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ABOUT 

 

The GAMES study focuses on the development of a methodology and implementation of algorithms for the 

quantitative assessment of geolocation error related to the upcoming EPS-SG ICI and MWI spaceborne radiometric 

sensors. 

 

The Ice Cloud Imager (ICI) is a millimetre and submillimetre-wave conical radiometer imager on board of the 

forthcoming European Polar System – Second Generation (EPS-SG) satellite. ICI observations are acquired at about 

53° incidence angle and within ±65° in azimuth thus providing a swath of about 1700 km at the nominal orbit 

altitude. ICI has channels around 183 GHz, 243 GHz, 325 GHz, 448 GHz and 664 GHz. The primary objective of the 

ICI space mission is to support meteo-climate monitoring with a special focus on the retrieval of ice clouds in terms 

of columnar equivalent water content and effective particle diameter. 

 

OBJECTIVES 

 

The primary goal of GAMES study is to develop a methodology for the quantitative assessment of geolocation of 

the ICI spaceborne radiometer. The work investigates ICI channels to look for optically detectable surface targets 

(e.g., landmarks) as well as and atmospheric features (e.g., water vapor gradients and deep convective clouds) to 

implement an algorithm for the geolocation error validation. The validation is based on a contour matching 

technique, using high altitude lakes, ice shelves and mountain chains as landmark targets and water vapour features 

and deep convective cloud as atmospheric targets.  

 

OVERVIEW 

 

Geolocation of satellite data is a standard part of the post-launch calibration process. For the data to be of value, it 

is critical that the measured parameters are correctly mapped to the surface of the Earth. To validate the 

geolocation error for satellite-based microwave radiometers at 10-50 GHz (outside the absorption bands) it is 

possible to observe the surface, exploiting the strong difference in terms of surface emissivity between land and 

ocean. At this frequency the land surface emissivity is in the order of 0.8 (mainly depending on geographical 

coordinate) and sea surface is about 0.4 (mainly depending on salinity, surface temperature, wind speed and angle 

of view). The brightness temperature contrast along the coastline is used to extract the shoreline contours from 

satellite images. Correlating the reference shoreline with the extracted radiometric contour, it is possible to 

estimate the mutual shift along, obtaining the final geolocation error in km. An alternative way to obtain the 

coastline is to exploit the difference between ascending and descending swaths. At frequencies beyond 150 GHz, 

the gaseous absorption increases, and the atmospheric transmittance tends to be nearly zero so that the surface 

becomes optically invisible. However, some channels can still detect the surface, e.g. in subarctic-winter conditions 

and in regions with high topography with very low atmospheric water vapour. This is the case for the outermost 

183 GHz channel (ICI-1), and for the channel at 243 GHz (ICI-4). As such, the first objective of GAMES is to develop 

a method for the validation of these channels, identifying specific landmark targets areas. 

The further goal of the GAMES study is to quantify the errors in the field of view geolocation of ICI, exploiting 

meteorological targets. Unfortunately, most of the ICI channels, namely those at frequency equal or greater than 

325 GHz, have no chance to sample the surface features due to the strong gas absorption at those frequencies, 

thus preventing any ground-target based geolocation method. Here is where the meteorological target-based 

geolocation methods come mainly into play. Two distinct geolocation methods making use of meteorological 
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targets were studied: absolute and relative geolocation methods. The goal of the absolute geolocation is to 

estimate the geolocation error of a pivot ICI channel (e.g., one of those around 183 GHz) with respect to external 

reference information. For the relative geolocation, it is a self- referenced method since it uses ICI channel only 

without resorting to external auxiliary information and it aims at finding the pointing error of the ICI channels (i.e., 

those at frequencies above 183 GHZ) with respect to the pivot one. The meteorological targets considered are the 

deep convective clouds and water vapor masses (or atmospheric rivers) since these two target typologies are 

expected to be sufficiently detectable by the investigated ICI channels. The effectiveness of the absolute 

geolocation method is assessed using actual observations from PMW (e.g. SSMI/S, MHS, ATMS) sensors and SEVIRI 

on board of MSG. GMI and radar information from DPR and Cloudsat radar are also used for verification. The 

rationale is to have the PMW 183 GHz channel that mimics the 183 GHz ICI channel that needs to be geolocated, 

whereas MSG channels in the infrared window act as reference. On the other hand, the relative geolocation is 

assessed using a simulated dataset of four ICI orbits. 

A geolocation validation prototype tool is also generated as stand-alone tool, implementing the promising methods 

based on landmark targets as well as a Backus-Gilbert based relative geolocation assessment technique. The 

geolocation error assessment prototype is implemented in a standard language, implemented in Python and Cython 

for computational extensive algorithms. Cython is a superset of the Python language, and a compiled language 

designed to give C-like performance of code mostly written in Python. The coding is modular, as much generic as 

possible, clearly readable, commented, and following coding standards (e.g. PEP8). The GAMES tool is portable and 

is developed so that it can be run within a Docker container, and this container can be transferred to any Docker-

enabled machine. Data can easily be mounted into this container. A representative test and validation dataset, over 

selected regions of the globe spanning a time period that should be equivalent to one month of data is also 

collected. A detailed Algorithm Theoretical Basis Document (ATBD) is finally prepared. The ATBD describes in detail 

the methodology and the selection procedures applied. 
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1.   INTRODUCTION   
The  EPS-SG  Ice  Cloud  Imager  (ICI)  is  a  sub-millimetre  wave  conical  imager  on  board  of  the  European                   
Polar  System  –  Second  Generation  (EPS-SG)  and  it  will  have  11  channels  with  frequencies  around  183,                  
243,   325,   448   and   664   GHz,   as   shown   in   Tab.   1.1.   

  
Table   1.1:   Summary   of   ICI   channels   

  

These  wavelengths  allow  to  detect  ice  clouds,  whereas  the  emission  signal  from  the  surface  is                
predominantly  masked  by  high  water  vapour  opacity.  The  latter  is  a  problem  for  the  geolocation                 
assessment  because  current  methods,  comparing  coastlines  in  imagery  data  with  the  known  geographic               
locations,  are  not  readily  applicable  to  ICI  channels.  However,  in  very  dry  atmospheric  conditions  the                 
geolocation   validation   technique   could   be   still   based   on   the   observations   at   183.3±7   GHz   and   243.2   GHz.   

  1.1   Literature   review   
A  wide  experience  has  been  accumulated  so  far  on  the  geolocation  error  validation  for  satellite-based                 
microwave  radiometers  at  lower  microwave  frequencies  (10-50  GHz,  outside  the  absorption  bands)  by               
exploiting  their  strong  difference  in  terms  of  surface  emissivity  between  land  and  ocean.  Global-scale                
coastlines  can  be  used  as  surface  landmarks  with  a  significant  contrast  in  terms  of  measured  brightness                  
temperature  (BT).  Comparing  the  latter  with  a  reference  coastline  database   [1] ,  it  is  possible  to  assess  the                   
spaceborne   sensor   geolocation   error.     

In   [2]  Purdy  et  al.  the  shoreline  obtained  from  WindSat  satellite  imagery  and  the  World  Vector  Shoreline                   
Data  Bank  II  (WVS  II)  is  compared.  The  position  of  the  coastline  is  obtained  taking  the  peak  of  the  first                      
derivative  of  radiometric  data  along  scan  and  cross  scan  direction,  after  a  cubic  spline  interpolation  to                  
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CHANNEL   FREQUENC 
Y     (GHz)   

BANDWIDTH   
(MHz)   

NEΔT   
(K)   

BIAS   
(K)   

POLARISATION   FOOTPRINT  SIZE  AT     
3   dB   

ICI-1   183.31±7.0  2x2000   MHz   0.8   1.0   V   16   km   

ICI-2   183.31±3.4  2x1500   MHz   0.8   1.0   V   16   km   

ICI-3   183.31±2.0  2x1500   MHz   0.8   1.0   V   16   km   

ICI-4   243.2±2.5   2x3000   MHz   0.7   1.5   V,   H   16   km   

ICI-5   325.15±9.5  2x3000   MHz   1.2   1.5   V   16   km   

ICI-6   325.15±3.5  2x2400   MHz   1.3   1.5   V   16   km   

ICI-7   325.15±1.5  2x1600   MHz   1.5   1.5   V   16   km   

ICI-8   448±7.2   2x3000   MHz   14   1.5   V   16   km   

ICI-9   448±3.0   2x2000   MHz   1.6   1.5   V   16   km   

ICI-10   448±1.4   2x1200   MHz   2.0   1.5   V   16   km   

ICI-11   664±4.2   2x5000   MHz   1.6   1.5   V,   H   16   km   



/

  

  
obtain  a  more  smoothed  curve.  Poe  et  al.   [3]  apply  a  similar  method  on  Special  Sensor  Microwave                   
Imager/Sounder   (SSMIS)   using   data   provided   by   spacecraft   F-16.   

In   [4]  Heygster  et  al.  exploit  the  fact  that,  when  geolocation  errors  are  present,  the  projected  footprints                   
have  different  shifts  considering  ascending  or  descending  swaths.  Since  the  brightness  temperature  (BT)               
differences  between  ascending  or  descending  swaths  are  higher  along  coastlines,  they  evaluate  the              
geolocation  error  using  data  from  AMSR-E  at  89  GHz.  Berg  et  al.   [5]  use  the  BT  difference  between                    
ascending  and  descending  swaths  to  obtain  the  attitude  error  for  SSM/I  spacecraft.  Finally,  Moradi  et  al.                  
[6]  correct  the  pitch,  yaw  and  roll  angles  for  Advanced  Microwave  Sounding  Unit  (AMSU)  and                 
Microwave  Humidity  Sounders  (MHS)  minimizing  the  difference  in  brightness  temperature  between             
ascending   and   descending   swathes.   

Along  the  coastline,  the  measured  signal  consists  of  radiation  received  from  both  land  and  water  surfaces                  
and  Bennartz   [7]  proposed  to  use  a  high-resolution  land–sea  mask  to  infer  the  fraction  of  water  surface  for                    
each  measurement .   He  has  developed  a  method  to  validate  the  geolocation  accuracy  using  the  convolution                  
of  land-sea  masks  that  is  suitable  to  apply  for  channels  that  are  sensitive  to  land/sea  contrast.  Han  et  al.                     
[8]  adapted  this  so-called  “Land/sea  Fraction  Method”  for  the  NOAA  16-18  satellites  and  also  for  ATMS                  
on   SNPP.   

Several  algorithms  can  be  applied  to  extract  contour  from  images,  starting  from  the  simplest  and  faster  to                   
the  most  sophisticated,  but  with  higher  computational  costs.  In  the  following  work  we  have  focused  on                  
the  Canny  edge  detector  [9],  because  it  is  a  fast  algorithm  that  is  able  to  detect  both  strong  and  weak                      
edges  [10],  whereas  its  accuracy  is  slightly  better  than  other  algorithms  [11],  [12].  In  addition  we  have                   
also   used   the   Sobel   filter   [13]   as   it   is   a   fast   approximation   of   image   gradient   [14].   

  1.2   Organization   of   the   report  
This   Task-1   report   is   organized   as   follows.     

Section  2  contains  general  information  about  the  proposed  methodology,  including  the  criteria  regarding               
the  search  of  landmark  targets  and  the  cloud-masking  defuzzification  step  to  filter  the  available  dataset                 
from   cloud   coverage   contamination.     

Section  3  lists  the  9  selected  targets,  among  the  list  of  those  which  have  been  explored,  by  dividing  the                     
list  for  the  northern  and  southern  hemisphere  in  order  to  guarantee  a  good  temporal  coverage  during  the                   
driest  seasons.  For  each  target  this  section  resumes  the  results,  using  data  from  SSMIS  channel  at  183                   
GHz,  in  terms  of  mean  value  and  standard  deviation  of  the  geolocation  error  both  in  northern  hemisphere                   
and   southern   hemisphere.     

Section  4  approaches  the  problem  of  the  sensitivity  analysis  of  the  proposed  geolocation  error  assessment                 
methodology  to  the  most  critical  free  parameters  as  a  proxy  to  the  error  budget  estimate.  The  latter,  as  a                     
matter  of  fact,  is  not  easily  defined  for  the  lack  of  an  absolute  reference  (we  are  here  estimating  not  the                      
geolocation   error   but   its   accuracy   or   the   error   of   the   geolocation   error   correction   procedures).     

Section  5  aims  at  evaluating  how  the  analysis,  carried  out  using  SSMIS  channel  at  183  GHz,  can  be                    
extended  to  ICI  channels  at  183  GHz,  243  GHz  and  beyond  if  possible.  The  discussion  uses  both  an                    
analysis  of  SSMIS  imagery  at  150  GHz  and  183  GHz  and  a  radiative  transfer  simulation  of  brightness                   
temperatures  and  slant-path  attenuation  from  available  radiosounding  profiles  and  from  ERA5  reanalysis              
atmospheric   profiles   near   the   selected   targets.     

Section  6  draws  the  main  conclusions  and  paves  the  way  to  the  geolocation  error  assessment  for  ICI                   
channels   using   the   landmark   targets.   
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The  six  final  appendixes  discuss  some  details  about  the  geolocation  error  assessment  methodology  and                
technical  analysis  of  target  classes,  such  as  high-latitude  lakes,  mountain  ranges  and  ice  shelves.  In                 
particular,  the  appendixes  are  devoted  to  target  contour  matching  (TCM)  approach  for  high-altitude  lake               
targets,  TCM  approach  for  mountain-chain  targets,  TCM  approach  for  ice-shelf  targets,  Contour              
extraction  and  cross-correlation  techniques  for  TCM,  Parallax  error  correction  and  Threshold  selection  for               
cloud-masking   fuzzy-logic   algorithm.   
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2.   ASSESSMENT   METHODOLOGY   USING   LANDMARK   TARGETS   
  

The  GAMES  methodology  for  the  validation  of  the  geolocation  error  consists  of  some  steps  described  in                  
the   following   paragraphs.   

  

2.1   Target-contour   matching   block   diagram   and   data   flow   
Within  the  GAMES  project,  the  proposed  target-contour  matching  (TCM)  algorithm  is  shown  in  the                
following  block  diagram.  The  proposed  scheme  generalizes  the  conventional  geolocation  assessment             
method   because   it   has   some   differences   according   to   the   selected   target   and   used   reference.   

  

  
Figure    2 .1.1:   Logical   scheme   of   proposed   methodology   to   validate   the   geolocation   using   landmark   targets   (target-contour   

matching   algorithm).   

  

The  inputs  to  the  GAMES  methodology  are  the  satellite  radiometric  imagery  containing  the  landmark                
target,  highlighted  by  the  blue  ellipse.  To  select  target  images  with  a  sufficient  BT  contrast  to  extract  a                    
contour,   we   use   a   fuzzy-logic   approach,   as   described   in   subsection   2.3.     

Following  the  left  branch  in  Fig.  2.1.1,  there  is  a  control  whether  the  target  is  at  sea  level  or  not,  because                       
the  satellite  data  are  projected  on  terrestrial  ellipsoid,  as  shown  by  point  A  in  Fig.  2.1.2.  If  the  target  is                      
located  above  sea-level,  the  line  of  sight  intercepts  the  Earth  at  point  C  so  that  the  corrected  coordinates                    
are  those  of  point  B.  This  step  represents  the  parallax  error  correction  and  the  Digital  Elevation  Model                   
(DEM)   is   used   to   find   the   intersection   between   the   satellite   line   of   sight   and   the   orography.     
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Figure    2 . 1.2 :   Digital   Elevation   Model   correction   problem   

  

Satellite  microwave  radiometric  images  have  a  low  spatial  resolution,  e.g.  SSMIS  F17  has  about  13  km                  
of  spatial  resolution.  In  order  to  fictitiously  increase  the  resolution  of  a  BT  scenario,  data  are  generally                   
interpolated  using  a  cubic  interpolation,  obtaining  a  finer  spatial  resolution  than  the  nominal  one.  The                 
sensitivity   to   the   parameters   of   this   arbitrary   step   is   discussed   in   subsection   4.1   and   subsection   4.2.   

The  next  step  of  the  target-contour  matching  algorithm  is  the  extraction  of  a  contour  that  can  be  carried                    
out   by   applying   (e.g.   see   Appendix   A   for   details):     

● Canny   approach   [ 9 ]   to   obtain   a   line;     

● Sobel   filter   [13]   to   obtain   an   image   gradient   map.   

The  extracted  contour  can  be  cross-correlated  with  a  reference  to  estimate  the  geolocation  accuracy  using                 
the  normalized  cross-correlation  function   .   Picking  the  maximum  of   it  is  possible  to  obtain      γ (u, )v      (u, )v       
the  lat-lon  pixel  displacements,  that  can  be  converted  into  shifts  along  x  and  y  direction.  In  order  to  have                     
an  accuracy  of  about  0.1  pixel,  the  maximum  is  fitted  with  a  polynomial  of  4th  order.  From  these  pixel                     
displacements  it  is  possible  to  obtain  the  related  latitude  and  longitude  error  and  the  corresponding                 
distance  error  in  km.  An  alternative  way  to  obtain  directly  a  displacement  with  sub-pixel  accuracy  is  to                   
use   the   Fast   Normalized   Cross-correlation   (FNC)   technique   [16].   

As  mentioned,  the  reference  contour  can  be  different  depending  on  the  type  of  landmark  target.  The                  
following   Tab.   2.1.1   summarizes   the   different   possible   sources   of   contour   references.   

  
Table   2.1.1:   Summary   of   proposed   reference   
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Reference   source   Original   source   Spatial   resolution   Pre-processing   
needed   

SAR   Level-1   GRD   10-40   m   yes   

GSHHG   GSHHG   with   full   resolution   40   m   no   

DEM   GTOPO   30   30   arc   seconds   (~1   km)   no   



/

  

  

  

As  shown  in  Tab.  2.1.1  we  can  have  3  different  types  of  reference  source,  showing  their  original  spatial                    
resolution.  In  particular,  for  SAR  images  some  preliminary  pre-processing  is  necessary  before  using  them                
as   reference,   as   it   is   explained   in   Appendix   C.     

2.2   Criteria   for   landmark   target   selection   
Considering  homogeneous  isothermal  (constant  temperature  and  interaction  parameters)  atmospheric           
layer  of  thickness   H  with  a  small  albedo  (thus  neglecting  the  multiple  scattering  contribution),  it  is                  
possible  to  derive  the  analytical  solution  of  the  radiative  transfer  equation  for  the  upwelling  BT  as                  
follows:   
  

  (2.2.1)   T  e  (1 )T [1 ]                                              T B = es s
(k L)− e +  − w 0 − e (k L)− e  

  
where   the   symbols   are   

(adim.)   surface emissivityes :   
(K)   surface temperatureT s :   

(K)  (z) constant atmospheric temperatureT 0 = T :   
(km -1    )   atmospheric extinction coef f icientke :   

(adim.)  tmospheric albedow : a  
(km)  atmospheric slant path (H cosθ with θ the nadir angle)L :  = L  

=t(L):    atmospheric   transmittance    (adim.)  e (k L)− e  
  

Considering  two  different  close  pixels  p 1  and  p 2  and  assuming  a  similar  atmospheric  layer  with  the  same                   
transmittance    t ( L ),   the   BT   contrast   T B    =T B (p 1 )   -T B2 (p 2 )=T B1    -T B2     can   be   written   as   follows:  Δ  
  

       (2.2.2)  Δ  T e  (1 )T [1 ]  T B = es1 s1
(k L)− e +  − w 0 − e (k L)− e  T e  (1 )T [1 ]  − es2 s2

(k L)− e −  − w 0 − e (k L)− e  
  

thus   
                                                       (2.2.3)  Δ  T  T ]  T (L) [eB = t s1

s1− es2 s2
  

  
Therefore,  in  order  to  have  a  sufficiently  high  BT  contrast,  from  eq.  (2.2.3)  we  can  essentially  consider                   
areas  with  different  surface  emissivity  and/or  surface  temperature,  such  as  sea/lake/ice  coastlines  or               
mountain  chains.  In  the  latter  case  we  have  a  surface  temperature  variability  due  to  the  height  difference                   
between  plain  and  mountain  as  well  as  a  different  atmospheric  optical  thickness  (i.e.,  transmittance  of  the                  
mountain  pixel  larger  than  the  plain  one)  entailed  by  the  different  heights  of  the  pixels  themselves.  A                   
further   feature   to   play   with   is   the   natural   variability   of   surface   emissivity.   

Taking  into  account  these  concepts,  for  landmark  target  search  we  have  basically  considered  the               
following   two   major   types:   

a)   surface   water   bodies   (liquid   or   ice)   sufficiently   large   (wrt   satellite   FOV);   
b)   mountain   areas   with   strong   slopes   (altitude   gradients)   in   relatively   dry   regions.   

2.3   Fuzzy-logic   approach   to   target   cloud-masking   
The  cloud-masking  analysis  was  performed  to  improve  the  selection  of  useful  satellite  overpasses  over                
the  selected  test  sites,  that  is  in  this  case  those  SSMIS  overpasses  where  cloud  coverage  may  cause  a                   
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larger  atmospheric  opacity  at  183  GHz.  Along  a  period  of  one  year  there  are  several  satellite  passes,                   
depending  on  the  latitude  and  swath  width,  but  these  can  be  included  in  the  geolocation  error  assessment                   
analysis   in   the   case   of:   

- clear   sky   or   limited   cloudy   conditions   in   the   selected   areas;   

- very   dry   conditions   with   little   amount   of   water   vapour;   

- enough   BT   contrast   of   the   target   to   extract   a   contour.   

The  approach  under  investigation  for  developing,  as  much  as  possible,  an  automated  procedure  for  the                 
selection  of  instrument  overpasses  of  the  target  area  consist  in  using  a  relatively  simple  fuzzy-logic                 
approach   to   select   only   useful   passes,   as   shown   in    in   Fig.   2.3.1.   

  

  
Figure   2.3.1:   Fuzzy-logic   approach   to   cloud   masking   

  

In  the  proposed  fuzzy-logic  approach,  the  idea  is  to  use  the  estimated  geolocation  error  and  brightness                  
temperature  contrast  of  a  specific  target  to  understand  if  an  overpass  can  be  correctly  used.  For  this                   
purpose  we  use  the  membership  functions  M 1  and  M 2 ,  shown  in  Fig.  2.3.2.  If  the  geolocation  error  is                    
greater  than  a  selected  threshold  or  the  BT  contrast  is  lower  than  a  specific  threshold,  the  membership                   
functions  are  linearly  weighted.  Thresholds  are,  to  some  extent,  arbitrarily  or  empirically  defined  mainly                
depending   on   the   channel   spatial   resolution   at   ground.     

