouncing,
 ex: point source localization.
- Few % ghosts are expected to be visible in one Dwell for a single wavenumber (since SNR \leq 100)

2) Intra-band co-registration

- Ghosts amplitude depends on the wavenumber !
 -> LOS = PSF barycentre function of the wavenumber
 endangering the intra-band co-registration:
 - Light straylight: Shift = 0.5km
 - Strong straylight: Shift = 6km

Requirements (IRS-URD_1019) : <0.4km (1 σ)



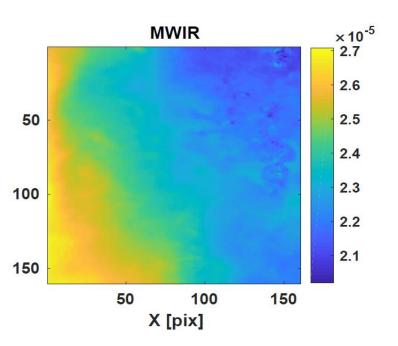
Spectral Calibration

1) Spectral calibration biais

 Barycentre shift = wrong OPD correction = spectral rescaling
 -> Mixing signal with different OPD on the same pixel: (uniform scene)

$$Sp_{tot}(v) = Sp(v) + \sum_{g=ghosts} \alpha_g Sp(v \times [1 + SF_g])$$

• + Wavenumber dependency : $\alpha_g(\nu)$! But, can be measured and corrected (gas cells)!


Spectral Calibration

2) Spectral calibration jitter

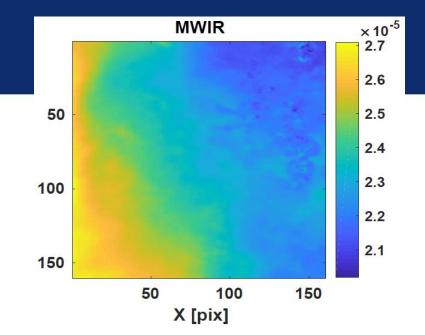
The ghost signal comes from a different position on earth than the main one.
 The spectral impact will be different for each pixel and scenes!

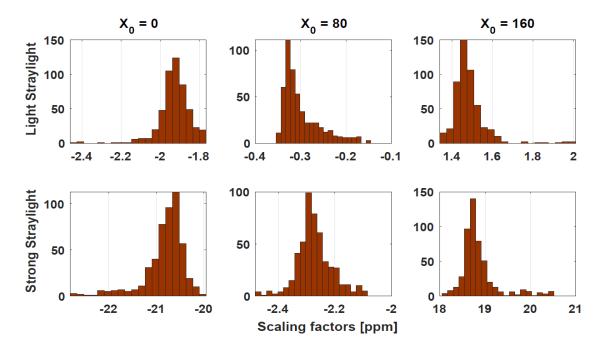
$$Sp_{tot}(v) = Sp_{nom}(v) + \sum_{g=ghosts} \alpha_g Sp_g(v \times [1 + SF_g])$$

- Mixing hot main signal with cold ghost signal will have a low impact
- Mixing cold main signal with hot main signal will have a greater impact.
- Not corrected by the baseline spectral calibration scheme.

Spectral Calibration

Simulation


- Simulation on many sub-windows (with rotations) using ECMWF dwell processed to L1 level,
- With horizontal periodic limit conditions to simulate the worst cases = Nearby cold/hot scenes


Results

• Up to a few ppm jitter on detector edges for the strong straylight scenario.

Requirement: <1ppm (1 σ) MWIR (IRS-URD_478)

+ wavelength dependency = chromatism not simulated.

Conclusion

Bouncing impacts

- One direction ghosts with an amplitude ~ a single wave-number radiometric noise,
- Strong dependency with the wavenumber,
- Barycentre shifts function of wavenumber, threaten the intra-band co-registration,
- Spectral calibration jitter (up to a few ppm).

→ Other requirements could be impacted by the in-field straylight, not only the one specifically on the straylight itself.

Conclusion

Discussion

- Wait for the PFM PSFs + OHB assessment late June
- The strong wave-number dependency would make it really hard to correct (Timeliness issues, exact bouncing knowledge...)
- Adaptation of the spectral calibration strategy ?
 No more at pixel level to reduce the scene variability ?