  
Figure   2.3.2:   Proposed   function   for   fuzzy   approach   

  

After  the  definition  of  the  membership  functions  M 1  and  M 2 ,  the  inference  function   I ( x )  is  constructed  by                   
a   multiplicative   rule   of   the   2   membership   functions:   

  

                                                           (2.3.1)  (x , ) (x )M (x )I 1 x2 = M 1 1 2 2  
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where  and  are  arbitrary  variables.  Finally,  an  image  can  be  used  to  evaluate  the  geolocation  error  if    x1  x2                
it   satisfies   the   following   defuzzification step:   

  

                                                               (2.3.2)  (x , )≥II 1 x2 threshold  

  

where  I threshold  is  typically  set  to  0.3  for  all  targets  (see  Appendix  A,  B  and  C).  After  a  sensitivity  analysis                     
over   the   whole   available   dataset,   the   proposed   inference   function   is:   

  

                                                      (2.3.3)  (∆T )   I ∆T ,( Bm ε) = M 1 (ε) M 2 Bm  

where:   

▪   =   inference   function  I (x)  
▪ =   mean   BT   contrast   around    target  T∆ Bm  
▪   =   geolocation   error   ε   
▪   =   membership   function   depending   on   the   geolocation   error  M 1 (ε)  
▪   =   membership   function   depending   on   the   BT   contrast   M 2 ∆T( Bm)  

The  membership  functions   M  and  their  parameters  are  provided  in  the  Appendix  A  for  high-altitude  lake                  
targets,   in   Appendix   B   mountain-chain   targets   and   in   Appendix   for   ice-shelf   targets.   

  

  
Figure   2.3.3:   Logical   scheme   to   evaluate   the   geolocation   error   starting   from   all   swaths   along   time   period.   Numbers   refer   to   the   example   of   

the   Ross   ice   shelf   target   (see   text).   
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As  an  example  of  the  possible  impact  of  this  fuzzy-logic  approach,  we  have  considered  the  Ross  ice  shelf                    
as  a  target  during  2016.  Fig.  2.3.3  shows  the  block  diagram  that  allows  evaluating  the  geolocation  error                   
starting   from   all   available   swaths   during   the   selected   one-year   period.    

This  block  diagram  can,  in  principle,  be  extended  to  all  satellite  channels  and  all  targets  of  interest,  by                    
properly  setting  the  free  parameters  in  the  fuzzy-logic  approach  expressed  by  previous  equations.  Within                
2016,  there  are  5118  SSMIS  swaths,  but  only  2324  overpass  the  target.  By  applying  the  fuzzy-logic                  
approach  to  select  useful  passes,  the  total  number  of  passes  has  been  reduced  to  999.  The  overall  mean                    
geolocation   error   has   been   estimated   to   be   about   4.5   km   with   a   standard   deviation   of   2.1   km.     
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3.   TARGET   SELECTION   AND   GEOLOCATION   ERROR   ASSESSMENT   
This   section   is   devoted   to   landmark   target   selection   and   geolocation   error   assessment.   

3.1   List   and   features   of   landmark   targets   
The  following  section  contains  the  description  of  the  results  for  all  target  agreed  with  EUMETSAT  and                  
listed   in   the   following:   
Northern   hemisphere   

● Qinghai   lake   
● Karakorum   mountains   
● Hudson   Bay   
● Nares   Strait   

Southern   hemisphere   
● Ross    A ntarctic   ice   shel f     
● Filchner-Ronne    A ntarctic   ice   shel f   
● A mery    A ntarctic   ice   shel f   
● Titicaca   lake   
● Andean   mountains   

For  the  geolocation  assessment  test  we  use  SSMIS  F17  speceborne  radiometer  data.  Its  main                
specifications  are  reported  in  Fig.  3.2.1.  In  particular,  considering  the  ICI  application,  we  have  selected                 
the   183±6.6   GHz   channel   in   horizontal   polarization,   downloaded   from   the   following   web   site:     

https://www.ncdc.noaa.gov/has/HAS.FileAppRouter?datasetname=CSU_SSMIS&subqueryby=STATION 
&applname=&outdest=FILE   

  

  

Figure   3.1.1a:   SSMIS   characteristics   
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Figure   3.1.1b:   SSMIS   channels   description   

  
For  each  target  we  provide  further  information  about  its  features  in  the  following  tables.  The  variability  of                   
the  detection  per  day  is  mainly  due  to  the  latitude  of  the  landmark  targets  (near-polar  targets  are  observed                    
with   a   higher   repetitivity).   

  
Table   3.1.1:   Summary   of   proposed   targets,   reference   source   and   daily   detectability   
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Landmark   target   Contour   reference   source   Detectability/day   
Northern   hemisphere   

Qinghai   lake   GSHHG   1     

Karakorum   mountains   DEM   1   

Hudson   Bay   GSHHG   1   

Nares   Strait   SAR   4-6   

Southern   hemisphere   

Ross    A ntarctic   ice   shel f     SAR   4-6   

Filchner-Ronne    A ntarctic   ice   shel f   SAR   4-6   

A mery    A ntarctic   ice   shel f   SAR   3-5   

Titicaca   lake   GSHHG   1   

Andean   mountains   DEM   1   



/

  

  

  

Along   2016,   we   have   5118   swaths   and   the   Tab.   3.1.2   reports   the   all   available   samples   for   each   target   
before   and   after   the   defuzzification   step.   In   particular,   the   samples   after   this   step   represent   the   used  
dataset   to   validate   the   geolocation   accuracy   for   each   target.   

  
Table   3.1.2:   Summary   of   proposed   targets,   reference   source   and   daily   detectability   within   the   year   2016   

  

  
 
3.2   Qinghai   lake   in   the   northern   hemisphere   

Qinghai  lake  is  a  large  lake  in  China  with  a  surface  of  about  4500-6000  km 2   and  an  altitude  of  about  3200                       
m  (see  Fig  3.2.1).  Its  maximum  length  is  about  105  km  and  the  width  is  about  65  km  so  that  it  is  larger                         
with   respect   to   SSMIS   pixel   at   183   GHz   and   it   is   possible   to   successfully   detect   it   and   extract   its   contour.      

  
Figure    3 . 2 .1:   Qinghai   lake   from   Google   Maps   
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Landmark   target   SSMIS   samples   Cloud-masked   
samples     

Cloud-masked   
samples   

(percentage)   
Northern   hemisphere     

Qinghai   lake   629   84   13.4   %   

Karakorum   mountains   707   51   7.2   %   

Hudson   Bay   454   62   13.6   %   

Nares   Strait   2140   560   26.2   %   

Southern   hemisphere     

Ross    A ntarctic   ice   shel f     2324   599   25.7%   

Filchner-Ronne    A ntarctic   ice   shel f   2335   387   16.6%   

A mery    A ntarctic   ice   shel f   1244   153   12.3%   

Titicaca   lake   532   41   7.7%   

Andean   mountains   555   125   22.5%   



/

  

  

We   have   focused   on   the   following   box:   

●   Latitude      =     [36.2    ;     37.7];   
●   Longitude   =     [99.3    ;   101.0];     

Tab.  3.2.1  shows  the  coordinates  for  the  five  points  used  to  calculate  the  BT  contrast  following  the  eq.                    
A.2.   

The  description  of  the  proposed  geolocation  assessment  methodology  for  this  target  class  is  provided  in                 
the   Appendix  A .  Note  that   the  mean  BT  contrast   is  derived  from  the  following  Eq.  3.2.1  using           TΔ B          
points   in   Tab.   3.2.1:   

                                               (3.2.1)  T    ∆ Bm =  4
(T T )+(T T )+(T T )+(T T )B− A C− A D− A E− A  

  
Table   3.2.1.:   Coordinates   of   five   points   used   to   calculate   the   BT   contrast   for   Qinghai   lake   following   the   eq.   A.2.   

  

  

Fig.   3.2.2   shows   two   examples   for   Qinghai   lake   with   SSMIS   F17   at   183±6.6   GHz   H.   

  
Figure   3.2.2:    Brightness   temperature   image   at   183±6.6   GHz   H   over   Qinghai   lake   with   SSMIS   F17   on    2016/12/01   (left)   and   2016/12/02   

(right).   The   red   line   represents   the   GSHHG   shoreline   database   and   black   markers   are   provided   by   Canny   edge   detection   from   the   
radiometric   image.   

The  following  Tab.  3.2.2  describes  the  number  of  samples  in  which  the  lake  is  visible  from  SSMIS  F17  at                     
183   ±   6.6   GHz   during   2016   applying   the   cloud-masking   algorithm.     
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Points  Latitude    [deg]   Longitude    [deg]   

A   36.9500   100.1793   

B   37.3719   100.1793   

C   36.9500   100.7655   

D   36.5750   100.1793   

E   36.9500   99.5345   



/

  

  

Table   3.2.2.:   Number   of   visible   days   during   2016   for   Qinghai   lake   applying   the   cloud-masking   algorithm   

  

  

From   Tab.  3.2.2  the  total  number  of  SSMIS  available  images  in  2016  is  84   with  geolocation  assessment                   
results   summarized   in   Tab.   3.2.3.   

  
Table   3.2.3:   Result   for   Qinghai   lake   in   2016   

  

  

  
 
3.3   Karakorum   mountains   in   the   northern   hemisphere   

It  is  a  large  mountain  range  spanning  the  borders  between  Pakistan,  India  and  China  with  the  northwest                   
extremity   of   the   range   extending   to  Afghanistan  and  Tajikistan ,   as   shown   in   Fig.   3.3.1.   

  
Figure   3.3.1:   Karakorum   mountains   from   Google   Maps   

  Its   range   is   about   500 km,   so   we   have   focused   on   the   following   sub-box:   

●   Latitude      =     [35.5    ;    38.5];   
●   Longitude   =     [76.0    ;    80.0];   

The   BT   contrast   for   Karakorum   mountains   is   derived   following   the   Eq.   3.3.1   with   points   in   Tab.   3.3.1   

  
                                           (3.3.1)  T      ∆ Bm =  4

(T T )+(T T )+(T T )+(T T )B− A D− C F− E H− G  
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Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Total   

10    5   9   18   10   3   0   1   0   8   30   35   129   

Geolocation   assessment   parameter   Value   [km]   

Geolocation   accuracy   average   [km]   5.10   

Geolocation   accuracy   standard   deviation   [km]   2.03   

https://en.wikipedia.org/wiki/Afghanistan
https://en.wikipedia.org/wiki/Tajikistan
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Table   3.3.1.:   Coordinates   of   eight   points   used   to   calculate   the   BT   contrast   for   Karakorum   mountains   following   the   eq.   B.2.   

  

  

Fig.   3.3.2   shows   an   example   for   Karakorum   mountains   with   SSMIS   F17   at   183±6.6   GHz   H.   

  
Figure   3.3.2:    In   the   left   there   is   the   brightness   temperature   image   with   SSMIS   F17   at   183±6.6   GHz   H   over   Karakorum   mountains   on   

2016/10/19   In   the   right   there   is   the   reference   digital   elevation   model.     
The  description  of  the  proposed  geolocation  assessment  methodology  for  this  target  class  is  provided  in                 
the   Appendix   B.    

  

Table   3.3.2:   Number   of   visible   days   during   2016   for   Karakorum   mountains   applying   the   cloud-masking   algorithm   

  

  

From   Tab.  3.3.2  the  total  number  of  SSMIS  available  images  in  2016  is  51   with  geolocation  assessment                   
results   summarized   in   Tab.   3.3.3.   
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Points  Latitude    [deg]   Longitude    [deg]   

A   36.8385   76.3944   

B   37.5308   76.3944   

C   36.6538   77.4648   

D   37.2077   77.4648   

E   36.3769   78.5915   

F   37.0692   78.5915   

G   36.1462   79.6056   

H   36.7462   79.6056   

Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Total   

36   34   36   26   24   6   8   1   20   36   37   38   302   
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Table   3.3.3:   Result   for   Karakorum   mountains   in   2016   

  

  
 
3.4   Hudson   Bay   in   the   northern   hemisphere   

It  is  a  large  body  of  saltwater  in  northeastern  Canada  with  a  surface  area  of  1,230,000 km 2 ,  as  shown  in                     
Fig.   3.4.1.   

  

  
Figure   3.4.1:   Hudson   Bay   from   Google   Maps   

We   have   focused   on   the   following   box:   

●   Latitude      =     [   56.0    ;     62.0];   
●   Longitude   =     [-96.0    ;   -87.0];   

Tab.  3.4.1  shows  the  coordinates  for  the  eight  points  used  to  calculate  the  BT  contrast  for  Hudson  Bay                    
following   the    Eq.   3.4.1   and   points   in   Tab.   3.4.1   

  
                                           (3.4.1)  T      ∆ Bm =  4

(T T )+(T T )+(T T )+(T T )B− A D− C F− E H− G  

  
Table   3.4.1.:   Coordinates   of   eight   points   used   to   calculate   the   BT   contrast   for   Hudson   Bay   following   the   eq.   B.2.   
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Geolocation   assessment   parameter   Value   [km]   

Geolocation   accuracy   average   [km]   4.47   

Geolocation   accuracy   standard   deviation   [km]   1.86   

Points  Latitude    [deg]   Longitude    [deg]   

A   61,4091   -94,8545   
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Fig.   3.4.2   shows   two   examples   for   Hudson   Bay   with   SSMIS   F17   at   183±6.6   GHz   H.   

  
Figure   3.4.2:    Brightness   temperature   image   at   183±6.6   GHz   H   over   Hudson   Bay   with   SSMIS   F17   on    2016/01/27   (left)   and   2016/02/11   

(right).   The   red   line   represents   the   GSHHG   shoreline   database   and   black   markers   are   provided   by   Canny   edge   detection   from   radiometric   
image.   

The  description  of  the  proposed  geolocation  assessment  methodology  for  this  target  class  is  provided  in                 
the    Appendix   A .     

The  following  Tab.  3.4.2  describes  the  number  of  samples  in  which  the  lake  is  visible  from  SSMIS  F17  at                     
183   ±   6.6   GHz   during   2016   applying   the   cloud-masking   algorithm.     

  
Table   3.4.2:   Number   of   visible   days   during   2016   for   Hudson   Bay   applying   the   cloud-masking   algorithm   

  

  

From   Tab.  3.4.2  the  total  number  of  SSMIS  available  images  in  2016  is  62   with  geolocation  assessment                   
results   summarized   in   Tab.   3.4.3.   
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B   61.4091   -92,8091   

C   59.1364   -95,4273   

D   59.1364   -93,7909   

E   57.3182   -92,9727   

F   57.7727   -91,9909   

G   56.4091   -89,1273   

H   57.0909   -88,7182   

Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Total   

28   38   14   14   0   0   0   0   0   0   0   41   135   



/

  

  

Table   3.4.3:   Result   for   Hudson   Bay   in   2016   

  

  
 

3.5   Nares   Strait   in   the   northern   hemisphere   
Fig.  3.5.1  shows  the  Nares  Strait,  that  is  a   waterway  between   Ellesmere  Island  and  Greenland  that                  
connects   the   northern   part   of    Baffin   Bay    with   the    Lincoln   Sea    (see   Fig.   3.5.1).     

  
Figure   3.5.1:   Nares   Strait   from   Google   Maps   

  
Fig.   3.5.2   reports   an   example   of   radiometric   image   in   the   left   and   SAR   image   in   the   right.   

  
Figure   3.5.2:    Brightness   temperature   image   at   183±6.6   GHz   H   

over   Nares   Strait   from   SSMIS   F17   on   2016/11/02   (left),   the   black   line   is   provided   by   GSHHG   shoreline   database.   SENTINEL   1   IW-GRD   on   
2017/01/12   (right)   
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Geolocation   assessment   parameter   Value   [km]   

Geolocation   accuracy   average   [km]   5.28   

Geolocation   accuracy   standard   deviation   [km]   2.56   

https://en.wikipedia.org/wiki/Waterway
https://en.wikipedia.org/wiki/Ellesmere_Island
https://en.wikipedia.org/wiki/Baffin_Bay
https://en.wikipedia.org/wiki/Lincoln_Sea
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We   have   focused   on   the   following   box:   

●   Latitude      =     [   80.0    ;     82.5];   
●   Longitude   =     [-66.0    ;   -63.0];   

The  description  of  the  proposed  geolocation  assessment  methodology  for  this  target  class  is  provided  in                 
the   Appendix   B   with   two   main   differences:   

-  instead  of  the  DEM  gradient  that  is  used  as  reference  for  mountain  chain,  in  the  case  of  Nares  Strait  we                       
proposed  to  use  the  spatial  horizontal  gradient  of  the  SAR  image  as  reference.  Therefore  to  calculate  the                   
geolocation   accuracy   we   correlated   the   gradient   of   the   BT   with   the   gradient   of   SAR   image.     

-  since  we  have  a  complex  variable  orography,  in  order  to  mitigate  the  “orographic  noise”  in  the                   
cross-correlation   between   BT   and   SAR   gradient,   the   following   inference   function   is   adopted:   

                                                         (3.5.1)  (ε)  I (ε) = M 1 (ε) M 2  

where:   

▪   =   inference   function  I (ε)  
▪   =   geolocation   error   ε   
▪   =   term   that   considers   the   geolocation   error   with   5   km   of   spatial   resolution  M 1 (ε)  
▪   =   term   that   considers   the   geolocation   error   with   6   km   of   spatial   resolution  M 2 (ε)  

The  following  Tab.  3.5.1  describes  the  number  of  samples  in  which  the  lake  is  visible  from  SSMIS  F17  at                     
183   ±   6.6   GHz   during   2016   applying   the   cloud-masking   algorithm.     

  
Table   3.5.1:   Number   of   visible   days   during   2016   for   Nares   Strait    applying   the   cloud-masking   algorithm   

  

  

From   Tab.  3.5.1  the  total  number  of  SSMIS  available  images  in  2016  is  688  with  geolocation  assessment                   
results   summarized   in   Tab.   3.5.2.   

  
Table   3.5.2:   Result   for   Nares   Strait   in   2016   
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Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Total   

36   55   38   22   67   12   35   7   44   110   102   59   587   

Geolocation   assessment   parameter   Value   [km]   

Geolocation   accuracy   average   [km]   4.74   

Geolocation   accuracy   standard   deviation   [km]   2.02   



/

  

  
  
3.6   Antarctic   ice   shelves   in   the   southern   hemisphere   

Antarctic   ice   shelves   are   thick   suspended   platforms   of   ice   that   forms   where   a   glacier   or   ice   sheet   flows   
down   to   a   coastline   and   onto   the   ocean   surface.   The   ice   covers   the   ground   (grounded   ice)   and   it   extends  
into   the   ocean,   with   the   lower   part   that   detaches   from   the   ground   (grounding   line),   creating   a   suspended   
platform   of   ice   (ice   shelf),   as   shown   in   Fig.   3.6.2.   

  

  
Figure   3. 6 .1:   Antarctic   ice   shelves   

  
Figure   3.6.2:   Scheme   of   shelves   coastline   

For  this  type  of  landmark  target,  we  propose  to  use  SAR  images  as  reference,  because  they  have  very                    
high  spatial  resolution  (10-40  m).  The  adopted  SAR  data  are  the  Level-1  Ground  Range  Detected  (GRD)                  
products,  those  consist  of  focused  SAR  data  that  has  been  detected,  multi-looked  and  projected  to  ground                  
range  using  an  Earth  ellipsoid  model.  The  resulting  product  has  approximately  square  spatial  resolution                
pixels  and  square  pixel  spacing  with  reduced  speckle  and  three  possible  spatial  resolution:  Full  Resolution                 
(FR),  High  Resolution  (HR),  Medium  Resolution  (MR).  See  Appendix  C  for  more  information  on  used                 
SAR   data.   

  

3.6.1   Ross   ice   shelf   
The  Ross  ice  shelf  is  the  largest ice  shelf  of   Antarctica  (as  of  2013  an  area  of  roughly  500,809  km 2  and                       
about   800   km   across.   
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https://en.wikipedia.org/wiki/Ice_shelf
https://en.wikipedia.org/wiki/Antarctica
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For  this  target  we  use  a  SAR  image,  as  shown  in  Fig.  3.6.1.2.  SAR  data  are  preprocessed,  as  explained  in                      
Appendix  C.  As  explained  in  Appendix  C,  at  polar  areas  it  is  preferable  to  use  a  polar  stereographic                    
projection  to  reduce  distortion  in  the  image.  Fig.  3.6.1.3  shows  the  same  SAR  image  contained  in  the  Fig.                    
3.6.1.2  projected  in  this  reference  system.  The  red  markers  show  the  contour  obtaining  with  Canny                 
algorithm   on   SAR   image.   

  

    

  
Figure   3.6.1.1:   BT   at   183±6.6   GHz   H   from    F17   SSMIS.   The   black   circle   indicates   the   Ross   ice   shelf   and   the   red   highlights   the   

Filchner.Ronne   ice   shelf.   

  
Figure   3.6.1.2:   Example   of   SAR   images   used   as   reference   for   Ross   ice   shelf   

  

The  ice  coastline  can  change  its  shape  along  season  or  it  is  possible  that  a  big  piece  of  coast  can  collapse                       
creating  an  iceberg  with  a  consequently  big  change  in  shape.  As  reports  in  [ 15]  the  ice  velocity  ranges                    
from  a  few  meters  per  year  to  several  hundred  meters  per  year  in  ice  streams.  Ice  velocity  increases  as  the                      
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ice  moves  seaward,  reaching  1  km  per  year  in  the  central  portions  of  the  ice  front.  We  do  not  focus  on  the                        
center  of  the  shelf  and  its  movement  is  much  lower  than  geometrical  resolution  of  radiometric  imagery,                  
indeed  comparing  SAR  image  in  winter  season  and  SAR  image  in  summer,  we  obtain  the  same  reference                   
contour  when  we  project  the  ice  contour  in  the  grid  with  5  km  of  special  resolution,   as  explained  in  the                      
Appendix  C.  Therefore  we  must  only  monitor  the  formation  of  icebergs  and  to  do  this  we  compared  SAR                    
images   on   January   2016   with   an   image   on   2017,   observing   the   absence   of   significant   variations   in   shape.     

  

    
Figure   3.6.1.3:   SAR   contour   extracted   with   Canny   algorithm     

  

We   have   focused   on   the   following   box:   

●   Latitude      =     [    -78.5   ;    -76.5];   
●   Longitude   =     [   170.6   ;    178.5];   

BT  contrast  for  Ross  ice  shelf  has  been  calculated  with  the  Eq.  3.6.1.1  wuth  points  in  Tab.  3.6.1.1,                    
expressed   on   polar   stereographic   map   

  
                                           (3.6.1.1)  T      ∆ Bm =  4

(T T )+(T T )+(T T )+(T T )B− A D− C F− E H− G  
  

Table   3.6.1.1:   Polar   stereographic   coordinates   of   eight   points   used   to   calculate   the   BT   contrast   for   Ross   ice   shelf   following   the   eq.   
C.2.   
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Points  X   Y   

A   6.3796   10 4   -1.3149   10 6   

B   6.3796   10 4   -1.3763   10 6   

C   1.0524   10 5   -1.33   10 6   



/

  

  

  

The  description  of  the  proposed  geolocation  assessment  methodology  for  this  target  class  is  provided  in                 
the   Appendix   C.  After  the  defuzzification  step  during  2016,  we  obtain  the  samples  in  the  following  Tab.                   
3.6.1.2:   

  
Table   3.6.1.2:   Number   of   visible   days   during   2016   for   Ross   ice   shelf   

  

  

From   Tab.  3.6.1.2  the  total  number  of  SSMIS  available  images  in  2016  is  599   with  geolocation                  
assessment  results  summarized  in  Tab.  3.6.1.3.   T he  mean  BT  contrast   ,  derived  from  (C.3)  and            TΔ B       
obtained   from   the   2016   dataset   along   the   lake   coastline,    is   about   16.4   K.     

Table   3.6.1.3:   Result   for   Filchner-Ronne   ice   shelf   on   2016   

  

  

  
 
3.6.2   Filchner-Ronne   ice   shelf   

  
The  whole  Filchner-Ronne  ice  shelf  covers  some  430,000  km²,  making  it  the  second  largest  ice  shelf  in                   
Antarctica,  after  the   Ross  Ice  Shelf ,  as  shown  in  Fig.  3.6.1.1  by  the  black  circle.  The  necessary  steps  to                     
validate  the  geolocation  accuracy  for  Filchner-Ronne  ice  shelf  are  the  same  as  Ross  ice  shelf,  as  explained                   
in   Appendix   C.   The   only   difference   is   that   the   reference   SAR   image   is   different,   as   shown   in   Fig.   3.6.2.1.   

Fig.  3.6.2.2  shows  the  same  SAR  image  contained  in  the  Fig.  3.6.2.1  projected  on  a  polar  stereographic                   
map.   The   red   marker   shows   the   contour   obtained   with   Canny   algorithm   on   SAR   image.   
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D   1.0524   10 5   -1.4070   10 6   

E   1.6222   10 5   -1.3303   10 6   

F   1.6222   10 5   -1.3814   10 6   

G   2.1920   10 5   -1.3251   10 6   

H   2.1920   10 5   -1.3712   10 6   

Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Total   

1   5   32   80   87   97   122   95   90   75   40   1   725   

Geolocation   assessment   parameter   Value   [km]   

Geolocation   accuracy   average   [km]   5.30   

Geolocation   accuracy   standard   deviation   [km]   2.18   

https://en.wikipedia.org/wiki/Ross_Ice_Shelf
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During  2016,  there  was  no  iceberg  formation  and  the  shape  is  almost  the  same  throughout  the  entire  year.                    
we   have   focused   on   the   following   box:   

●   Latitude      =     [   -75.7    ;    -74.4];   
●   Longitude   =     [   -64.5    ;   -56.5];   

  
Figure   3.6.2.1:   Example   of   SAR   images   used   as   reference   for   Filchner-Ronne   ice   shelf   

  

  
Figure   3.6.2.2:   SAR   contour   extracted   with   Canny   algorithm     

  

BT  contrast  for  Filchner-Ronne  ice  shelf  has  been  calculated  with  the  Eq.  3.6.1.1  with  points  in  Tab.                   
3.6.2.1,   expressed   on   a   polar   stereographic   map.   
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                                           (3.6.2.1)  T      ∆ Bm =  4
(T T )+(T T )+(T T )+(T T )B− A D− C F− E H− G  

  

Table   3.6.2.1:    Polar   stereographic   coordinates   of   eight   points   used   to   calculate   the   BT   contrast   for   Filchner-Ronne   ice   shelf   
following   the   eq.   C.2.   

  

  

The  description  of  the  proposed  geolocation  assessment  methodology  for  this  target  class  is  provided  in                 
the   Appendix   C.  After  the  defuzzification  step  during  2016,  we  obtain  the  samples  in  the  following  Tab.                   
3.6.2.2:   

Table   3.6.2.2:   Number   of   visible   days   during   2016   for   Filchner-Ronne   ice   shelf   

  

From   Tab.  3.6.2.2  the  total  number  of  SSMIS  available  images  in  2016  is  387   with  geolocation                  
assessment   results   summarized   in   Tab.   3.6.2.3.     

  

Table   3.6.2.3:   Result   for   Filchner-Ronne   ice   shelf   on   2016   
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Points  X   Y   

A   -1.5011   10 6   8.3170   10 5   

B   -1.5011   10 6   8.8246   10 5   

C   -1.4453   10 6   7.9110   10 5   

D   -1.4453   10 6   8.2663   10 5   

E   -1.3794   10 6   8.0633   10 5   

F   -1.3794   10 6   8.4693   10 5   

G   -1.3185   10 6   8.4186   10 5   

H   -1.3185   10 6   8.7739   10 5   

Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Total   

0   0   25   84   82   58   90   99   73   30   0   0   541   

Geolocation   assessment   parameter   Value   [km]   

Geolocation   accuracy   average   [km]   4.31   

Geolocation   accuracy   standard   deviation   [km]   1.89   



/

  

  
 
3.6.3   Amery   ice   shelf   

  
The  necessary  steps  to  validate  the  geolocation  accuracy  for  Filchner-Ronne  ice  shelf  are  the  same  as                  
Ross  ice  shelf,  as  explained  in  Appendix  C.  The  only  difference  is  that  the  reference  SAR  image  is                    
different,   as   shown   in   Fig.   3.6.2.1.   

  
Figure   3.6.3.1:   Example   of   SAR   images   used   as   reference   for   Amery   ice   shelf   

Fig.  3.6.3.2  shows  the  same  SAR  image  contained  in  the  Fig.  3.6.2.1  projected  on  a  polar  stereographic                   
map.   The   red   marker   shows   the   contour   obtained   with   Canny   algorithm   on   SAR   image.   

  
Figure   3.6.3.2:   SAR   contour   extracted   with   Canny   algorithm     

  

During  2016,  there  was  no  iceberg  formation  and  the  shape  is  almost  constant  during  the  entire  year.  We                    
have   focused   on   the   following   box:   
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●   Latitude      =     [   -69.1   ;    -68.0];   
●   Longitude   =     [    70.8    ;    74.2];   

BT  contrast  for  Amery  ice  shelf  has  been  calculated  with  the  Eq.  3.6.3.1  with  points  in  Tab.  3.6.1.1,                    
expressed   on   a   polar   stereographic   map.   

  
                                           (3.6.3.1)  T      ∆ Bm =  4

(T T )+(T T )+(T T )+(T T )B− A D− C F− E H− G  

  
Table   3.6.3.1:    Polar   stereographic   coordinates   of   eight   points   used   to   calculate   the   BT   contrast   for   Amery    ice   shelf   following   the   

eq.   C.2.   

  

  

The  description  of  the  proposed  geolocation  assessment  methodology  for  this  target  class  is  provided  in                 
the   Appendix   C.  The  number  of  obtained  samples,  after  the  d efuzzification  step  during  2016,  is  given  in                   
Tab.   3.6.3.2:   

Table   3.6.3.2:   Number   of   visible   days   during   2016   for   Filchner-Ronne   ice   shelf   

  

From   Tab.  3.6.3.2  the  total  number  of  SSMIS  available  images  in  2016  is  153   with  geolocation                  
assessment   results   summarized   in   Tab.   3.6.3.3.     

  

Table   3.6.3.3:   Result   for   Filchner-Ronne   ice   shelf   on   2016   
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Points  X   Y   

A   2.1984   10 6   7.6657   10 5   

B   2.2356   10 6   7.6657   10 5   

C   2.2303   10 6   7.1870   10 5   

D   2.2675   10 6   7.1875   10 5   

E   2.2515   10 6   6.7093   10 5   

F   2.2143   10 6   6.7093   10 5   

G   2.1984   10 6   6.3373   10 5   

H   2.2356   10 6   6.3373   10 5   

Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Total   

1   3   30   22   25   41   37   26   39   15   3   0   242   

Geolocation   assessment   parameter   Value   [km]   



/

  

  

  
  

 
3.7   Titicaca   lake   in   the   southern   hemisphere   

Titicaca  lake  is  a  large,  deep  lake  in  the  Andes  on  the  border  of  Bolivia  and  Peru.  It  has  a  surface  of  about                         
8372   km 2    and   an   elevation   of   3,812 m   (see   Fig.   3.7.1).   

We   have   focused   on   the   following   box:   

●   Latitude      =     [   -17.5    ;    -14.5]   
●   Longitude   =     [   -70.3    ;    -68.0];   

  
Figure    3 . 7 .1:   Titicaca   lake   

Note   that    the   mean   BT   contrast    is   derived   from   the   following   Eq.   3.7.1   using   points   in   Tab.   3.2.1:  TΔ B   

  

                                               (3.7.1)  T    ∆ Bm =  4
(T T )+(T T )+(T T )+(T T )B− A C− A D− A E− A  

  
Table   3.7.1.:   Coordinates   of   five   points   used   to   calculate   the   BT   contrast   for   Titicaca   lake   following   the   eq.   A.2.   
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Geolocation   accuracy   average   [km]   5.32   

Geolocation   accuracy   standard   deviation   [km]   2.27   

Points  Latitude    [deg]   Longitude    [deg]   

A   -15.8766   -69.3462   

B   -15.1745   -69.3462   

C   -15.8766   -68.6250   



/

  

  

Fig.   3.7.2   shows   two   examples   for   Titicaca   lake   with   SSMIS   F17   at   183±6.6   GHz   H.   

  
Figure   3.7.2:    Brightness   temperature   image   at   183±6.6   GHz   H   over   Titicaca   lake   with   SSMIS   F17   on    2016/05/31   (left)   and   2016/07/31   

(right).   The   red   markers   represent   the   GSHHG   shoreline   database   and   black   markers   are   provided   by   Canny   edge   detection   from   
radiometric   images.   

The  description  of  the  proposed  geolocation  assessment  methodology  for  this  target  class  is  provided  in                 
the    Appendix   A .     

  
Table   3.7.2:   Number   of   visible   days   during   2016   for   Titicaca   lake   applying   the   cloud-masking   algorithm   

  

  

From   Tab.  3.7.2  the  total  number  of  SSMIS  available  images  in  2016  is  41   with  geolocation  assessment                   
results   summarized   in   Tab.   3.7.3.   

  
Table   3.7.3:   Result   for   Titicaca   lake   in   2016   

  

  
 
3.8   Andean   mountains   in   the   southern   hemisphere   

Andean  mountains  are  the  longest   continental   mountain  range  in  the  world,  forming  a  continuous                
highland   along   the   western   edge   of   South   America   (see   Fig.   3.8.1).   

We   have   focused   on   the   following   box:   
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D   -16.5787   -69.3462   

E   -15.8766   -70.2115   

Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Total   

0   0   0   3   8   11   8   10   5   3   2   2   52   

Geolocation   assessment   parameter   Value   [km]   

Geolocation   accuracy   average   [km]   4.80   

Geolocation   accuracy   standard   deviation   [km]   2.50   

https://en.wikipedia.org/wiki/Continental_crust
https://en.wikipedia.org/wiki/Mountain_range
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●   Latitude      =     [   -15.8    ;    -18.8]   
●   Longitude   =     [   -72.8    ;    -69.2];   

Tab.  3.8.1  shows  the  coordinates  for  the  eight  points  used  to  calculate  the  BT  contrast  for  Andean                   
mountains   following   the   eq.   B.2.   

Fig.   3.8.2   shows   an   example   for   Andean   mountains   with   SSMIS   F17   at   183±6.6   GHz   H.   

  

  
Figure   3. 8 .1:   Andean   mountains   from   Google   

The   BT   contrast   for   Andean   mountains   is   derived   following   the   Eq.   3.8.1   with   points   in   Tab.   3.8.1   

  
                                           (3.8.1)  T      ∆ Bm =  4

(T T )+(T T )+(T T )+(T T )B− A D− C F− E H− G  

  
Table   3.8.1.:   Coordinates   of   eight   points   used   to   calculate   the   BT   contrast   for   Andean   mountains   following   the   eq.   B.2.   
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Points  Latitude    [deg]   Longitude    [deg]   

A   -16.0769   -71.2432   

B   -16.5385   -71.8757   

C   -16.2154   -70.4162   

D   -17.0000   -71.1459   

E   -16.9077   -70.0270   

F   -17.4615   -70.5622   

G   -17.6923   -69.4432   



/

  

  

  

  
Figure   3.8.2:    In   the   left   there   is   the   brightness   temperature   image   at   183±6.6   GHz   H   over   Andean   mountains   SSMIS   F17   on    2016/07/14   In   

the   right   there   is   the   reference   digital   elevation   model.   The   black   line   represents   GSHHG   shoreline   database   
The  description  of  the  proposed  geolocation  assessment  methodology  for  this  target  class  is  provided  in                 
the   Appendix   B.    

  

Table   3.8.2:   Number   of   visible   days   during   2016   for   Andean   mountains   applying   the   cloud-masking   algorithm   

  

  

From   Tab.  3.8.2  the  total  number  of  SSMIS  available  images  in  2016  is  125   with  geolocation  assessment                   
results   summarized   in   Tab.   3.8.3.   

  
Table   3.8.3:   Result   for   Andean   mountains   in   2016   
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H   -18.3846   -69.9297   

Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Total   

5   2   5   10   25   24   21   25   22   20   16   2   177   

Geolocation   assessment   parameter   Value   [km]   

Geolocation   accuracy   average   [km]   3.70   

Geolocation   accuracy   standard   deviation   [km]   1.95   



/

  

  

4.   SENSITIVITY   ANALYSIS   OF   ASSESSMENT   METHODOLOGY   
The  error  budget  quantification  of  the  geolocation  assessment  methodology  is  a  difficult  task.  A  feasible                 
approach  is  to  follow  a  sensitivity  analysis  of  the  various  steps  of  the  proposed  methodology  and  to                   
evaluate  the  optimal  value  of  each  parameter  as  well  as  the  related  accuracy.  In  particular  we  can  select                    
the   following   critical   parameters:   

1. Interpolation-grid   spatial   resolution   
2. Spatial   interpolation   method   
3. Cross-correlation   method  

4.1   Sensitivity   to   interpolation-grid   spatial   resolution   
The  first  important  step  is  the  interpolation  on  a  grid  with  higher  resolution.  The  upsampling  factor  can  be                    
between  2  and  3.5  and  here  we  have  focused  on  the  evenly  spaced  grid  at  4,  5,  6  and  7  km.  Considering                        
the  dataset  described  in  Sec  3.6.1.  For  the  Ross  ice  shelf  and  validating  the  geolocation  accuracy                  
changing  the  interpolating  grid,  we  have  obtained  the  mean  value  (average)  and  standard  deviation,                
reported    in   Fig.   4.1.1.   

  

  
Figure   4.1.1:   Results   for   Ross   ice   shelf   in   relation   to   resampling   grid   spatial   resolution.   In   the   top   there   is   the   mean   value   of   geolocation   

accuracy   and   in   the   bottom   the   related   standard   deviation.     
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The   Fig.   4.1.1   is   also   summarized   in   the   following   Tab.   4.1.1.   
  

Table   4.1.1:   Results   for   Ross   ice   shelf   in   relation   to   resampling   grid   spatial   resolution.     

  

The  minimum  value  of  mean  geolocation  accuracy  and,  even  more  important,  the  standard  deviation  is                 
obtained  for  5  km  of  spatial  resolution.  For  this  reason  in  all  presented  tests  we  have  used  this  value  in  the                       
interpolated  grid.  Calculating  the  standard  deviation  of  the  geolocation  accuracy  average  for  several               
spatial  resolutions,  it  is  possible  to  estimate  the  variance  introduced  by  this  step  in  the  methodology.  The                   
obtained   standard   deviation   is   0.62   km.     

  

4.2   Sensitivity   analysis   to   spatial   interpolation   method   
In  addition  to  the  spatial  resolution,  the  method  of  spatial  interpolation  is  also  a  critical  one.  We  have                    
selected   the   following   methods:   

● Linear :  Triangulation  based  on  linear  interpolation,  such  as  using  linear  polynomials  to  construct               
new   data   points   within   the   range   of   a   discrete   set   of   known   data   points   

● Neighbor :  Triangulation  based  on  natural  neighbor  interpolation.  The  method  is  based  on   Voronoi               
tessellation  of  a  discrete  set  of  spatial  points.  This  has  advantages  over  simpler  methods  of                 
interpolation,  such  as  nearest-neighbor  interpolation,  in  that  it  provides  a  smoother  approximation              
to   the   underlying   "true"   function.   

● Cubic :  Triangulation  based  on  cubic  interpolation.  Images  resampled  with  cubic  interpolation  are              
smoother  and  have  fewer  interpolation  artifacts  with  respect  to  linear  interpolation,  but  it  requires                
more   computational   costs.   
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Spatial   resolution    [km]   4   5   6   7   

Geolocation   accuracy   average   [km]   5.18     4.17   5.6   5.03   

Geolocation   accuracy   standard   deviation   [km]     2.60     2.16   2.54   2.73   

https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Voronoi_diagram
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Figure   4.2.1:   Results   for   Ross   ice   shelf   in   relation   to   upsampling   methods.   Geolocation   accuracy   average   in   the   top   and   geolocation   

accuracy   standard   deviation   in   the   bottom.     

  
Table   4.2.1:   Results   for   Ross   ice   shelf   in   relation   to   upsampling   methods.     

  

Calculating  the  standard  deviation  of  the  geolocation  accuracy  average  for  several  interpolation  methods               
it  is  possible  to  estimate  the  variance  introduced  by  this  step  in  the  methodology.  The  obtained  standard                  
deviation  is  only  10  m.  From  observing  Tab.  4.2.1,  we  can  assume  that  the  choice  of  interpolation  method                    
has   only   an   insignificant   impact   on   the   results.     

  

4.3   Sensitivity   analysis   to   cross-correlation   technique   
The  final  step  consists  in  evaluating  the  geolocation  error  using  both  a  fast  normalized  cross-correlation                 
(FNC)  technique  [16]  and  the  registration  in  frequency  domain  (RFD)  [17].  The  cross  correlation  in  space                  
provides  the  normalized  cross  correlation  matrix  by  directly  correlating  the  two  images  (radiometric  and                
SAR  contours).  The  maximum  of  the  correlation  is  then  fitted  by  a  4th-order  polynomial  to  reach                  
sub-pixel  accuracy.  Conversely,  the  RFD  method  correlates  the  two-dimensional  Fourier  transform  of  the               
two   images   with   sub-pixel   image   registration.     

The   two   techniques   are   very   similar   so   that   we   obtain   very   similar   results,   as   shown   in   Fig.   4.3.1.   
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Interpolation   method   Linear   Natural   Cubic   

Geolocation   accuracy   average   [km]   4.16     4.17   4.15   

Geolocation   accuracy   standard   deviation   [km]     2.19     2.16   2.16   
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Figure   4.3.1:   Results   for   Ross   ice   shelf   in   relation   to   correlation   technique.   Geolocation   accuracy   average   in   the   top   and   geolocation   

accuracy   standard   deviation   in   the   bottom.     

  
Table   4.3.1:   Results   for   Ross   ice   shelf   in   relation   to   upsampling   methods.     
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Correlation   technique   FNC   RFD   

Geolocation   accuracy   average   [km]   4.17     4.17   

Geolocation   accuracy   standard   deviation   [km]     2.11   2.17   



/

  

  
  

As  a  further  parameter,  we  can  calculate  the  standard  deviation  of  the  geolocation  error  average  equal  to                   
0.04  km.  Between  FNC  and  RFD  we  have  almost  the  same  results,  because  FNC  is  computed  in  the                    
spatial  domain  whereas  the  RFD  is  computed  in  the  frequency  domain  so  that  the  small  differences,                  
highlighted   in   Tab.   4.3.1,   are   only   due   to   numerics.     

  

4.4   Overall   sensitivity   of   the   proposed   methodology   
  

To  have  an  estimate  of  the  methodology  accuracy  in  presence  of  many  error  sources,  we  can  recall  the                    
expression  of  the  variance  of  a  multivariate  random  function.  For  example,  considering  a  random  function                 

= x+y    where    x    and    y    may   represent   additive   zero-mean   errors,   its   variance   is   given   by:  (z)f  
  

     (4.4.1)  σ x ) xy 2 Cov (x, ) < z2 >  =  z
2 =  < ( + y 2 >  =  < x2 + y2 + 2 >  =  < x2 >  +  < y2 >  +  y  

  
where  the  angle  brackets  stand  for  ensemble  average.  If  it  is  possible  to  consider   x  and   y  statistically                    
independent   so   that   ,   then   it   holds  ov (x, )C y = 0  
  

                                   (4.4.2)                      < z2 >  =  < x2 >  +  < y2 >   
  

and   the   corresponding   standard   deviation   is:   
  

                                                             (4.4.3)    σz =√( σ )x2 + σy2  
  

The  following  Tab.  4.4.1  summarizes  the  standard  deviation  of  the  sensitivity  analysis  for  each  considered                 
parameter,  presented  in  Sec.  4.1,  4.2  and  4.3.  In  all  cases  the  number  of  samples  of  each  sensitivity                    
numerical  experiment  is  relatively  small  so  that  the  standard  deviation   should  be  better  intended  as  a            σ        
parametric   variability .  ∆  

    
Table   4.4.1:   Standard   deviation   or   parametric   variability   derived   from   the   sensitivity   analysis   to   each   parameter.   

  

  

Extending  eq.  (4.4.3)  to  more  than  2  variables  and  assuming  independent  error  contributions,  it  is  possible                  
to  evaluate  the  overall  accuracy  of  the  methodology  in  terms  of  its  standard  deviation  or  parametric                  
variability:   
  

   ∼ 0.62 km  ∆ =√(0.62 )2 + 0.012 + 0.042                                    4.4.4)(  
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Sensitivity   parameter     Standard   deviation   or   
parametric   variability   [km]   

Interpolation-grid   spatial   resolution   0.62   

Spatial   interpolation   method     0.01   

Cross-correlation   technique   0.04   



/

  

  
Previous  results  confirm  that  the  most  important  parameter  in  the  geolocation  assessment  methodology  is                
the  spatial  resolution  of  the  interpolation  grid.  It  is  worth  noting  that  this  choice  also  influences  the  spatial                    
upscaling   of   reference   contour   sources   such   as   coastline   database   or   SAR   imagery.     
  

It  can  be  also  important  to  understand  the  importance  of  the  dataset  size  to  obtain  a  stable  geolocation                    
error  result  in  terms  of  average  and  standard  deviation.  In  particular,  Fig.  4.4.1  shows  the  geolocation                  
error  accuracy  and  its  standard  deviation  against  the  number  of  samples,  considering  the  Ross  ice  shelf                  
(having   599   cloud-masked   samples).   
  

  

Figure   4.4.1.   Geolocation   error   average   (blue   line)   and   standard   deviation   (red   line)   for   Ross   ice   shelf    using   SSMIS   F17   at   183 ±    6.6   GHz   
at   H   polarization.     

  
Previous  figure  shows  that  the  geolocation  error  average  becomes  stable  with  about  100  samples.  To                 
obtain   a   substantial   stable   value   of   the   error   standard   deviation,   about   70   samples   seems   to   be   enough.   
  
  

4.5   Testing   the   nominal   accuracy   of   geolocation   error   assessment   
In  order  to  evaluate  the  accuracy  of  the  proposed  TCM  methodology,  we  can  perform  some  numerical                  
internal   tests   such   as   imposing   an   arbitrary   and   known   geolocation   error   along   latitude   and/or   longitude.     

For   example,   let   us   consider   an   image   over   the   Qinghai   lake   on   2016/11/11,   as   shown   in   Fig.   4.5.1     
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Figure   4.5.1:    Brightness   temperature   image   at   183±6.6   GHz   H   over   the   Qinghai   lake   with   SSMIS   F17   on   2016/11/11.   The   red   line   

represents   the   GSHHG   shoreline   database.   
Imposing  a  displacement  only  along  latitude  of  +0.07°,  which  corresponds  to  about  7.78  km,  we  get  what                   
is   shown   in   Figure   4.5.2.   

  
Figure   4.5.2:    Brightness   temperature   image   at   183±6.6   GHz   H   over   the   Qinghai   lake   with   SSMIS   F17   on   2016/11/11   with   a   displacement   

along   latitude   of   0.07°.   The   red   line   represents   the   GSHHG   shoreline   database.   
  

Extracting   the   contours   from   both   Fig.   4.5.1   and   4.5.2,   we   obtain   the   two   curves   in   Fig.   4.5.3.     

  
Figure   4.5.3:    Extracted   contour   using   Canny   algorithm   from   original   image   (blue)   and   shifted   image   (yellow).     

  

  

Contract:   EUM/CO/194600002297/VM   
Ref:           SUR/GAMES.D03   
Date:         11.02.2020   
Issue:        2.0   
Page:        42   / 42   

  

  



/

  

  
  

Cross-correlating  the  two  contour  curves,  the  proposed  TCM  methodology  provides  the  following              
displacements:   

● shift   along   latitude   =   0.0636°   
● shift   along   longitude   =   -0.0057°   

The  methodology  returns  a  geolocation  error  of  km  7.09,  but  with  an  error  of  0.69  km  respect  to  7.78  km,                      
that  is  the  imposed  geolocation  error.  Imposing  also  displacements  both  along  latitude  and  longitude  such                 
as:   

● shift   along   latitude   =   0.06°   
● shift   along   longitude   =   -   0.02   °   

Using   these   values,   we   introduce   an   error   of   about   6.91   km,   obtaining   the   two   curves   in   Fig.   4.5.4.     

  
Figure   4.5.4:    Extracted   contour   using   the   Canny   algorithm   from   original   image   (blue)   and   shifted   image   (yellow).    

  
Cross-correlating  the  two  contour  curves,  the  proposed  methodology  provides  the  following             
displacements:   

● Shift   along   latitude   =   0.0591°    
● Shift   along   longitude   =    -0.0113°   

  
The  TCM  methodology  correctly  returns  the  error  along  both  directions  with  a  displacement  of  6.65  km,                  
but  with  an  error  of  0.26  km.  To  better  understand  the  accuracy  of  the  results  along  longitude,  we  change                     
the   imposed   displacements:   

● shift   along   latitude   =   -0.04°   
● shift   along   longitude   =   +   0.06   °   

Using   these   values,   we   introduce   an   error   of   about   7.02   km,   obtaining   the   two   curves   in   Fig.   4.5.5.     
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Figure   4.5.5:    Extracted   contour   using   the   Canny   algorithm   from   original   image   (blue)   and   shifted   image   (yellow).    

  
Cross-correlating  the  two  contour  curves,  the  proposed  methodology  provides  the  following             
displacements:   

● Shift   along   latitude   =    -0.0409°     
● Shift   along   longitude   =    0.0567°   

  
The  TCM  methodology  correctly  returns  the  error  along  both  directions  with  a  displacement  of  6.79  km,                  
but   with   an   error   of   0.23   km.   Imposing   only   a   displacement   along   longitude:   

● shift   along   latitude   =   0.0°   
● shift   along   longitude   =   -   0.08   °   

Using   these   values,   we   introduce   an   error   of   about   7.25   km,   obtaining   the   two   curves   in   Fig.   4.5.6.     

  
Figure   4.5.6:    Extracted   contour   using   the   Canny   algorithm   from   original   image   (blue)   and   shifted   image   (yellow).    
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Cross-correlating  the  two  contour  curves,  the  proposed  TCM  methodology  provides  the  following              
displacements:   

● Shift   along   latitude   =   0,0°    
● Shift   along   longitude   =   -0.0680°   

The  TCM  methodology  correctly  returns  the  error  along  both  directions  with  a  displacement  of  6.05  km,                  
but  with  an  error  of  1.20  km.  Considering  an  other  day  for  Qinghai  lake,  e.g.  2016/11/03  as  shown  in  Fig.                      
4.5.7   

  
Figure   4.5.7:    Brightness   temperature   image   at   183±6.6   GHz   H   over   the   Qinghai   lake   with   SSMIS   F17   on   2016/11/03.   The   red   line   

represents   the   GSHHG   shoreline   database.   
Doing  the  same  test  again  for  this  day,  let  imposed  a  displacement  only  along  latitude  of  +0.07°,  which                    
corresponds   to   about   7.78   km,   we   get   what   shown   in   Figure   4.5.8.   

  
Figure   4.5.8:    Brightness   temperature   image   at   183±6.6   GHz   H   over   the   Qinghai   lake   with   SSMIS   F17   on   2016/11/03   with   a   displacement   

along   latitude   of   0.07°.   The   red   line   represents   the   GSHHG   shoreline   database.   
  

Extracting   the   contours   from   both   Fig.   4.5.7   and   4.5.8,   we   obtain   the   two   curves   in   Fig.   4.5.9     
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Figure   4.5.9:    Extracted   contour   using   Canny   algorithm   from   original   image   (blue)   and   shifted   image   (yellow).     

  
Cross-correlating  the  two  contour  curves,  the  proposed  TCM  methodology  provides  the  following              
displacements:   

● shift   along   latitude   =   0.0727°   (about   8.09   km)   
● shift   along   longitude   =   0.0°   

  
The  methodology  correctly  returns  the  error  only  along  latitude,  but  with  an  error  of  0.3  km.  Let  us                    
impose   the    displacements   both   along   latitude   and   longitude   such   as:   

● shift   along   latitude   =   0.06°   
● shift   along   longitude   =   -   0.02   °   

Using   these   values,   we   introduce   an   error   of   about   6.91   km,   obtaining   the   two   curves   in   Fig.   4.5.10.     

  
Figure   4.5.10:    Extracted   contour   using   the   Canny   algorithm   from   original   image   (blue)   and   shifted   image   (yellow).    
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Cross-correlating  the  two  contour  curves,  the  proposed  methodology  provides  the  following             
displacements:   

● Shift   along   latitude   =   0.0591°    
● Shift   along   longitude   =    -0.0170°   

  
The  TCM  methodology  correctly  returns  the  error  along  both  directions  with  a  displacement  of  6.74  km,                  
but   with   an   error   of   0.17   km.   Let   us   impose   the    displacements   both   along   latitude   and   longitude   such   as:   

● shift   along   latitude   =   -0.04°   
● shift   along   longitude   =   +   0.06   °   

Using   these   values,   we   introduce   an   error   of   about   7.02   km,   obtaining   the   two   curves   in   Fig.   4.5.11.   

  
Figure   4.5.11:    Extracted   contour   using   the   Canny   algorithm   from   original   image   (blue)   and   shifted   image   (yellow).     

  
Cross-correlating  the  two  contour  curves,  the  proposed  methodology  provides  the  following             
displacements:   

● Shift   along   latitude   =   -0.0364   °     
● Shift   along   longitude   =    0.0567°   

  
The  TCM  methodology  correctly  returns  the  error  along  both  directions  with  a  displacement  of  6.46  km,                  
but   with   an   error   of   0.56   km.   Finally,   imposing   the    displacements   only   along   longitude:   

● shift   along   latitude   =   0.0°   
● shift   along   longitude   =   -   0.08   °   

Using   these   values,   we   introduce   an   error   of   about   7.25   km,   obtaining   the   two   curves   in   Fig.   4.5.12.   
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Figure   4.5.12:    Extracted   contour   using   the   Canny   algorithm   from   original   image   (blue)   and   shifted   image   (yellow).    

  
Cross-correlating  the  two  contour  curves,  the  proposed  methodology  provides  the  following             
displacements:   

● Shift   along   latitude   =   0.0045°    
● Shift   along   longitude   =   -0.0793°   

The  TCM  methodology  correctly  returns  the  error  along  both  directions  with  a  displacement  of  7.08  km,                  
but   with   an   error   of   0.16   km.     
  
  
  

4.6   Sensitivity   analysis   to   the   target   sample   number   
This  section  shows  the  sensitivity  of  the  geolocation  error  assessment  to  the  number  of  samples  for  all                   
proposed   targets.     

  
Figure   4.6.1:    Geolocation   error   average   (blue   line)   and   standard   deviation   (red   line)   for   Qinghai   lake   using   SSMIS   F17   at   183±6.6   GHz   

(H).     
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As  an  example,  Fig.  4.6.1  reports  the  behaviour  of  the  average  geolocation  accuracy  and  relative  standard                  
deviation   with   respect   to   the   number   of   available   images   for   Qinghai   lake.     

In  order  to  estimate  the  minimum  number  of  samples  necessary  to  have  the  convergence  of  the  results,  we                    
can  introduce  the  relative  difference  of  average  mean  error   and  the  relative  difference  of  average           (n)δε        
standard   deviation   as:  (n)δσ 

 
  

100                                                           (4.6.1)  (n)δε = me

ε(n) m  − e  
100                                                          (4.6.2)  (n)δσε = mσ

σ (n) mε − σ  
where:   

- is   the   average   of   the   geolocation   displacement   obtained   considering   the   first     samples  (n)ε n  
- is   the   average   of   the   geolocation   displacement   obtained   considering   all   samples   mε   
- is  the  average  of  the  standard  deviation  of  geolocation  displacement  obtained  considering (n) σε             

the   first     samples  n  
- is  the  average  of  the  standard  deviation  of  geolocation  displacement  obtained  considering  all  mσ              

samples     
Note   that   both     and   are   percentage   values.   (n)δε (n)δσ 

  
  

Setting  arbitrary  thresholds  for  both  relative  differences,  we  can  impose  the  convergence  of  results  when                 
it   happens   simultaneously   that:   

                                                                    (4.6.3)  (n )δε  < δε th  

                                    (4.6.4)  (n )δσ  < δσ th 
 

where   it   holds:   
-   is   the   threshold   for   the   average   of   geolocation   displacement   δε th 

  
-   is   the   threshold   for   the   average   of   standard   deviation   of   geolocation   displacement   δσ th  

  
Considering   for   simplicity   the   same   percentage   threshold   for   eq.   (4.6.3)   and   (4.6.4),   it   is   possible   to  δth 

 
write   the   following   overall   condition   for   the   minimum   optimal   number   :  nopt  
  

                                                     (4.6.5)  (n ) &  δ (n ) ]  n  ∣ [δopt = n
ε  < δth  σ  < δth  

  
The  number   of  samples  that  satisfies  the  previous  eq.  (4.6.5)  could  be  consider  the  minimum  optimal    nopt                
number  of  target  necessary  samples  to  reach  a  convergence  for  both  mean  and  standard  deviation  of  the                   
geolocation  error.  Moreover,  considering  the  detectability/day  number  ,  summarized  in  Tab.  3.1.1,  it  is         ndd        
possible  to  transform  the   into  the  minimum  optimal  number   of  necessary  days,  needed  to      nopt       nopt dd 

      
satisfy   eq.   (4.6.5),   in   the   following   way:   
  

                                                                 (4.6.6)  nopt dd = ndd

nopt  
  

For  example,  in  the  case  of  lake  and  mountain  chain  targets,  whose  detectability/day  is  about  1,  we  obtain                    
.  nopt dd = nopt  
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Fig.  4.6.2  shows  the  relation  between   and  where  assuming  values  from  0.5%  to  5%  with  a        nopt   δth  δth 

        
step   of   0.5%,   as   shown   by   the   marker   in   Fig.   4.6.2.   As   expected,   relaxing   the   threshold,     decreases.  nopt  
    

  
Figure   4.6.2:   Relation   between   the   minimum   number   of   necessary   samples     and   threshold   for   Qinghai   lake   using   SSMIS   F17   at n )  ( opt  δth 

 
183±6.6   GHz   (H).     

    
Since   is   a   percentage   value,   then   the   finite   difference   (in   km)   between   and     and   between  δth 

(n )ε opt mε  
and   samples   depends   on   the   target,   as   shown   in   the   following   eq.   (4.6.7)   and   (4.6.8):  (n) σε m  σ   

  
                                                       (4.6.7)  ε(n ) ∣  Δε = ∣ opt − mε = ∣ m ∣δth 

100 ε  

                           (4.6.8)  σ (n ) ∣  Δσε = ∣ ε opt − mσ = ∣ m ∣δth 
100 σ  

  

  
  

Figure   4.6.3:   Relation   between   the   minimum   number   of   necessary   samples     and     in   blue   and   between   the   minimum   number   of  n )  ( opt  Δε  
necessary   samples     and     for   Qinghai   lake   using   SSMIS   F17   at   183±6.6   GHz   (H).   n )  ( opt  Δσε   

  
  

Below  a  similar  approach  is  carried  out  for  all  other  considered  targets.  In  particular,  grouping  them                  
depending  on  their  different  nature,  e.g,  lakes/bays,  mountains,  shelves  and  straits,  it  is  possible  to                 
produce   a   set   of   three   figures   for   each   type   of   target,   as   shown   in   Fig.   4.6.4   and   4.6.5.   
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Figure   4.6.4:    Geolocation   error   average   (x   markers)   and   standard   deviation   (o   markers)   for   Qinghai   lake   (red   line),   Titicaca   lake   (blue   line)   

and   Hudson   bay   (black   line)   using   SSMIS   F17   at   183±6.6   GHz   (H).     
  
  

  

  
Figure   4.6.5:   (Top   panel)   Relation   between   the   minimum   number   of   necessary   samples     and   threshold.   (Bottom   panel)   Relation  n )  ( opt  δT  

 
between   the   minimum   number   of   necessary   samples     and   with   ’x’   markers    and    between   the   minimum   number   of   necessary   samples  n )  ( opt  Δε  

  and   with   ‘o’   markers.   The   results   are   shown   for   Qinghai   lake   with   red   line,   for   Titicaca   lake   with   blue   line   and   for   Hudson   bay   n )  ( opt  Δσε   
with   black   line.   
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The  following  Fig.  4.6.6  and  Fig.  4.6.7  report  the  results  and  the  minimum  number  of  necessary  samples                   
for   Antarctic   ice   shelves.     

  

  
Figure   4.6.6:    Geolocation   error   average   (x   markers)   and   standard   deviation   (o   markers)   for   Ross   ice   shelf   (red   line),   Filchner-Ronne   ice   

shelf   (blue   line)   and   Amery   ice   shelf   (black   line)   using   SSMIS   F17   at   183±6.6   GHz   (H).     

  

  
Figure   4.6.7:   (Top   panel)   Relation   between   the   minimum   number   of   necessary   samples     and   threshold.   (Bottom   panel)   Relation  n )  ( opt  δT  

 
between   the   minimum   number   of   necessary   samples     and   with   ’x’   markers    and    between   the   minimum   number   of   necessary   samples  n )  ( opt  Δε  

  and   with   ‘o’   markers.   The   results   are   shown   for   Ross   ice   shelf   with   red   line,   for   Filchner-Ronne   ice   shelf   with   blue   line   and   Amery n )  ( opt  Δσε  

ice   shelf   with   black   line.     
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Considering  the  eq.  (4.6.6)  with  for  ice  shelves,  it  is  possible  to  obtain  the  Fig.  4.6.8,  that  reports       ndd = 4              
the   minimum   number   of   days   necessary   to   obtain   the   convergence.     
  

  
  

  
  

Figure   4.6.8:   (Top   panel)   Relation   between   the   minimum   optimal   number     of   necessary   days   and   threshold.   (Bottom   panel)   nopt dd 
 δT  

 
Relation   between   minimum   optimal   number     of   necessary   days   and   with   ’x’   markers    and    between   minimum   optimal   number   nopt dd 

 Δε  
  of   necessary   days   and   with   ‘o’   markers.   The   results   are   shown   for   Ross   ice   shelf   with   red   line,   for   Filchner-Ronne   ice   shelf   with   nopt dd 

 Δσε  

blue   line   and   Amery   ice   shelf   with   black   line.     
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The  following  Fig.  4.6.9  and  Fig.  4.6.10  report  the  results  and  the  minimum  number  of  necessary  samples                   
for   Karakorum   and   Andean   chains.     

  

  
Figure   4.6.9:    Geolocation   error   average   (x   markers)   and   standard   deviation   (o   markers)   for   Karakorum   mountains   (red   line)   and   Andean   

chain   (blue   line)   using   SSMIS   F17   at   183±6.6   GHz   (H).     
  

  

  
Figure   4.6.10:   (Top   panel)   Relation   between   the   minimum   number   of   necessary   samples     and   threshold.   (Bottom   panel)   Relation  n )  ( opt  δT  

 
between   the   minimum   number   of   necessary   samples     and   with   ’x’   markers    and    between   the   minimum   number   of   necessary   samples  n )  ( opt  Δε  

  and   with   ‘o’   markers.   The   results   are   shown   for   Karakorum   mountains   with   red   line   and   Andean   mountains   with   blue   line.   n )  ( opt  Δσε   
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Fig.  4.6.11  and  Fig.  4.6.12  report  the  results  and  the  minimum  number  of  necessary  samples  for  Nares                   
Strait.     

  

  
Figure   4.6.11:    Geolocation   error   average   (x   markers)   and   standard   deviation   (o   markers)   for   Nares   Strait   using   SSMIS   F17   at   183±6.6   GHz   

(H).     
  

  

  
Figure   4.6.12:   (Top   panel)   Relation   between   the   minimum   number   of   necessary   samples     and   threshold.   (Bottom   panel)   Relation  n )  ( opt  δT  

 
between   the   minimum   number   of   necessary   samples     and   with   ’x’   markers    and    between   the   minimum   number   of   necessary   samples  n )  ( opt  Δε  

  and   with   ‘o’   markers.   The   results   are   shown   for   for   Nares   Strait  n )  ( opt  Δσε  
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Considering  the  eq.  (4.6.6)  with  for  Nares  Strait,  it  is  possible  to  obtain  the  Fig.  4.6.13,  that       ndd = 4             
reports   the   minimum   number   of   days   necessary   to   obtain   the   convergence.     

  
  

  

  
Figure   4.6.13:   (Top   panel)   Relation   between   the   minimum   optimal   number      and   threshold.   (Bottom   panel)   Relation   between   the   nopt dd 

 δT  
 

the   minimum   optimal   number     and   with   ’x’   markers    and    between   the   minimum   optimal   number     and   with   ‘o’   markers.   nopt dd 
 Δε  nopt dd 

 Δσε  
The   results   are   shown   for   for   Nares   Strait   

  
  

In  summary,  the  following  Tab.  4.6.1  resumes   and  obtained  for  all  targets,  setting  the         nopt   noptdd        
threshold     to   1%   and   2%.  δth  
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Target   

  =   1%  δth    =   2%  δth  

 nopt   noptdd   nopt   noptdd  

Qinghai   lake   82   82   54   54   

Karakorum   mountains   31   31   31   31   

Hudson   Bay   61   61   60   60   



/

  

  

  
Note  that  in  case  of  Titicaca  lake  for  ,  we  do  not  indicate   because  we  need  all  samples  to          %δth = 1      nopt        
respect   this   threshold.     
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Nares   strait   518   130   446   112   

Ross   ice   shelf   286   72   166   42   

Filchner-Ronne   ice   shelf   245   62   80   20   

Amery   ice   shelf   142   36   127   31   

Titicaca   lake   -   -   16   16   



/

  

  

5.   ICI   FREQUENCY-SCALING   ASSESSMENT   
In  order  to  simulate  the  spaceborne  ICI  BT  and  slant-path  attenuation,  we  have  adopted  a  1D  radiative                   
transfer  model  (with  no  scattering)  using  ERA-5  or  radiosoundings  (RAOB)  as  input  atmospheric  vertical                
profiles.   In   particular:   

- ERA-5  data  cover  the  Earth  on  a  30-km  resolution  grid  and  resolve  the  atmosphere  using  137                  
levels  from  the  surface  up  to  a  height  of  80  km.  The  used  atmospheric  radiosoundings  are                  
distributed  from  University  of  Wyoming  for  many  stations  around  the  world.  Tab.  5.1  summarizes                
the   considered   data   sources.     

- To  obtain  a  more  realistic  simulated  scenario,  it  is  essentially  to  have  a  good  representation  of  the                   
surface  emissivity.  For  this  purpose  we  have  adopted  the  surface-emissivity  models  TELSEM2              
for   water   surface   and   TESSEM2   for   land   surface.     

  
Table   5.1:   Summary   of   web   sites   to   download   atmospheric   information   

  

  

5.1   Frequency   scaling   using   SSMIS   measured   imagery   
Considering  the  existing  data  provided  from  SSMIS  F17  instrument  it  is  possible  to  observe  the                 
differences  between  150  GHz  H  and  183±6.6  GHz  H.  Fig.  5.1.1  shows  that  difference  for  Titicaca  lake  on                    
15/07/2016  and  the  BT  contrast  between  land  and  water  is,  as  expected,  greater  at  150  GHz.  Also  Fig.                    
5.1.2   and   Fig.   5.1.3   confirm   that   observation.     

    
Figure   5.1.1:   BT   over   Titicaca   lake   on   15/07/2016   at   150   GHz   (left)   and   183   ±6.6   GHz   (right).The   red   line   represents   the   Titicaca   lake   from   

GSHHG   database   at   full   resolution.   
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Data   Web   Site   

ERA-5   https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset   

Atmospheric   soundings   http://www.weather.uwyo.edu/upperair/sounding.html   

https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
http://www.weather.uwyo.edu/upperair/sounding.html


/

  

  

    
Figure   5.1.2:   BT   over   Qinghai   lake   on   11/11/2016   at   150   GHz   (left)   and   183   ±6.6   GHz   (right).The   red   line   represents   the   Qinghai   lake   from   

GSHHG   database   at   full   resolution.   

  

    
Figure   5.1.3:   BT   over   Qinghai   lake   on   30/11/2016   at   150   GHz   (left)   and   183   ±6.6   GHz   (right).The   red   line   represents   the   Qinghai   lake   from   

GSHHG   database   at   full   resolution.   

It  is  very  useful  to  observe  SSMIS-8  (150  GHz  in  horizontal  polarization),  because  it  can  be  used  also  to                     
have   an   idea   what   we   will   see   with   ICI-4   (H)   as   will   be   explained   in   the   next   Sub-sec.   5.2   and   5.3.   

  

5.2   Frequency   scaling   simulation   using   radiosounding   profiles   
Using  atmospheric  sounding  it  is  possible  to  simulate  BT  in  a  single  point,  for  example  wanting  to                   
simulate   the   Antarctic   area   we   can   choose   a   station   in   Fig.   5.2.1.   

  
Figure   5.2.1:   Available   weather   stations   on   Antarctica   region   which   atmospheric   sounding     
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Fig.  5.2.1  shows  that  a  weather  station  is  located  within  Ross  ice  shelf,  i.e.  the  station  89664  of                    
McMurdo.  Using  data  available  for  this  station,  it  is  possible  to  simulate  spaceborne  BTs  for  different  ICI                   
channel  frequencies.  The  numerical  simulations  in  this  case  are  provided  setting  a  constant  surface                
emissivity.     

Fig.  5.2.2  reports  the  relation  between  150  GHz  and  243  GHz  for  simulations  on  McMurdo  station  from                   
01  June  2016  to  31  October  2016.  Within  this  period  we  have  almost  two  radiosoundings  per  day,                   
obtaining   a   dataset   containing   299   samples.     

  
Figure   5.2.2:   Relation   between   150   GHz   and   243   GHz   for   simulations   on   McMurdo   station   from   01   June   2016   to   31   October   2016.   Blue   

markers   are   the   results   for   0.6   of   surface   emissivity.   Red   points   indicate   surface   emissivity   of   0.7.   Black   markers   are   the   results   for   surface   
emissivity   of   0.8.   Green   markers   are   the   results   for   0.9   of   surface   emissivity   at   53°   view   angle.   

  

Fig.  5.2.2  shows  a  linear  relation  between  150  GHz  and  243  GHz,  especially  for  lower  values  of  surface                    
emissivity.  Tab.  5.2.1.  Contains  the  equations  of  the  linear  regression  that  allow  to  approximate  243  GHz                  
from   150   GHz.   

Table   5.2.1:   BT   frequency-scaling   relation   from   150   GHz   and   243   GHz   for   several   surface   emissivity   
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Emissivity   Equation   (BT   in   K)   

0.6    .5 T 5  T B243
= 1 B150

− 6  

0.7    .4 T 6  T B243
= 1 B150

− 5  

0.8    .2 T 8  T B243
= 1 B150

− 3  

0.9    .1 T 1  T B243
= 1 B150

− 1  



/

  

  

Fig.  5.2.3  and  Fig.  5.2.4  show  the  relation  between  183  GHz  and  243  GHz  and  between  150  GHz  and                     
183   GHz,   respectively.   No   close   to   linear   relationships   were   found   between   these   pair   of   channels.   

  
Figure   5.2.3:   Relation   between   183   GHz   and   243   GHz   for   simulations   on   MCMurdo   station   from   01   June   2016   to   31   October   2016.   Blue   
markers   are   the   results   for   0.6   of   surface   emissivity.   Red   points   indicate   surface   emissivity   of   0.7.   Black   markers   are   the   results   for   surface   

emissivity   of   0.8.   Green   markers   are   the   results   for   0.9   of   surface   emissivity   at   53°   view   angle.   

  
Figure   5.2.4:   Relation   between   150   GHz   and   183   GHz   for   simulations   on   MCMurdo   station   from   01   June   2016   to   31   October   2016.   Blue   
markers   are   the   results   for   0.6   of   surface   emissivity.   Red   points   indicate   surface   emissivity   of   0.7.   Black   markers   are   the   results   for   surface   

emissivity   of   0.8.   Green   markers   are   the   results   for   0.9   of   surface   emissivity   at   53°   view   angle.   

Fig.   5.2.5   shows   the   attenuation   for   150   GHz,   183   GHz   and   243   GHz.   
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Figure   5.2.5:   Simulated   attenuation   obtained   using   radiosaudings   over   MCMurdo   station   for   an   emissivity   of   0.9   at   53°   view   angle.   

The  attenuation  of  243  GHz  is  higher  with  respect  to  150  GHz,  as  highlighted  in  Fig.  5.2.6.  However,  the                     
attenuation  at  243  GHz  is  lower  than  at  183  GHz,  so  it  will  allow  to  see  more  surface  targets  with  higher                       
BT   contrast   at   243   GHz.   

  
Figure   5.2.6:   Simulated   attenuation   obtained   using   radiosaudings   over   MCMurdo   station   for   an   emissivity   of   0.9   at   53°   view   angle   

  
5.3   Frequency   scaling   simulation   using   ERA-5   clear-air   scenarios   

Using  ERA-5  data  as  input  for  atmospheric  vertical  profiles,  it  is  possible  to  simulate  an  entire  scene  and                    
its  BT  map.  In  this  respect,  it  is  very  import  to  properly  characterize  the  surface  emissivity  knowing  its                    
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nature  as  well  as  the  observation  geometry  and  central  frequency.  Input  information  to  TELSEM2  and                 
TESSEM2   recent   and   state-of-the-art   models,   described   in   [20],   are   listed   in   Tab.   5.3.1.   

  
Tab.   5.3.1:   Information   needed   to   compute   the   emissivity   for   land   and   water   surface   

  

  

Providing  the  input  data  of  Tab.  5.3.1  for  the  Qinghai  lake  at  183  GHz,  we  can  simulate  the  surface                     
emissivity  as  in  Fig.  5.3.1  both  at  horizontal  and  vertical  polarization  using  ERA5  on  1  December  2016  at                    
11:00   am.   

Using  surface  emissivity  maps  of  Fig,  5.3.1,  it  is  then  possible  to  simulate  spaceborne  BTs  and  the                   
slant-path  attenuation  at  183±7  GHz,  both  at  horizontal  polarization  (as  the  case  of  SSMIS)  and  at  vertical                   
polarization  (as  the  case  of  ICI).  For  the  ICI-1  at  183±7  GHz  results  for  the  BT  and  slant-path  attenuation                     
are   shown   in   Fig.   5.3.2.     

  

  
Figure   5.3.1:   Simulated   surface   emissivity   at   183±7    GHz   using   TELSEM2   and   TESSEM2.   The   red   line   represents   the   Qinghai   lake   from   

GSHHG   database   at   full   resolution.     
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Type   of   surface   Input   data     

Land   (TELSEM2)   Viewing   angle   of   view,   frequency,   geographical   coordinates     

Water   (TESSEMS2)   Viewing   angle,   frequency,   surface   wind   velocity,   surface   temperature,   water   
salinity   
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Figure   5.3.2:   Simulated   brightness   temperature   and   attenuation   along   slant   direction   at   190   GHz   (top),   at   176   GHz   (center)   and   in   183±7   

GHz   (bottom)   in   vertical   polarization.   The   red   line   represents   the   Qinghai   lake   from   GSHHG   database   at   full   resolution.   

  

Fig  5.3.3  shows  the  simulation  at  183±7  GHz  (H)  in  the  left  and  in  the  right  there  is  a  real  image  of                        
SSMIS  F17  at  183±6.6  GHz  (H)        
(CSU_SSMIS_FCDR_V01R01_F17_D20161201_S1117_E1259_R51989).   

  

  
Figure   5.3.3:   Simulated   brightness   temperature   along   slant   direction   at   183±7   GHz   (left)   in   horizontal   polarization   and   real   image   of   SSMIS   

F17   at   183±6.6   GHz   (H).   The   red   line   represents   the   Qinghai   lake   from   GSHHG   database   at   full   resolution.   
Note  that  both  simulations  at  183±7  GHz  in  vertical  and  horizontal  polarization  do  not  see  the  surface,                   
differently   from   the   real   case   in   which   SSMIS   provided   BT   contrast   for   Qinghai   lake.   

Considering  the  ICI-4  channel  at  243±2.5  GHz,  results  are  reported  in  Fig.  5.3.4  both  for  horizontal  and                   
vertical  polarizations.  ICI-4  has  both  V  than  H  polarization  and  according  to  Fig.  5.3.4  the  H-polarization                  
channel   has   more   BT   contrast   over   the   lake   as   compared   to   the   V-polarization   one.     
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Figure   5.3.4:   Simulated   brightness   temperature   and   attenuation   along   slant   direction   at   243.5   GHz   in   vertical   polarization   (top)   and   in   

horizontal   polarization   (bottom).   The   red   line   represents   the   Qinghai   lake   from   GSHHG   database   at   full   resolution.   

Fig.  5.3.4  shows  that  the  landmark  targets  would  be,  as  expected,  more  visible  with  horizontal                 
polarization   of   ICI-4   channel.     

  

5.4   Simulating   brightness   contrast   and   atmospheric   water   vapour   effects   
In  this  subsection  we  focus  our  attention  on  the  atmospheric  water  vapour  content  and  its  relation  with                   
landmark   targets   visibility   using   the   concept   of   the   absolute   BT   contrast   ,   defined   as:  T∆ B   

                                                      (5.4.1)  T (f ) (e , ) (e , )∣  ∆ B  = ∣T B  s1 f − T B  s2 f  

being  is  the  BT  simulated  at  the  top-of-atmosphere  (TOA)  and   f  the  channel  frequency,  whereas   e s1   T B                 
and   e s2  are  the  surface  emissivities  of  the  contiguous  objects  (e.g.,  land  surface,  sea  water,  ice  shelf,  lake                    
water)   characterizing   each   geolocation   targets.     

The  following  figures  show  the  BT  contrast  considering  different  values  of  surface  emissivity  for  183±7                 
GHz  and  243±2.5  GHz,  using  radiosounding  over  McMurdo  station  from  01  June  2016  to  31  October                  
2016.  Fig.  5.4.1  reports  the  BT  contrast  using  a  constant  arbitrary  surface  emissivity  of  0.8  and  0.5,                   
whereas  Fig  5.4.2  shows  the  BT  difference  using  a  constant  arbitrary  surface  emissivity  of  0.9  and  0.8.  If                    
the  surface  emissivity  difference  decreases,  consequently  the  BT  contrast  decreases,  whereas,  if  the               
integrated  water  vapour  increases,  the  BT  contrast  decreases  more  at  183  GHz  than  at  243  GHz.  Setting  a                    
fixed  value  of  surface  emissivity  at  243±2.5  GHz,  we  can  obtain  higher  values  of  BT  contrast  with  respect                    
to   the   183±7   GHz   one   so   that   we   can   expect   a   better   landmark   BT   contrast   for   ICI-4.     
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Figure   5.4.1:   Simulated   brightness   temperature   contrast   considering   landmark   target   with   surface   emissivity   of   0.8   and   0.5,   considering   

radiosounding   over   McMurdo   station   from   01   June   2016   to   31   October   2016.   Red   markers   represent   the   245±2.5   GHz   and   blue   points   are   
the   simulation   at   183±7   GHz.   

  
Figure   5.4.2:   Simulated   brightness   temperature   contrast   considering   landmark   target   with   surface   emissivity   of   0.9   and   0.8,   considering   

radiosounding   over   McMurdo   station   from   01   June   2016   to   31   October   2016.   Red   markers   represent   the   245±2.5   GHz   and   blue   points   are   
the   simulation   at   183±7   GHz   

To  simulate  the  behavior  of  the  expected  ICI  BT  contrast,  we  can  similarly  plot   using  the  other                T (f )∆ B      
ICI  frequencies  (see  Tab.  1.1),  as  shown  in  Fig.  5.4.3  and  Fig.  5.4.4.   Note  that  we  have  also  added  the                      
results   at   150   GHz   for   comparison   as   this   central   frequency   is   available   for   SSMIS.     

As  expected,  the  BT  contrast  decreases  as  the  frequency  increases  up  to  values  of  less  than  5  K  at  664                      
GHz,  whereas  is  larger  at  150  GHz  with  respect  to  183.3±7  GHz  one  which  in  turn  is  smaller  than    T∆ B                   

  

  

Contract:   EUM/CO/194600002297/VM   
Ref:           SUR/GAMES.D03   
Date:         11.02.2020   
Issue:        2.0   
Page:        66   / 66   

  

  



/

  

  
243.2±2.5  GHz  one.  This  means  that  ICI-4  exhibits  an  appealing  potential  for  geolocation  assessment.  By                 
reducing  the  surface  emissivity  contrast  from  0.2  down  to  0.05  (see  Fig.  5.4.3  versus  5.4.4  and  Fig.  5.4.5),                    
the   BT   contrast   is   reduced   if   the   atmosphere   is   unchanged.     

  

  
Figure   5.4.3:   Simulated   brightness   temperature   contrast   considering   landmark   target   with   surface   emissivity   of   0.9   and   0.7,   considering   

radiosounding   over   McMurdo   station   from   01   June   2016   to   31   October   2016   at   several   ICI   frequencies   and   150   GHz.   
    

  

Figure   5.4.4:   Simulated   brightness   temperature   contrast   considering   landmark   target   with   surface   emissivity   of   0.9   and   0.8,   considering   
radiosounding   over   McMurdo   station   from   01   June   2016   to   31   October   2016   at   several   ICI   frequencies   and   150   GHz.   
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Figure   5.4.5:   Simulated   brightness   temperature   contrast   considering   landmark   target   with   surface   emissivity   of   0.95   and   0.9,   considering   

radiosounding   over   McMurdo   station   from   01   June   2016   to   31   October   2016   at   several   ICI   frequencies   and   150   GHz.     
  

In  order  to  simulate  more  realistic  values  of  BT  contrast  between  water  and  land,  instead  of  assuming                   
them  arbitrarily  constant,  we  can  compute  the  surface  emissivity  with  the  TELSEM2  and  TESSEM2                
numerical  models  over  the  Qinghai  lake,  obtaining  the  mean  values  of  surface  emissivities,  shown  in                 
Table  3.  Note  that  TELSEM2  provides  a  constant  value  of  land  surface  emissivity  above  89  GHz,  and                   
ICI-1,   ICI-5   and   ICI-8   channels   will   have   only   the   vertical   polarization.     

  
Table   3:   Surface   emissivity   for   water   and   lake   averaged   over   Qinghai   lake   provided   by   TELSEM2   and   TESSEM2   for   several   

frequencies     

  

The  atmospheric  conditions  in  the  Qinghai  lake  region  have  been  extracted  from  the  RAOB  station  n.                  
44373,  highlighted  in  Fig.  5.4.6.  This  station  is  the  closest  to  the  Qinghai  lake  target  area  and  the  most                     
similar   in   terms   of   annual   climatology.   
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ICI   channels   Frequency   [GHz]   Land   (H)   Sea   water   (H)   Land   (V)  Sea   water   (V)  

ICI-1   183±7   No   channel   available   0.93   0.87   

ICI-4   243±2.5   0.89   0.57   0.93   0.90   

ICI-5   325±9.5   No   channel   available   0,93   0.93   

ICI-8   448±7.2   No   channel   available   0.93   0.95   

ICI-11  664±4.2   0.89   0.68   0.93   0.96   
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Figure   5.4.6:   RAOB   station   n.   44373   (red   circle),   available   from   Wyoming   University   over   Southeast   Asia.   The   blue   spot   is   the   region   of   

Qinghai   lake.   

  
Figure   5.4.7:   Simulated   brightness   temperature   contrast   considering    landmark   target   with   surface   emissivity   from   TELSEM2   and   
TESSEM2,   considering   radiosounding   over   44373   (Asia)   station   from   01   June   2016   to   31   October   2016   at   several   ICI   channels.     

  

Fig.  5.4.7  confirms  what  previously  discussed  and,  in  particular  that,  in  case  of  targets  with  water/land                  
coastline  (e.g.,  Qinghai  lake),  we  can  expect  a  higher  value  of  BT  contrast  using  ICI-4  at  horizontal                   
polarization   than   using   ICI-1.   

Water  vapour  content  depends  on  climate  conditions  and  seasons.  Following  the  Köppen  geo-climatic               
classification,   there   are   5   main   groups   of   climate   regions,   as   shown   in   Fig.   5.4.8   [21]:   

  

  

Contract:   EUM/CO/194600002297/VM   
Ref:           SUR/GAMES.D03   
Date:         11.02.2020   
Issue:        2.0   
Page:        69   / 69   

  

  



/

  

  

● A   (tropical)   
● B   (dry)   
● C   (temperate)   
● D   (continental)   
● E   (polar)   

  

  

  
Figure   5.4.8:   Köppen-Geiger   climate   classification   map   [21]   

  

Selecting  a  RAOB  station  for  each  Köppen  climate  region,  we  can  characterize  the  BT  contrast  against                  
the  integrated  water  vapour  content  using  RAOB  data  of  year  2016  (the  same  year  of  SSMIS  satellite                   
data).  Tab.  5.4.2  shows  the  chosen  RAOB  stations  from  the  University  of  Wyoming  database  with  the                  
corresponding   number   of   available   samples.     
  

Table   5.4.2:   RAOB   stations   for   the   five   climate   regions   following   Köppen   climate   classification   
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Climate   region   
( Köppen   

classification )   

RAOB   
station   
code   

Region   
(Wyoming   
website)   

RAOB   
station   
latitude   

RAOB   
station   

longitude   

Number   of   
atmospheric   

radiosounding    

A   (tropical)   82917     South   America   -10.00   -67.80   552   
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Figure   5.4.9:   Simulated   brightness   temperature   contrast   considering    landmark   target   with   surface   emissivity   from   TELSEM2   and   

TESSEM2,   considering   radiosounding   over   82917   station   (tropical)   on   2016   at   several   ICI   channels   and   150   GHz   H.     
  

Fig.  5.4.9  shows  BT  contrast  for  a  station  in  a  tropical  region,  where  integrated  water  vapour  content  is                    
greater  than  3  cm  and  we  have  very  low  BT  contrast  between  land  and  water  surfaces.  This  high  value  of                      
water  vapour  content  can  explain  why  we  have  fewer  visible  days  for  the  Titicaca  lake  (tropical  climate)                   
than   for   the   Qinghai   lake   (arid-dry   climate).     
Fig.  5.4.10  shows  BT  contrast  for  a  RAOB  station  in  arid-dry  region,  Fig.  5.4.11  shows  the  BT  contrast                    
for  a  RAOB  station  in  a  temperate  region  and  Fig.  5.4.12  shows  the  BT  contrast  for  a  RAOB  station  in                      
cold-continental   region.     

Fig.  5.4.13  shows  that  lower  values  of  integrated  water  vapour  content  involve  an  almost  constant  trend                  
of   for  window-frequency  BTs  (ICI-4  H),  highlighted  by  blue  markers  and  150  GHz  H  (indicated   T (f )∆ B                 
by   red   points).   Fig.   5.4.14   confirms   this   behavior,   showing   also     at   89   GHz.   T∆ B    
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B   (Arid-dry)   94461     South   Pacific   -25.03   128.28   356   

C   (temperate)   03953   Europe   51.93   -10.25   728   

D   (Cold-continental)   30715   Southeast   Asia   52.48   103.85   721   

E   (polar)   89664   Antarctica  -77.85   166.66   721   
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Figure   5.4.10:   Simulated   brightness   temperature   contrast   considering    landmark   target   with   surface   emissivity   from   TELSEM2   and   

TESSEM2,   considering   radiosounding   over   94461   station   (Arid-dry)   on   2016   at   several   ICI   channels   and   150   GHz   H.     

  
Figure   5.4.11:   Simulated   brightness   temperature   contrast   considering    landmark   target   with   surface   emissivity   from   TELSEM2   and   

TESSEM2,   considering   radiosounding   over   03953   station   (temperate)   on   2016   at   several   ICI   channels   and   150   GHz   H.     
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Figure   5.4.12:   Simulated   brightness   temperature   contrast   considering    landmark   target   with   surface   emissivity   from   TELSEM2   and   

TESSEM2,   considering   radiosounding   over   30715   station   (Cold-continental)   on   2016   at   several   ICI   channels   and   150   GHz   H.     

  

  
Figure   5.4.13:   Simulated   brightness   temperature   contrast   considering    landmark   target   with   surface   emissivity   from   TELSEM2   and   

TESSEM2,   considering   radiosounding   over   89664   station   (polar)   on   2016   at   several   ICI   channels   and   150   GHz   H.     
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Figure   5.4.14:   Simulated   brightness   temperature   contrast   considering    landmark   target   with   surface   emissivity   from   TELSEM2   and   

TESSEM2,   considering   radiosounding   over   89664   station   (polar)   on   2016   at   several   ICI   channels,   150   GHz   H   and   89   GHz.   
  

In  all  the  previous  simulations  we  substantially  observe  higher  values  of  BT  contrast  for  150  GHz  H  and                    
consequently  for  243±2.5  GHz  BT  at  horizontal  polarization,  confirming  that  we  can  better  detect  a                 
surface  target  using  ICI-4  H  than  183-GHz  channel.  Note  that,  in  general,  we  have  obtained  a  sufficient                   
BT  contrast  to  extract  a  contour  (i.e.,  more  than  10  K)  for  an  integrated  water  vapour  content  lower  than                     
about   1   cm.     
  

Finally,  Fig.  5.4.14  shows  the  BT  simulation  over  a  polar  region,  using  McMurdo  RAOB  station,  in  2016                   
where  the  water  vapour  content  is  much  lower  than  that  of  the  other  considered  regions.  Looking  at  the                    
BT  contrast  for  several  ICI  channels,  this  figure  confirms  that  in  polar  regions  it  is  more  probable  to  "see"                     
the   surface   at   millimeter   waves   and   that   Antartic   ice   shelves   are    very   good   surface   targets.   

5.5   Geolocation   accuracy   test   using   150   GHz     
From  subsection  5.4  we  have  observed  that  the  future  ICI-4  (H)  BT  will  probably  be  more  similar  to  150                     
GHz  H  than  to  183  GHz  H  one.  To  further  investigate  this  issue,  in  this  section  we  will  describe  some                      
tests   over   the   Qinghai   lake   in   2016.    

  

Table   5.5.1:   Results   for   geolocation   evaluation   accuracy   using   Qinghai   lake   as   target   at   150   GHz   H   and   183   ±   6.6   GHz   H   considering   84   
images   on   2016   from   SSMIS   F17   
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Frequency   
   [GHz]   

Geolocation   accuracy   average   
   [km]   

Geolocation   accuracy   standard   deviation   
[km]   

150   (H)   6.25   2.39   

183±6.6   (H)   5.10   2.03   



/

  

  
Considering  the  same  dataset  described  in  subsection  3.2,  we  have  84  samples  for  SSMIS  F17  150  GHz                   
H.  After  applying  the  TCM  technique,  the  geolocation  accuracy  average  is   6.25  km  with  a  standard                  
deviation  of   2.39  km.  Tab.  5.5.1  summarizes  the  geolocation  accuracy  results  for  150  GHz  and  for  183  ±                    
6.6   GHz.   

Tab.  5.5.1  shows  very  similar  results  for  both  frequencies,  but  the  advantage  of  150  GHz  is  to  increase  the                     
dataset,  having  more  visible  days.  We  have  considered  all  629  images  that  contains  the  lake  and,  applying                   
the  fuzzy-logic  approach,  we  have  obtained  265  samples  with  useful  BT  contrast  around  lake  coastline  to                  
extract  a  contour.,  thus  showing  that  150  GHz  has  more  surface  visibility.  Considering  265  images  over                  
the  Qinghai  lake,  we  obtain  a  geolocation  accuracy  average  of  4.94  km  with  a  standard  deviation  of  2.16                    
km.   Using   150   GHz   H   we   can   get   overall   results   similar   to   those   obtained   in   Sect.   3.     
  

Fig  5.5.1  shows  the  geolocation  error  accuracy  and  its  standard  deviation  against  the  number  of  available                  
SSMIS   samples,   considering   265   cloud-masked   images   at   150   GHz   using   the   Qinghai   lake   target.   
  

  
Figure   5.5.1:   Geolocation   error   average   (blue   line)   and   standard   deviation   (red   line)   for   Qinghai   lake   using   SSMIS   F17   at   150   GHz   (H).     
  

Fig.  5.5.1  shows  that  the  geolocation  error  average  reaches  5  km  with  about  140  samples.  In  this  case,  to                     
obtain  a  stable  value  of  its  standard  deviation,  about  50  samples  are  sufficient.  These  numbers  are  smaller                   
of  about  30%  than  those  shown  in  Fig.  4.5.1  for  the  183-GHz  channel,  mainly  due  to  different  frequency                    
vicinity   to   the   absorption   peak.   
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6.   CONCLUSION     
The  goal  of  this  Task-1  has  been  to  propose  a  systematic  methodology  for  geolocation  error  assessment,                  
including  the  criteria  regarding  the  search  of  landmark  targets  and  the  cloud-masking  defuzzification  step                
to  filter  the  available  dataset  from  cloud  coverage  contamination.  The  6  appendixes  discuss  the  details                 
about  the  technical  analysis  of  major  target  classes,  such  as  high-latitude  lakes,  mountain  ranges  and  ice                  
shelves,   as   well   as   some   details   of   the   developed   algorithms.   
  
Table   6.1:   Summary   of   geolocation   error   accuracy   results   in   term   of   average   and   standard   deviation   for   all   selected   targets   during   2016   

using   SSMIS   F17   at   183±6.6   GHz   at   horizontal   polarization.   Sample   yearly   number   and   notes   about   target   features   are   also   reported.   
  

  

  

  

Contract:   EUM/CO/194600002297/VM   
Ref:           SUR/GAMES.D03   
Date:         11.02.2020   
Issue:        2.0   
Page:        76   / 76   

  

  

Target   
Geolocation   

accuracy   mean   
value   [km]   

Geolocation   
accuracy   
standard   

deviation   [km]   

Cloud-masked   
yearly   sample   

number   
(percentage)   

Notes   

Northern   hemisphere   (NH)   

Qinghai   lake   5.10   2.03   129   ( 20.6% )   All  shift  directions  are  sampled       
due   to   the   close   contour.   

Karakorum   mountains   4.47   1.86   302   (42.6%)   DEM  resolution  may  impact  the       
results.   Useful   oblique   pattern.   

Hudson   Bay   5.28   2.56   135   (49.0%)   All  shift  directions  are  sampled       
due   to   the   U   contour.   

Nares   strait   4.55   1.65   587   (27.5%)   Slightly  scattered  contour  with      
oblique   pattern.   

NH   average   value  4.9   km   2.0   km     

Southern   hemisphere   (SH)   

Ross   ice   shelf   5.30   2.18   725   (31.1%)   Sharp  high-resolution  contour,     
but   mainly   horizontal   pattern.   

Filchner-Ronne   ice   shelf   4.31   1.89   541   (22.9%)   Sharp  high-resolution  contour     
with   a   V   contour   

Amery   ice   shelf   5.32   2.27   242   (19.5   %)   Sharp  high-resolution  contour     
with   a   nearly-vertical   contour   

Titicaca   lake   4.80   2.50   52   (9.8%)   All  shift  directions  are  sampled       
due   to   the   close   contour.   

Andean   mountains   3.70   1.95   177   (19.3%)   DEM  resolution  may  impact  the       
results.   Useful   oblique   pattern.   

SH   average   value   4.7   km   2.2   km     
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Figure    6.1:   Summary   of   geolocation   error   accuracy   results   in   term   of   average   and   standard   deviation   for   all   selected   targets   during   2016   

using   SSMIS   F17   at   183±6.6   GHz   at   horizontal   polarization.   
  

A  total  number  of   9  landmark  targets   has  been  selected  covering  both  the  northern  and  southern                  
hemisphere  in  order  to  guarantee  good  temporal  coverage  during  the  driest  seasons.  For  each  target                 
results  have  been  provided  in  terms  of  mean  value  and  standard  deviation  of  the  geolocation  error  both  in                    
the   northern   hemisphere   and   southern   hemisphere.     

The  problem  of  the   sensitivity  analysis  of  the  TCM  geolocation  error  assessment  methodology  to  the                 
most  critical  free  parameters  has  been  discussed  as  a  proxy  to  the  error  budget  estimate.  The  latter,  as  a                     
matter  of  fact,  is  not  easily  defined  for  the  lack  an  absolute  reference  (we  are  here  estimating  not  the                     
geolocation  error,  but  its  accuracy  or  the  uncertainty  of  the  geolocation  error  correction  procedures).  The                 
conclusion  is  that  the  interpolation-grid  spatial  resolution  provides  a  parametric  variability  of  about  0.6                
km.  Moreover,  from  the  sensitivity  analysis  to  the  cloud-masked  sample  size,  we  can  conclude  that  about                  
50-75   images   are   sufficient   to   assess   the   geolocation   error   statistics   for   all   landmark   targets.   

The  Table  6.1  and  Fig.  6.1  report  a   summary  of  the  geolocation  accuracy  validation  for  all  targets  using                    
SSMIS  F17  at  183±6.6  GHz  at  horizontal  polarization.  The  average  value  of  about  4.8  km  with  a  standard                    
deviation  of  about  2.1  km  can  be  interpreted  as  the  mean  geolocation  error  of  SSMIS  selected  imagery.                   
These  numbers  are  comparable  with  the  values  given  in  Poe  et  al.   [18]  and  Kunkee  et  al.  [19]  for  SSMIS                      
F16  (different  from  F17  we  have  used  in  this  work)  even  though  they  mention  the  estimate  of  4-5  km  [13]                      
and  less  than  6  km  [19].  Note  that  Poe  et  al.  [18]  refer  to  their  estimate  as  1-sigma  error  value,  whereas                       
Kunkee   et   al.   [19]   stress   the   fairly   good   stability   of   their   retrieved   error.     

The  analysis,  carried  out  using  SSMIS  channel  at  183±7  GHz,  has  been  extended  to  ICI  channels  at  183                    
GHz  and  243  GHz  through  a   simulation-based  frequency  scaling .  The  approach  has  involved  the                
analysis  of  SSMIS  imagery  at  150  GHz  and  183±7  GHz  as  well  as  the  radiative  transfer  simulation  of                    
satellite  brightness  temperatures  and  slant-path  attenuation  from  both  available  radiosounding  profiles  and              
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ERA5  reanalysis  atmospheric  profiles  near  the  selected  targets.  Note  that  SSMIS  183±7  GHz  channel  is                 
at  H  polarization,  whereas  the  foreseen  ICI  183±6.6  GHz  one  is  at  V  polarization  meaning  that  we  expect                    
a  slightly  reduced  BT  contrast  for  ICI  with  respect  to  SSMIS  one  (due  to  the  larger  V-polarized  surface                    
emissivity),  as  described  in  Section  5.  Using  the  243-GHz  ICI-like  channel  we  have  shown  that  its  BT  is                    
expected   to   be   higher   than   SSMIS-like   150-GHz   using   both   RAOB   and   ERA5   profiles.     

It  is  finally  worth  mentioning  that  the   atmospheric  transmittance  at  243  GHz  is  fairly  comparable  to                  
the  150-GHz  one  for  the  selected  targets.  To  some  extent,  we  can  presume  that  these  results  for  the                    
landmark  target  approach  using  SSMIS  H-polarization  183±6.6  GHz,  would  be  similar  to  the  ones                
obtainable  for  ICI  V-polarization  183±7  GHz  and  at  least  comparable  or  worse  than  those  derivable  from                  
ICI   H-polarization   243-GHz   channel.     
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APPENDIX   A.   TCM   approach   for   high-altitude   lake   targets   
The  inputs  to  validate  the  geolocation  using  a  lake  are  the  images  of  SSMIS  F17  at  183  ±  6.6  GHz                      
(horizontal  polarization)  along  the  whole  2016  year.  Initially  it  is  necessary  to  extract  only  the  spaceborne                  
radiometric   images   containing   the   high-altitude   lake.     

Unfortunately,  not  all  images  can  be  useful  for  our  purpose,  as  explained  in  the  Sec.  4,  due  to  possible                     
atmospheric  opacity  in  presence  of  clouds  and  precipitation.  In  order  to  apply  the  fuzzy-logic  cloud                 
masking  to  high-altitude  lakes,  referring  to  subsection  2.3,  for   we  use  the  following            M 2 ∆T( Bm )      
equation:   

                                    (A.1)                              if  ∆T  ≥ 8K     M 2 ∆T( Bm) = 1 Bm  

 T 8                 if  ∆T K                                                   M 2 ∆T( Bm) = ∆ Bm/ Bm < 8  

  

where   is   the   mean   BT   contract   around   the   target.   T∆ Bm   

To  evaluate  the  mean  contrast  around  the  lake,  we  can  compute  the  BT  difference  along  vertical  and                   
horizontal  directions.  For  example,  Fig.  A.1  shows  the  pixels  A,  B,  C,  D  and  E,  selected  to  compute  the                     
BT   contrast   for   Qinghai   lake,   using   the   following   equation:  TΔ Bm  

  

                                               (A.2)  T    ∆ Bm =  4
(T T )+(T T )+(T T )+(T T )B− A C− A D− A E− A  

  

  
Figure   A.1:   Brightness   temperature   (BT)   image   at   183±6.6   GHz   H   over   Qinghai   lake   from   SSMIS   F17   on   2016/12/01.   Five   points   are   those   

used   to   calculate   the   BT   contrast   along   vertical   and   horizontal   directions   
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The  BT  contrast  is  evaluated  in  the  interpolated  grid  at  5  km  of  spatial  resolution,  in  order  to  obtain  the                      
BT   contrast   between   the   same   points   for   all   images.   The   function     can   be   calculated   as:  M 1 (ε)  

  
              (A.3)                                               if  ε ≥ 15 km                             M 1 (ε) = 0  

                                      M 1 (ε) =− ε
15 + 1 f  ε 5 km                                                  i < 1  

Computing  the  inference  function  from  (A.1),  the  considered  image  is  selected  only  if  .               .3  I ∆T ,( Bm ε) > 0  
The   remaining   images   can   be   used   to   validate   the   geolocation   error   using   the   lake   as   target.     

As  mentioned  in  Section  2,  before  the  defuzzification  step,  it  is  necessary  to  correct  the  parallax  error                   
because  the  lake  has  a  high  altitude.  To  correct  this  error,  we  must  find  the  intersection  between  the  line                     
of  sight  of  the  satellite  and  the  orography,  provided  by  GTOPO30,  that  is  a  digital  elevation  model  (DEM)                    
with  a  resolution  of  30  arcsec  (approximately  1  km)  To  better  represent  the  footprint,  we  have  calculated                   
the  average  of  the  DEM  with  a  spatial  resolution  of  about  13  km,  as  pixels  dimension,  and  the  we  found                      
the  intersection  between  the  line  of  sight  and  this  average  DEM  ,  as  shown  in  Fig.  A.2.  After  this                     
correction  the  image  is  shifted,  depending  on  ascending  or  descending  orbit  and  the  position  of  the  target                   
in   the   satellite   swath.   

  
Figure   A.2:   Example   of   parallax   error   correction:   blue   markers   represent   the   discretized   satellite   line   of   sight.   The   four   red   points   

are   the   nearest   points   of   DEM   around   the   intersection   between   DEM   and   line   of   sight.   The   green   marker   is   the   first   point   of   the   
line   of   sight   that   has   an   altitude   lower   than   DEM.   The   cyan   point   is   the   intersection   between   line   of   sight   and   earth   ellipsoid   

(WGS84).   Finally,   magenta   marker   represents   the   corrected   coordinates   on   surface.   
  

To  increase  the  BT  image  spatial  resolution,  the  different  samples  are  interpolated  using  cubic                
interpolation   method   in   the   same   evenly   spaced   grid   with   5km   of   spatial   resolution,   shown   in   Fig.   A.3.     
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Figure    A .3:   Grid   used   to   interpolate   the   BT   data   for   Qinghai   lake.   The   blue   line   represents   the   contour   of   Qinghai   lake   provides   

by   GSHHG   database.   

After  the  interpolation  step,  it  is  possible  to  extract  the  contour  and  for  Qinghai  lake  we  adopt  a  Canny                     
algorithm   to   obtain   the   contour   line,   as   shown   in   Fig.   A.4   

  
Figure   A.4:   Brightness   temperature   (BT)   image   at   183± 7     GHz   H    over   Qinghai   lake   from   SSMIS   F17   on   2016/12/01.   The   red   line   
represents   the   lake   coastlines   from   GSHHG   database,   described   in   Wessel   and   Smith   (1996).   Black   markers   indicate   the   
extracted   contour   by   Canny   method.   

  

To  correlate  the  reference  line  with  the  satellite  radiometric  contour,  we  can  project  the  GSSHG  line  on                   
the   same   radiometric   grid,   using   the   nearest-neighbor   technique,   as   shown   in   Fig.   A.5:   

The   code   is   developed   in   Matlab   environment   and,   summarizing   all   steps   for   this   kind   of   target,   we   list:   

1) Extract   the   box   that   contains   target   
2) Parallax   error   correction,   as   shown   in   Appendix   E.   
3) Interpolate   data   to   fictitiously   increase   the   spatial   resolution,   using    ‘griddata’    Matlab   function   
4) Apply   Canny   algorithm   to   extract   radiometric   contour,   using   ‘ edge’    Matlab   function   
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5) Project  GSHHG  shoreline  database  on  the  same  grid  obtained  at  step  2,  using  nearest  neighbour                 

approach.   
6) Calculate   the   normalized   cross-correlation,   using    ‘normxcorr2’    Matlab   function     
7) To  reach  sub-pixel  accuracy,  the  maximum  of  the  normalized  cross-correlation  is  fitted  by  a                

4th-order   polynomial.   
8) Take   the   coordinates   of   the   maximum   of   fitted   normalized   cross-correlation.     
9) Calculate   the   shift   in   pixels   
10) Calculate   the   corresponding   shift   along   latitude   and   longitude   
11) Evaluate   the   displacement   (in   km)   of   the   shift   found   in   step   9.   

  

  
Figure    A. 5:   The   orange   line   is   the   radiometric   contour;   the   blue   line   is   the   reference   line   and   the   yellow   is   the   overlap   of   the   two   
lines.     
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APPENDIX   B.   TCM   approach   for   mountain-chain   targets   
The  inputs  to  validate  the  geolocation  using  mountain  chains  are  the  images  of  SSMIS  F17  at  183  ±  6.6                     
GHz  (horizontal  polarization)  along  the  entire  2016.  Initially  it  is  necessary  to  extract  only  the  images  that                   
contain  the  target  and  then  it  is  necessary  the  parallax  error  using  DEM  correction.  The  used  inference                   
function   is:   

                                                      (B.1)  (∆T )    I ∆T ,( Bm ε) = M 1 (ε) M 2 Bm  

where:   

▪   =   inference   function  I (x)  
▪ =   mean   BT   contrast   around   lake  T∆ Bm  
▪   =   geolocation   error   ε   
▪   =   membership   function   depending   on   the   geolocation   error  M 1 (ε)  
▪   =   membership   function   depending   on   the   BT   contrast   M 2 ∆T( Bm )  

To  evaluate  the  mean  BT  contrast  along  mountain,  we  can  compute  the  BT  difference  along  the  horizontal                   
and  vertical  axis.  For  example,  Fig.  B.1  shows  the  selected  pixels  to  compute  the  BT  contrast  for                  TΔ Bm  
Karakorum   mountains,   obtained   by   the   following   equation:   

  
                                           (B.2)  T      ∆ Bm =  4

(T T )+(T T )+(T T )+(T T )B− A D− C F− E H− G  

  

  
Figure   B.1:   Brightness   temperature   (BT)   image   at   183±6.6   GHz   H   over   Karakorum   mountains   from   SSMIS   F17   on   2016/01/02.   Eight   points   

are   those   used   to   calculate   the   BT   contrast   along   mountain   chain     

The  BT  contrast  is  evaluated  in  the  interpolated  grid  at  5  km  of  spatial  resolution,  in  order  to  obtain  the                      
BT  contrast  between  the  same  points  for  all  images.  It  is  then  possible  to  obtain  the  inference  function                    
and   the   single   image   is   used   only   in   case   with   .   (∆T , ) .3I Bm ε > 0   
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After  the  defuzzification  step,  we  have  the  complete  dataset  to  validate  the  geolocation  accuracy.  To                 
increase  the  images  spatial  resolution,  the  different  samples  are  interpolated  using  cubic  interpolation  in                
the  same  evenly  spaced  grid.  After  the  interpolation  step,  we  have  calculated  the  gradient  of  the  image                   
using   Sobel   filter   and   use   a   DEM   as   a   reference.     

To  correlate  the  gradient  of  BT  temperature  with  the  reference,  we  have  reprojected  DEM  in  the  same                   
grid,  applying  the  Sobel  filter  to  obtain  the  reference  gradient.  Finally,  it  is  possible  to  correlate  the  two                    
images,   obtaining   the   relative   displacement.     

The   code   is   developed   in   Matlab   environment   and,   summarizing   all   steps   for   this   kind   of   target,   we   list:   

1) Extract   the   box   that   contains   target   
2) Parallax   error   correction,   as   shown   in   Appendix   E.   
3) Interpolate   data   to   fictitiously   increase   the   spatial   resolution,   using    ‘griddata’    Matlab   function   
4) Apply   Sobel   filter   to   DEM   to   calculate   its   gradient     
5) Apply   Sobel   filter   to   radiometric   image   to   calculate   its   gradient     
6) Calculate   the   fast   fourier   transform   to   both   gradients,   using   ‘ fft2’    Matlab   function     
7) Calculate   the   shift   in   pixels   between   to   images,   using    ‘dftregistration’    Matlab   function     
8) Calculate   the   corresponding   shift   along   latitude   and   longitude   
9) Evaluate   the   displacement   (in   km)   of   the   shift   found   in   step   8   
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APPENDIX   C.   TCM   approach   for   ice-shelf   targets   
The  inputs  to  validate  the  geolocation  using  an  ice  shelf  are  the  images  of  SSMIS  F17  at  183  ±  6.6  GHz                       
(horizontal  polarization,  H)  along  the  entire  2016.  Initially  it  is  necessary  to  extract  only  images                 
containing  different  shelves.  Unfortunately,  not  all  images  can  be  useful  for  our  purpose,  as  explained  in                  
Sec.   2.3.   The   proposed   inference   function   is:   

  
                                                          (C.1)  (∆T )     I ∆T ,( Bm ε) = M 1 (ε) M 2 Bm  

where:   

▪   =   inference   function  I (x)  
▪ =   mean   BT   contrast   around   lake  T∆ Bm  
▪   =   geolocation   error   ε   
▪   =   membership   function   depending   on   the   geolocation   error  M 1 (ε)  
▪   =   membership   function   depending   on   the   BT   contrast   M 2 ∆T( Bm )  

Considering  that  for  ice  shelves  the  BT  contrast  is  higher  with  respect  to  other  targets,  like  the  Qinghai                    
lake,  we  have  increased  this  threshold.  Therefore,  for   around  the  lake  we  use  the  following          M 1 (c)         
equations:   

  
(C.2)                                            if  ∆T  ≥ 15K                                  M 2 ∆T( Bm ) = 1 Bm  

 T 15                             if  ∆T 5K            M 2 ∆T( Bm) = ∆ Bm / Bm < 1  

  

To  evaluate  the  contrast   around  the  lake,  we  propose  to  calculate  the  BT  contrast  differently  along      T∆ Bm              
vertical  and  horizontal  directions.  Fig.  C.1  shows  the  point  selected  for  calculate  the  BT  contrast,                 
obtained   by   the   following   equation:   

  
                                           (C.3)  T      ∆ Bm =  4

(T T )+(T T )+(T T )+(T T )B− A D− C F− E H− G  

  can   be   calculated   as:  M 1 (ε)  

  
(C.4)                                      if  ε ≥ 15 km                                        M 1 (ε) = 0  

                             M 1 (ε) =− ε
15 + 1 f  ε 5 km                                                i < 1   

Finally,  it  is  possible  to  obtain  the  inference  function  and  the  single  image  is  used  only  in  case  with                     
.   .3  I ∆T ,( Bm ε) > 0   

Ice  shelves  are  at  sea  level  so  that  it  is  not  necessary  to  perform  a  parallax  error  correction  using  DEM.                      
Secondly,  to  fictitiously  increase  the  spatial  resolution  of  BT  images  for  intercomparison  purposes,  data                
are  upsampled  on  a  regular  grid  through  a  triangulation  method  using  a  cubic  interpolation.  A  polar                  
stereographic  map  projection  is  used  in  this  work.  The  new  grid  is  regularly  evenly  spaced  (about  5  km)                    
in   X-Y   domain   and   the   resulting   BT,   for   Ross   ice   shelf,   is   shown   in   Figure   D.2.   

The   limits   of   the   box   for   Ross   ice   shelf   are   the   following:   

●    Latitude   =   [-78.5   -76.5];   
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●    Longitude   =   [170.6   178.5].   

The  BT  contrast  (Eq.  C.3)  is  evaluated  in  the  interpolated  grid  at  5  km  of  spatial  resolution  on  a  polar                      
stereographic   map,   in   order   to   obtain   the   BT   contrast   between   the   same   points   for   all   images.     

  
Figure   C.1:   Brightness   temperature   (BT)   image   at   183±6.6   GHz   H   over   Ross   ice   shelf   from   SSMIS   F17.   Eight   five   points   are   those   used   to   

calculate   the   BT   contrast   along   coastline   

  
Figure   C.2:   Grid   used   to   interpolate   the   BT   data   for   Ross   ice   shelf.   Black   markers   represent   the   contour   of   Ross   extracted   from   SAR   image.   
  

In  the  Antarctic  region  SAR  data  are  available  in  Extra-Wide  Swath  Mode  with  a  400-km  swath  at  20x40                    
m 2  spatial  resolution  and  it  is  possible  to  download  them  from  the  following  web  site:                 
https://scihub.copernicus.eu/dhus/#/home   
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For  example,  the  image  in  Fig.  3.6.1.3  is  obtained  from  the  data:              
S1A_EW_GRDM_1SSH_20160724T111725_20160724T111829_012289_0131CA_1241   

This   dataset   contains   the   following   fields:   

● amplitude_HH   
● intensity_HH   
● amplitude_HV   
● intensity_HV   

SAR  data  are  provided  as  metadata,  containing  also  the  orbit  state  vectors,  but  it  is  generally  not  accurate                    
and  can  be  refined  with  the  precise  orbit  files  which  are  available  days-to-weeks  after  the  generation  of                   
the  product.  It  is  necessary  to  apply  orbit  file  operator  to  obtain  accurate  satellite  position  and  velocity                   
information.  To  do  this  correction  and  for  the  other  necessary  steps,  we  have  adopted  the  SNAP  toolbox,                   
downloadable  from  the  web  site   http://step.esa.int/main/download/snap-download/ .  For  Level-1  GRD  it  is             
also   necessary   a   thermal   noise   removal.     

To  obtain  imagery  in  which  the  pixel  values  can  be  directly  related  to  the  scene  radar  backscatter,  the                    
calibration  step  has  to  be  carried  out  to  have  sigma-nought  images.  At  this  step  the  resolution  is  very  high                     
for  our  purpose  and  it  is  still  present  a  speckle  noise.  To  reduce  it,  it  is  possible  to  apply  a  multilook                       
operator.  After  these  steps,  it  is  possible  to  extract  a  contour,  as  shown  in  Fig.  A.3,  but  to  use  this  as                       
reference  in  the  validation  of  geolocation  accuracy  it  is  necessary  a  further  step.  This  reference  line  must                   
be  projected  in  the  same  regular  evenly  spaced  (about  5  km)  in  X-Y  domain,  adopting  the  nearest                   
neighbour   approach,   as   shown   in   the   following   Fig.   D.3.     

    

Figure   D.3:   The   red   markers   indicate   the   contour   extracted   from   SAR   data   and   yellow   pixels   represent   the   reference   contour   in   the   same   
radiometric   grid   with   a   spatial   resolution   of   about   5   km.     
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Correlating  the  obtained  reference  line  with  the  extracted  radiometric  contour,  it  is  then  possible  to                 
validate   the   geolocation   accuracy   (in   km).   

The   code   is   developed   in   Matlab   environment   and   the   steps   for   these   targets   are   summarized   as   follows:   

1) Extract   the   box   that   contains   target   
2) Project   radiometric   data   on   polar   stereographic   map,   using   ‘ polarstereo_fwd ’   Matlab   function   
3) Interpolate   data   to   fictitiously   increase   the   spatial   resolution,   using    ‘griddata’    Matlab   function   
4) Apply   Canny   algorithm   to   extract   radiometric   contour,   using   ‘ edge’    Matlab   function   
5) Project   SAR   data   on   polar   stereographic   map,   using   ‘ polarstereo_fwd ’   Matlab   function   
6) Apply   Canny   algorithm   to   extract   SARcontour,   using   ‘ edge’    Matlab   function   
7) Project   SAR   contour   in   the   same   grid   obtained   at   step   3,   using   nearest   neighbour   approach.   
8) Calculate   the   normalized   cross-correlation,   using    ‘normxcorr2’    Matlab   function   
9) To  reach  sub-pixel  accuracy,  the  maximum  of  the  normalized  cross-correlation  is  fitted  by  a                

4th-order   polynomial.   
10) Take   the   coordinates   of   the   maximum   of   normalized   cross-correlation.     
11) Calculate   the   shift   in   pixels   
12) Calculate  the  corresponding  shift  along  latitude  and  longitude.  To  reproject  data  on  geographical               

coordinates   (latitude-longitude)   we   have   used   the    ‘polarstereo_inv’    Matlab   function   
13) Evaluate   the   displacement   (in   km)   of   the   shift   found   in   step   11.     
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APPENDIX   D.   Contour   extraction   and   cross-correlation   techniques   for   TCM   
Using  the  target-contour  matching  algorithm,  the  extraction  of  a  contour  that  can  be  carried  out  by                  
applying   two   main   methods:     

● the   Canny   approach   [ 9 ]   to   extract   a   line.   This   method   consists   of   the   following   main   steps:   
1.   Convolution   with   Gaussian   filter   coefficient   
2.   Convolution   with   Canny   filter   for   horizontal   and   vertical   orientation   
3.   Calculating   directions   using   atan2   
4.   Thresholding   

  

● the   Sobel   filter   [13]   to   obtain   a   gradient   map.   This   method   consists   of   the   following   main   steps:   
1. Convolution   with   two   matrices   to   compute   the   derivative   along   x   and   y   
2. Computing   the   gradient   magnitude   

The  extracted  contour  can  be  then  cross-correlated  with  a  reference  to  validate  the  geolocation  error  using                  
the   fast   normalized   cross-correlation    ( FNC )    function   :  γ (u, )v  

  

                           (D.1)    γ (u, )v =
f (x,y) f t(x u,y v) t∑

 

x,y
[ − u,v][ − − − ]

{∑
 

x,y
f (x,y) f[ − u,v]2

∑
 

x,y
t(x u,y v) t[ − − − ]2}

0.5       

where   is  the  BT  image  under  consideration  and  the  sum  is  over  all  pixels   under  the  window   f               x, )( y     
containing  the  BT  template   positioned  at  )  displacements,   and   are  the  the  means  of  the      t    u,( v   t    f        
template   and   function,   respectively, in   the   region   under   the   template.     

Picking  the  maximum  of   it  is  possible  to  obtain  the  lat-lon  pixel  displacements  then  converted  into      (u, )v              
shifts  along  x  and  y  direction.  In  order  to  have  an  accuracy  of  about  0.1  pixel,  the  maximum  is  fitted  with                       
a  polynomial  of  4th  order.  From  these  pixel  displacements  it  is  possible  to  obtain  the  related  latitude  and                    
longitude   error   and   the   corresponding   distance   error   in   km.     

An  alternative  way  to  obtain  directly  a  displacement  with  sub-pixel  accuracy  is  to  use  the  registration  in                   
frequency  domain  (RFD)  technique  [17].  Between  FNC  and  RFD  we  expect  the  same  results,  because  the                  
only  difference  is  that  FNC  is  computed  in  the  spatial  domain  whereas  the  other  one  RFD  is  computed  in                     
the   frequency   domain,   so   that   differences   should   only   be   numerical.   
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APPENDIX   E.   Parallax   error   correction   

In  case  of  high-altitude  targets,  we  have  parallax  error  as  shown  in  Fig.  2.1.2.  In  these  cases  the                    
coordinates,  provided  by  SSMIS  F17  on  WGS84  ellipsoid,  must  be  corrected  by  finding  the  intersection                 
between  the  line-of-sight  of  the  satellite  and  the  orography  described  by  the  DEM.  The  line  of  site  is  the                     
black  line  in  Fig.  E.1,  joining  the  satellite  position  (red  marker  in  Fig.  E.1)  and  the  footprint  on  WGS84                     
(magenta   marker   in   Fig.   E.1).     

  

Figure   E.1:   Digital   elevation   model   with   spatial   resolution   of   about   10   km   over   Qinghai   lake.   Red   marker   represents   the   satellite   
position   and   magenta   marker   indicates   the   footprint.   Blue   line   is   Qinghai   lake   obtained   from   GSHHG   shoreline   database.     

  

Figure   E.2:   The   four   red   markers   are   DEM   points   with   resolution   of   about   10   km.   Green   markers   are   the   surface   generated   from   
DEM   points.   Black   line   is   the   line   of   sight   and   magenta   point   is   the   intersection,   that   is   the   corrected   coordinates.     
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True  coordinates  is  provided  by  its  intersection  with  the  surface  generated  by  the  nearest  four  points  of                   
DEM,  as  shown  in  Fig.  E.2.  To  better  represent  the  size  of  footprint,  we  had  used  a  DEM  averaged  at                      
about   10   km.     

This   correction   is   is   made   for   each   pixel   of   radiometric   image,   as   shown   in   Fig.   E.3.     

  

Figure   E.3:   The   red   markers   indicate   the   satellite   positions.   Magenta   markers   represent   the   radiometric   footprint.   

After  this  correction  the  image  is  shifted,  depending  on  ascending  or  descending  orbit  and  the  position  of                   
the   target   in   the   satellite   swath.   

  

Figure   E.4:   In   the   left   there   is   the   original   image   (it   contains   parallax   error)   and   in   the   right   there   is   the   corrected   image.     

Fig.  E.4  contains  an  example  of  parallax  error  correction.  As  shown  in  Fig.  E.3,  in  this  example  we  have                     
an  ascending  orbit  and  the  target  is  in  the  left  part  of  the  swath.  In  this  case,  after  the  parallax  error                       
correction,   the   image   is   shifted   in   south-east   direction   (according   to   line   of   sight   direction).   
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APPENDIX   F.   Threshold   selection   for   cloud-masking   fuzzy-logic   algorithm   
To  establish  the  threshold  for  ,  we  have  considered  the  pixel  dimension  that  is  about  13  x  16  km 2       M 2 (ε)               
in  case  of  SSMIS  F17  1876.6  GHz.  We  can  then  expect  a  geolocation  accuracy  lower  than  this  value  and                     
we  had  decided  to  put  15  km  as  a  threshold  for   for  all  targets.  To  establish  the  threshold  for             M 2 (ε)          

,  we  have  observed  the  BT  contrast  for  several  targets.  For  example,  considering  the  Ross  ice   M 1 ∆T( Bm)                 
shelf,   that   has   2324   samples   along   2016,   with   BT   contrast   shown   in   Fig.   F.1.   
  

  
Figure   F.1:     for   Ross   ice   shelf   considering   all   2324   samples   T  ∆ Bm   

  
Then  we  have  removed  all  images  with  negative  value  of  ,  reducing  the  dataset  to  2206  samples,  as            T∆ Bm         
shown   in   Fig.   F.2.   
  

  
Figure   F.2:     for   Ross   ice   shelf   considering   all   samples   with   positive   value   of     T  ∆ Bm T  ∆ Bm   

  
Then  we  have  applied  the  fuzzy-logic  approach  only  with  ,  reducing  the  dataset  to  1349  samples  with           0         

  values   shown   in   Fig.   F.3   T∆ Bm   
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Figure   F.3:     for   Ross   ice   shelf   after   defuzzification   considering   only    T  ∆ Bm  M 2 (ε)  

  
To  choose  the  threshold  on  ,  we  took  the  central  value,  obtaining  15  K.  A  similar  approach  it        M 1 ∆T( Bm)              
was   made   for   other   targets.   
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PMW  Passive MicroWave 

RAOB  RAwinsonde OBservation 

SEVIRI  Spinning Enhanced Visible and Infrared Imager  

SSMIS  Special Sensor Microwave Imager Sounder 

SUR  Sapienza University of Rome 

TA  Antenna Temperature 

TELSEM2 Tool to Estimate Land.Surface Emissivities at Microwave version 2 

TESSEM2  Tool to Estimate Sea Surface Emissivities at Microwave version 2 

WVM  Water Vapor Masses 

 
  

https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Meteosat/MeteosatDesign/index.html
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1 Introduction 

 1.1 Work package goal 
The goal of this work package, within the GAMES (Geolocation Assessment/validation Methods for 

EPS-SG ICI and MWI) study, is to quantify the errors of the field of view geolocation of ICI, exploiting 
meteorological targets. Usually, ground targets are used to pursue the geolocation goal. Unfortunately, most 
of the ICI channels, namely those at frequency equal or greater than 325 GHz, have no chance to sample 
the surface features due to the strong gas absorption at those frequencies, thus preventing any ground-target 
based geolocation method from being utilised. Here is where the meteo-target based geolocation methods 
come mainly into play. Two distinct geolocation methods making use of meteo-targets are implemented: 
absolute and relative geolocation methods. The goal of the absolute geolocation is to estimate the 
geolocation error of a pivot ICI channel (eg. one of those around 183 GHz) with respect to external reference 
information. Contrarily, the relative geolocation is a self- referenced method since it uses ICI channel only, 
without relying on external auxiliary information, and it aims at finding the pointing error of the ICI 
channels (i.e those other than the pivot channel, for example at  frequencies above 183 GHz) with respect 
to the pivot one.  

The meteorological targets considered are the deep convective clouds (DCC) and water vapor features 
with strong gradients (e.g., atmospheric rivers, hereafter referenced as water vapor masses (WVM)),  since 
these two target typologies are expected to be sufficiently detectable by the investigated ICI channels.   

The effectiveness of the absolute geolocation method is assessed using actual observations from 
PMW sensors (e.g. SSMIS) and SEVIRI on board MSG. The GMI and spaceborne radar information (GPM 
DPR and Cloudsat CPR) are also used for verification. The rationale is to have the PMW 183.31 GHz 
channels of existing radiometers that mimic the 183 GHz ICI channels that need to be geolocated, whereas 
infrared SEVIRI channels act as reference.  On the other hand, the relative geolocation is assessed using a 
simulated dataset of four ICI orbits. In this case, a reference ICI channel is assumed as already geolocated 
and its signature to specific atmospheric targets is compared with the rest ICI channels. 

 1.2 Summary of the main findings 
Absolute geolocation 

- Deep Convective Clouds (DCC) are difficult to use for geolocation because the signatures of such 
clouds between SEVIRI and PMW is not always consistent with each other, and because the parallax 
and distortion compensation caused by the different viewing geometry of SEVIRI and the PMW 
radiometer is not obvious to account for, and might introduce relevant errors that can strongly 
deteriorate the final geolocation result. 

- Water Vapor Mass (WVM) features show a curvilinear profile due to a pronounced gradient in both 
MSG and PMW signatures. On top of this, WVM seems to be less affected by the parallax issue 
because WVMs have a smaller vertical extension than DCC. For these reasons WVMs are a better 
candidate for absolute geolocation than DCC. 

- When considering the correlation between MSG and PMW detected WVM in terms of its spatial 
gradient, and for a period of three months, the estimated PMW geolocation error standard deviation 
is of the order of 3.6 km and the root mean square error (RMSE) is of the order of 5 km.  

Relative geolocation 
- Simulated signatures of WVM are not detectable by ICI simulated channels. The ice water path in 

clouds that often are found in correspondence with the WVM, dominates the ICI channel response. 
- Simulations of ICI scenes for DCCs are more promising since those signatures are evident in all ICI 

channels. 
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- When considering the 183.31 GHz ICI-1 channel as reference, assuming ICI-1 being affected by a 

known absolute geolocation error, after remapping (using the Bakus Gilbert algorithm) all the other 
tested ICI channels on ICI-1,we can achieve estimates of the relative geolocation RMSE less than 
3.0 km for channels up to ICI-5 and less than 5.0 km for the rest of the ICI channels. This results 
substantially improves when ICI-4V is considered as the reference channel, leading to relative 
geolocation RMSE of less than 3 km for ICI-1 and ICI-5 channels and more importantly  an RMSE 
around 4 km for the other ICI channels with an error peak for ICI-8 that show RMSE around 4.15 
km. 

  

 1.3 Document organization 
The document starts with the discussion of the absolute geolocation method. This is accomplished 
describing the collected dataset of actual observations (Section 2), the achievable detectability of DCC and 
WVM (Section 3), the image correlation methods to be used (Section 4) and the absolute geolocation 
algorithms and relative results derived from their applications (Section 5). The description of the relative 
geolocation method and the associated discussion of the results are then provided (section 6). A Practical 
guidance is given in Section 7. 
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2 Dataset description 

2.1 DCC Development Dataset Description 

For the development and preliminary tests of absolute geolocation described in sections 3.2-3.3, a dataset 
of coincident observations from satellite-borne radar and MW radiometer and SEVIRI has been built. This 
dataset includes 11 case studies of DCCs localized in targeted areas observed within 15 minutes by all the 
instruments. The MW radiometer that has been used in this first dataset is the GPM Microwave Imager 
(GMI), equipped with two channels in the 183.31 GHz  WV absorption band (i.e. 183.31±7 GHz and 
183.31±3 GHz) at relatively high spatial resolution (see table 2.1.1 and table 2.1.2 for a comparison of some 
characteristics of the MW radiometers involved in this study). 

Table 2.1.1 183.31 GHz Channels of ICI, GMI and SSMIS.  

Sensor 

 

Central frequency 

(GHz) 

Bandwidth 

(MHz) 

Pol. 

 

IFOV 

(km) 

 

ICI 

183.31±7.0 
 

2x2000 V 16 

183.31±3.4 
 

2x2000 V 16 

183.31±2.0 
 

2x2000 V 16 

 SSMIS F17 

183.31 ± 6.6 1025 
H 13.1x14.4  

183.31 ± 3.0 2038 
H 13.1x14.4  

183.31 ± 1.0 3052 
H 13.1x14.4  

 GMI 

183.31 ± 7 2000 
V 4.4x7.2 

183.31 ± 3 2000 
V 4.4x7.2 
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Table 2.1.2: Orbital Characteristics of ICI, SSMIS and GMI 

Sensor Zenith angle Swath Altitude ECT 

 ICI 53,1° 1700 km 835 km 09:30 desc 

 SSMIS 
F17 53,1° 1700 km 848 km 06:20 desc 

 GMI 53° 850 km 407 km Drifting 65° 

 

The first 10 DCC case studies have been chosen from a visual inspection of the 2B-CSATGPM dataset of 
CPR and GPM coincident observations (Turk 2015). The 11th case study has been chosen from Marra et al 
2017. Table 2.1.3 summarizes the case studies in the development dataset. 

Table 2.1.3 Case studies of the DCC dataset. 
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2.2 WVM Development Dataset Description 
Similarly to the DCC development dataset in table 2.2.1, 6 case studies with clear WVM features have been 
selected. The list of case studies is in table 2.2.1. This dataset has been used to develop the WVM detection 
algorithm described in the following sections. 
 

Table 2.2.1 Case studies of the WVM dataset. 

 
 

2.3 17-Days SSMIS-MSG Verification dataset 
A third dataset of SSMIS and MSG measurements has been created t; it includes all DMSP-F17 orbits and 
MSG frames available for the 17 days listed in table 2.1.3 and 2.2.1. This dataset has been used to test the 
DCC and WVM algorithms described in section 5. The 17-Days SSMIS-MSG Dataset is composed of 180 
SSMIS F17 orbits that have been divided into 203 15-minutes SSMIS orbit segments, each corresponding 
to a specific MSG snapshot. 
 

2.4 3-Months SSMIS-MSG Dataset 
A fourth larger dataset has been built for verification purposes. This dataset is composed of 90 days of all 
SSMIS DMSP-F17 orbits between 01/01/2017 and 31/03/2017. The SSMIS observations have been divided 
into 15-minutes 2871 orbit segments and synchronised with the corresponding MSG frame. SSMIS data 
have been downloaded from the SSMIS CSU Climate Data record (www.ncdc.noaa.gov/has) while the 
MSG data are the High Rate SEVIRI Level 1.5 Image Data - MSG - 0 degree and have been obtained from 
the Eumetsat archive (archive.eumetsat.int/usc/). 
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3. Detectability of atmospheric features for geolocation 

3.1 Goal 

The main goal of this section is to answer the question: can Deep Convective Clouds (DCC) and Water 
Vapour Mass (WVM) features be used as reference for MWI/ICI geolocation absolute error assessment? 

The main aspects and issues  relevant for this study to be addressed in the use of DCCs as geolocation 
targets (Method 1)  are first summarized with reference to recent literature. A particular focus on the 
correction of the distortions due to observation geometry will be given. Then the WVM features are 
critically analysed (Method 2) as possible geolocation targets, focusing on the issues related to the 
differences in the clear sky Weighting Functions in the IR and in the MW spectrum 

For both DCC and WVM, it has been assumed that the reference for assessing the geolocation errors comes 
from Meteosat geostationary satellites, and specifically from the MSG series of satellites in the 0-degree 
orbit. It has been also assumed that both the methods should rely on the 183.31 GHz water vapour 
absorption band channels of existing radiometers with conical scanning geometry (specifically GMI and 
SSMIS). 

3.2 Characteristics and detectability of DCC 

3.2.1 General characteristics of DCC 

Deep Convective Clouds (DCC) have been studied by a number of authors in recent years especially 
because they play a central role in the transport of air and chemical species from the troposphere to the 
stratosphere. An overshooting convective cloud top is defined by the American Meteorological Society’s 
Glossary of Meteorology (Glickman 2000) as ‘‘a domelike protrusion above a cumulonimbus anvil, 
representing the intrusion of an updraft through its equilibrium level.’’ Overshooting tops (OTs) indicate 
the presence of a deep convective storm with an updraft of sufficient strength to penetrate through the 
tropopause and into the lower stratosphere. 

Alcala and Dessler (2002) and Liu and Zipser (2005) presented the properties of OTs and their distribution 
over the tropics with the precipitation radar on board the TRMM satellite. More recently, Liu and Liu (2015) 
characterized tropopause-reaching deep convection analysing 1 year of GPM Ku-band radar echoes in 
relation with several reference levels derived from the ERA-Interim reanalysis data set. In order to 
summarize their results for the objective of the present study, and focusing on the region observed by the 
MSG 0-Deg satellites, some interesting conclusions can be highlighted from Liu and Liu (2015) study: 

1.      Most of the Deep convection is found over land areas. 

2.      The regions where these phenomena are more common are central Africa and mid-latitude Europe 
(see Figure 3.2.1) 

3.      Deep convection shows a pronounced seasonal cycle with peaks in Summer months in mid-latitude 
regions and in Autumn-Spring months in the inter tropical region (see Figure 3.2.2) 

4.      A clear daily cycle is also present over land areas with a strong peak in the afternoon hours (figure 
3.2.3). 
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Figure 3.2.1 Locations of Overshooting Tops identified with the tropopause definition given by WMO. The 
overshooting tops are categorized by the distance above the tropopause are shown in symbols of different 
colours. From Liu and Liu (2015) 

 

Figure 3.2.2 (a) Zonal distribution of populations of Overshooting Tops. The occurrence in each 5° zone 
is calculated by dividing 20 dBZ pixels at the tropopause with total sampled pixels. From Liu and Liu 
(2015) 
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Figure 3.2.3 Diurnal variation of population of overshooting precipitation features defined with different 
reference levels over land (red) and ocean (blue). (a) Over 20°S–20°N. (b) Over 20°S–40°S and 20°N–
40°N. (c) Over 40°S–65°S and 40°N–65°N. From Liu and Liu (2015) 

Another very important information for the GAMES objectives comes from the Liu and Liu (2015) study 
in terms of the typical height of OTs that is estimated in 17-18 km near the equator, 8-18 km near the tropics 
and 6-12 km at mid-latitude. Moreover, the distortion due to the viewing geometry of the sensor (both from 
GEO and LEO satellites) for observation angles far from the nadir is of the same order of magnitude as the 
cloud top height. Considering that the geolocation accuracy requirement of the methods developed in the 
GAMES project is 2.5 km,  it is clear that a strong prerequisite for using DCC as a possible target for 
assessing the geolocation accuracy of ICI is a very accurate correction of the distortion due to the 
viewing geometry of the sensor. 

3.2.2 Detectability of Deep Convective Clouds from satellite 
The detection of DCCs based on the 183.31 GHz band channels has been based on the work of Hong et al. 
(2005). This work has been used by several authors for studies related to deep convection and precipitation 
estimates from MW radiometers (e.g. Funatsu et al. 2009, Sanò et al. 2015, Ferraro et al 2015). The Hong 
et al. (2005) method for detecting DCC is based on a series of simple tests summarized by the formula: 

��17 > ��13 > ��37 > 0 K                                                       (1) 

Where the ΔTij refers to the differences between two channels in the 183.31 GHz band, e.g. 

��17 =TB183.31±7 - TB183.31±1                                                                  (2) 

This method is based on the fact that the channels in the 183.31 GHz absorption band in clear sky conditions 
have weighting functions (WFs) that peak at different heights within the troposphere (lowest for the 183±7 
GHz and highest for the 183±1 GHz channel). This, together with the negative temperature lapse rate in the 
troposphere,makes the clear-sky TBs in the 183.31 GHz channels be ordered as: 
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TB183.31±7 > TB183.31±3 > TB183.31±1                                                       (3) 

  

A deep convective cloud is optically thick and the TBs are sensitive to the upper cloud layers and to the 
presence of water vapor above the cloud top. Deep convection is associated with the transport of vapor into 
the stratosphere, where the temperature increases with height. Therefore, the order of the 183.31 GHz 
channels becomes: 

  

TB183.31±1 > TB183.31±3 > TB183.31±7                                                       (4) 

  

The series of tests in Hong et al. (2005) in (1) are carried out to verify the 183.31 GHz channel TB relations 
described in (4). 

The detection of DCC and in particular of the OT region in IR and VIS from geostationary imagery has a 
long track record. Some methods are based on the difference between the IR thermal channels (e.g. 10.8 
µm) and a WV channel (e.g. 6.4 µm). This approach has been developed by Setvak et al. (2007), and it 
relies on a mechanism similar to the Hong et al. (2005) method: the WV channel has a higher WF peak 
than the thermal IR channel, therefore an inverse order of the WV-IR TBs is found when there is water 
vapor in the stratosphere and when the cloud is optically opaque (i.e., in presence of DCC). Other methods 
(e.g. Bedka et al. 2010, Sun et al. 2019) rely on the detection of gradients of TB in the IR thermal channels 
in the proximity of the OTs due to the physical temperature evolution of the updraft: it is well known that 
a developing convective cloud extending upward has a top temperature that is lower than the environment 
temperature, and higher than the wet adiabatic, and follows a lapse rate of 7-9 K/km (Negri 1982, Adler et 
al 1983). Therefore, the OT detection method based on the gradient in the thermal IR channels is founded 
on the fact that the OT appears as a cooler region than the surrounding anvil cloud even if it develops above 
the tropopause. Finally, the last category of methods for OTs detection is based on the comparison between 
the cloud top height (CTH) and the tropopause height; OTs are defined as the cloud top region higher than 
the tropopause. In the present study several methodologies for OTs detection have been tested, from the 
WV-IR difference method (Setvak et al. 2007), to the texture/gradient thermal IR method (Bedka et al 
2010), to CTH-tropopause height comparison. The final algorithm developed for this study takes into 
account two methods: a preliminary test on the thermal IR channel (TB10.8mm < 215 K) used also by Bedka 
et al. (2010) as a preliminary test (the authors affirm that this simple test is able to identify 96% of the OTs 
with relatively frequent false alarms). The second test based on the CTH- tropopause height comparison,, 
(this method accuracy has a large dependence on both an accurate estimate of the CTH and of the tropopause 
height). 

  

3.2.3 Conditions for using DCC geolocation targets: cloud top height and parallax 
correction computation in the Infrared. 

As already said (see section 3.2.1) an important requisite for using DCC as a possible target for assessing 
the geolocation accuracy of ICI is a correction of the distortion due to the viewing geometry of the sensor 
(parallax correction). This correction, however, needs an accurate knowledge of the CTH. In the present 
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study we have tested two CTH products for this purpose, the first is the CTH-MSG - 0-degree Eumetsat 
product. This product has shown to be unusable for the objectives of GAMES, the main reason being the 
spatial resolution that is 4x4 MSG IR pixels and that is insufficient to resolve the relatively small OTs, that 
usually are smaller that 25 km in diameter. The second product tested is the Optimal Cloud Analysis (OCA) 
product that estimates the cloud top pressure, optical thickness and mean radius from SEVIRI using an 
optimal estimation method. A third product has also been developed during GAMES for CTH estimate. 
This product makes use of a temperature profile taken from NWP model (ECMWF reanalysis ERA-5) and 
adopts the assumption that the thermal IR SEVIRI channel at 10.8 µm is a good estimate of the cloud top 
temperature. The cloud top temperature is transformed in CTH through the use of the model T profile. In 
order to take into account the characteristic behaviour of updraft in terms of cloud top temperature, the 
temperature profile is modified above the tropopause level and substituted with a constant lapse rate of 8 
K/km, that is a mean value for the lapse rate within the updraft region of the cloud (see Negri 1982 and 
Adler et al. 1983). Summarizing the CTH algorithm follows a series of steps: 

1.    ERA 5 ECMWF reanalysis has been used 

2.    Temperature and pressure vertical profiles in proximity of the region of interest in space and time 
(within 1 hour) are selected; 

3.    Pressure levels between 400-50 hPa are selected; 

4.    Profiles are averaged over the region of interest; 

5.    The tropopause is identified using WMO definition – lower (in height) lapse rate < 2 K/km; 

6.    All T values at levels above the tropopause are modified with a lapse rate of 8 K/km. 

7. The CTH is estimated by comparing the T profile obtained with the IR 10.8 µm channel TB value; 

This CTH estimate method has been compared (together with the OCA CTH product) with cloud top height 
from CPR, the results are shown in Figure 3.2.4 and Figure 3.2.5 for the 10 case studies where the CPR 
was available, considering only the areas where deep convective clouds have been detected. The resulting 
CTH shows a relatively high correlation with CPR CTH and a relatively small mean error (0.4 km versus 
0.6 km of OCA-CTH). The RMSE is not very small (about 1 km), but smaller than OCA CTH (almost 2 
km), and the correlation coefficient is close to 0.8 (vs. 0.26 for the OCA CTH product) . 
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Figure 3.2.4 Comparison of MSG estimated CTH and OCA CTH with CPR CTH, some statistics are also 
shown. 

 

Figure 3.2.5 Density scatterplot of MSG estimated Cloud Top Pressure (CTP) and CloudSat CPR CTP.  
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The CTH obtained using the T profile is not perfect and other CTH products could be tested in order to 
obtain better estimates. The fact that the CTH algorithm described here gives better results than the actual 
operational products could be due to the fact that it is optimized for deep convective clouds that are on a 
global scale a small fraction of the clouds observed by SEVIRI. 

  

The CTH is then used in order to correct the parallax effect. The parallax correction algorithm is simple, 
the position of the satellite is taken from the ancillary data of the sensor, either MW-LEO or IR-GEO. Then, 
the azimuth and elevation angles of the satellite w.r.t each pixel center observed by the satellite are 
calculated, through a change of reference system from geodetic to local spherical coordinates (using the 
MATLAB function geodetic2aer ). Then the parallax shift is calculated using the formula: 

�= ��� ���(�) = ���  ����(�)                                        (5) 

where ε is the satellite elevation angle and β is the observation angle. This simple formula does not take 
into account the curvature of the Earth, however for the observation angles of this study (i.e. the SEVIRI 
observation angle have been limited to 27.4°) the errors due to considering the Earth as flat in proximity of 
the cloud are smaller than 3 cm for an extreme cloud top height value of 20 km. 

 

3.2.4 Cloud Top Height and Parallax Correction in the Microwave 

The parallax compensation for the IR data has been described in the previous section, however the MW 
radiometers with conical observation geometry, including MWI and ICI, have an observation angle around 
53° that is almost constant along the scan. A parallax correction is therefore needed and the CTH 
information needs to be calculated also for the MW grid. Figure 3.2.6 shows the scheme that has been 
followed to translate the CTH information from the IR grid to the MW and the effect on a real case study 
of each module: 

1.    First the CTH is calculated from the IR TBs as described in section 3.2.3; 

2.    Than the CTH is corrected for IR parallax using Eq. 5; 

3.    Than the IR-Parallax-Corrected (PC) CTH are projected to the line of sight of the MW radiometer 
(this procedure is equivalent to parallax correction in Eq.5 with a “-“ sign before �); 

4.    Than the CTH are convolved with a Gaussian filter (approximating the MW antenna pattern) 

5.    Finally the CTH are used to compensate for the parallax of the MW observation geometry. 
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Figure 3.2.6 Scheme of Parallax Compensation for MW with an example of application to a DCC target. 

Figure 3.2.7 shows an example of application of the parallax correction in one of the 11 case studies. The 
uncorrected TBs are shown together with the CPR reflectivity in the top panel. While the IR TB seems to 
match fairly well with the DCC clouds, due probably also to the relatively small angle of observation from 
SEVIRI in this case (~20°), the MW TBs are clearly mismatched. In the bottom panel conversely, the TBs 
corrected for parallax match very well with the radar both in the MW and in IR. 
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Figure 3.2.7 Example of application of the parallax correction for both MW and IR for the case study n. 
4 in Table 2.1.3. Top panel shows the CPR reflectivity vertical cross-section, and TBs (right hand y-axis) 
for SEVIRI 10.8 µm and GMI 183±1 GHz and 183±3 GHz channels nearest to the CPR track without 
parallax correction. Bottom panel shows the same variables with IR and MW parallax correction. 

 

3.3 Characteristics and detectability of WVM 
One of the main goals of GAMES in Task 2 is to understand if water vapor mass features (WVM) can be 
used as geolocation targets. Comparing any scene from SEVIRI in one of the water vapor absorption band 
channels (e.g. 6.2 μm or 7.3 μm) with the same scene observed in the 183.31 GHz absorption band many 
similarities appear. Cloud covered areas, and particularly tick and high clouds - including deep convective 
clouds, show colder TBs than the clear sky areas.  However, the correlations between MW and IR in the 
WV absorption bands in cloud covered areas are prone to the same complexities of the relations between 
the thermal channels in IR and MW. In clear sky conditions both MW and IR in the WV absorption bands 
show similar features, depending both on the distribution of water vapor over the scene. A condition to use 
the WVM in clear sky as a geolocation target is that the observed feature shows a strong horizontal gradient 
and a sharp shape. We assume that the main conditions to use WVM as geolocation targets are: 

1.    Clear sky conditions; 

2.    High contrast: presence of strong horizontal gradient of TBs in both MW and IR; 

3.    Sharpness: the feature should have a sharp (well identifiable) shape; 
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4.  Similar weighting functions: IR and MW WV channels to be compared should be associated with 
similar clear-sky weighting functions; 

5.    Negligible parallax correction. 

A good candidate to fulfil these conditions are the stratospheric intrusions, i.e.,  intrusions of dry air into 
the tropopause, and appear in both IR and WV as sharp filaments of relatively warmer TBs with a relatively 
strong horizontal gradient. The last condition in particular may be satisfied due to the fact that the weighting 
functions (both in IR and MW) in dry condition show peaks at lower levels, reducing the impact of the 
different viewing geometry. 

3.3.1 Conditions for using WVM as geolocation targets: Weighting Functions 

The conditions summarized in the previous section are partially related to the selection of the scene and of 
the WVM feature to be used as a geolocation target. Conditions 1-3 in particular could be met by a proper 
selection of the regions of interest in order to select only the features that satisfy them. Conversely, this 
section will discuss how condition 4 can be met by using a linear combination of channels. Condition 5 is 
very difficult to be fulfilled, due to the fact that parallax correction of a water vapor feature depends on the 
weighting function (WF), and primarily to the height of the peak of the WF. Figure 3.3.1 shows the WFs 
of SEVIRI and SSMIS for a standard mid-latitude summer temperature and water vapor profile. SEVIRI 
WFs have been calculated at nadir while for SSMIS at 53.1°. From figure 3.3.1 it is clear how the peak of 
the SEVIRI channel at 6.2 µm is located around 350 hPa between the peaks of the SSMIS 183±1 GHz and 
183±3 GHz channels. Therefore, it is possible to combine these two SSMIS channels in order to obtain a 
WF more similar to the SEVIRI one at 6.2 µm. The purple line in the right panel of figure 3.3.1 shows the 
WF resulting from the linear combination of SSMIS 183.31±1 GHz and 183.31±3 GHz channels called 
TBx, and given by: 

���= (��183±1 + ��183±3)/2                                          (6a) 

The linear combination of TBs is equivalent to the linear combination of the Weighting Functions if the 
channel is opaque (i.e. when the contributions to the measured TB from the surface – reflection and 
emission terms- are negligible), in this case: 

� ��1 + � ��2 = ∫
∞

0 �(�, �) (���1
��

+ ���2
��

 )  ��= ∫
∞

0 �(�, �) (� ��1 + � ��2 )  ��       (6b) 

Where, 1 and 2 indicate the two SSMIS channels (183.31±1 GHz and 183.31±3 GHz), τ is the optical 
thickness, B(T,ν) is the Planck function (assumed to be the same for the two channels at frequencies ν1 
and ν2). 

In this study we have compared TBx derived from SSMIS defined in Eq. 6 with the SEVIRI 6.2 µm channel, 
for WVM features in clear sky conditions. Results are summarized in section 5.3 and 5.4. 
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Figure 3.3.1 Weighting Functions of SEVIRI (left) and of 183.31 GHz band SSMIS for a standard Mid-
Latitude Summer Profile. 

Figure 3.3.2 shows the weighting functions for the ICI channels at frequencies higher than 183.31 GHz for 
the same atmospheric profile of figure 3.3.1. It is clear that at least three ICI channels: ICI-7 (325.15土1.5 
GHz), ICI-8 (448土7.2 GHz) and ICI-11 (664土4.2 GHz) show similar weighting functions peaking nearly 
around 350 hPa. Thus, ICI-7, ICI-8 and ICI-11could be used with ICI channel at 183.31 GHz to detect 
WVM features in a consistent way with SEVIRI 6.2 um water vapor channel. In summary, the analysis of 
the ICI weighting functions suggests that the use of WVM for ICI absolute geolocation could be effectively 
accomplished exploring various ICI channels (not only those at 183.31 GHz) albeit this hypothesis needs 
to be tested with actual data that are not available at the time of writing of this report. 

 

Figure 3.3.2 Weighting Functions of ICI for channels at frequency higher than 183.31 GHz for a 
standard Mid-Latitude Summer Profile. 
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4. Correlation methods 

4.1 Goal 
The goal of this section is to define the correlation metric necessary to measure the degree of similarity and 
the spatial horizontal shift between a reference and a tested scene in terms of  deep convective clouds (DCC) 
or water vapour masses (WVM) features. Correlation metric is a common tool that can be used in the 
absolute geolocation approaches as well as in the relative ones. In the former case, the reference observation 
is derived from SEVIRI IR channels which is correlated with the tested scene that comes from the PMW 
radiometer in the 183 GHz band. Contrarily, in the relative geolocation case, the correlation is tested among 
the ICI-MW channels when one of them is assumed to be the reference. 

Independently from the geolocation approach considered, the rationale usually followed is to maximise the 
correlation between reference and tested TB channels of DCC or WVM scenes (i.e. between IR and PMW 
TBs channels in case of absolute geolocation or between ICI channels in case of relative geolocation). The 
estimated horizontal shift between the reference and tested scene is the one that maximise the correlation 
between the two scenes. 

To implement any correlation approach, some requirements need to be satisfied by the input scenes. Firstly, 
the reference and tested scenes need to be described in the same reference grid (and in some cases a grid 
remapping is necessary before computing the correlation). Secondly, some correlation approaches may 
require to have the input data in matrix form to be able to implement the 2D discrete Fourier Transform 
that allows speeding up the computation time and/or implement some refined correlation methods. This 
implies that void values that lay in the analysed domain (eg. those values that we do not want to consider 
in the correlation analysis but are present in the analysed domain) needs to be carefully replaced in some 
way.  

In the following subsections the strategies used to correlate the reference and tested scenes are discussed. 
Their use is described in more detail in sections 5 and 6 where absolute and relative geolocation algorithms 
are investigated.  

4.2 Correlation strategy for absolute geolocation 
The input for the correlation is the TB within selected spatial domains called Region of Interests (ROIs). 
ROIs can include DCC or WVM depending on the target typology under investigation. Methods for filtering 
out some unwanted features, that are represented by those pixels inside the ROI that do not belong to DCC 
or WVM target typology, need to be implemented. For example, for DCC targets we want to eliminate (i.e. 
label them as void values) those pixels within the analysed ROI that do not show the typical signatures of 
DCC. Contrarily for the WVM target, it is necessary to screen out all the clouds that can potentially mask 
the scene within the ROI. As a consequence, the way used to manage the void values has led to two distinct 
approaches: Masked Correlation Coefficient Matrix (MCCM) and Filled Cross Correlation (FCC). 

4.2.1 Masked Correlation Coefficient Matrix (MCCM) 

The Masked Correlation Coefficient Matrix (MCCM) is based on the diagram in Figure 4.2.1. The Parallax 
corrected TBs in the IR 10.8 �m reference channel and the tested SSMIS channel at 183.31±1 GHz  are 
the input of the procedure. The latter is pre-processed in order to identify the target of interest. For example, 
in Figure 4.2.1 only DCC targets in the SSMIS scene are considered within the identified ROI, whereas the 
rest is set to void pixels (shown in white). Then the procedure begins by performing a progressive horizontal 
shift of the reference IR TBs in the latitude and longitude domain with a fixed step (δθ,δϕ).  IR TBs are 



 

 

 

Contract: EUM/CO/194600002297/VM 
Ref:         SUR/GAMES.D03. 
Date:       22.01.2021 
Issue:      1.0 
Page:      23 /55 

 

 

 
subsequently convolved with a gaussian filter approximating the MW antenna pattern in order to map the 
IR scene into the MW grid. In a further step, the correlation coefficient between non-void pixels (i.e. DCC 
pixels in the MW scene), is calculated. The procedure is repeated for various multiples of (δθ,δϕ) in order 
to fill a correlation coefficient matrix. In the actual algorithm the correlation matrix has been built with 20 
by 20 steps of (δθ, δϕ) both equal to 0.02°. The (δθ,δϕ) spacing corresponds to the minimum shift that is 
reachable by the algorithm or to the algorithm sensitivity. In order to increase the sensitivity, after a 
maximum has been found, the whole procedure is repeated around the maximum with finer 20 by 20 shifts 
of (δθ,δϕ) equal to 0.002°.  

4.2.2 Filled Cross Correlation (FCC) 

The Filled Cross Correlation (FCC) overcomes the limitations due to the void values produced by filtering 
out the unwanted features within the ROI. In this case the IR and MW inputs are first screened substituting 
the unwanted pixels with some constant filling values, then interpolated to a regularly spaced grid (a 1 km 
spaced grid has been used) and finally compared calculating a cross correlation function. Similarly to the 
landmark approach in Task 1, The normxcorr2 of MATLAB is used to calculate the correlation function. 
This method has been applied to WVM targets, considering as input the horizontal gradient of the TBs 
(both in the IR and in the MW) and using as constant filling values for screened pixels 0 K/km. FCC is 
largely more efficient in terms of computation time than MCCM (~10 times faster), however some degree 
of uncertainty is introduced when both TBs are interpolated to a common grid that has a higher grid spacing 
than both IR and MW resolution. In fact, the interpolation method that is used has a fairly strong impact on 
the results.  In this work we tested the impact of using a bilinear interpolation and a cubic interpolation. 

 

Figure 4.2.1 Diagram of the Masked Correlation Coefficient Matrix with input examples of DCC targets 
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4.2 Correlation strategy for relative geolocation  
As it will be clarified in  Section 6, the relative geolocation method makes use of a correlation approach 
similar to the FCC method previously described. The reference and the tested ICI channel are correlated 
with each other and the outcome is a correlation function whose maximum peak position gives an estimate 
of the horizontal displacement between the considered channels. Since the relative geolocation mainly 
focuses on DCC targets only, and since only ICI MW channels are considered, void values are not present 
in the analysed ROIs. Thus, in this respect the procedure is a little bit easier to apply. 

4.3 Correlation metric tools 
In the previously described correlation methods, a large use is made of the correlation function. To compute 
it we identified two tools: normxcorr2 function and the routine proposed by Guizar-Sicairos et al. (2008) 
(GS2008). Both of them are implemented in MATLAB and are based on fast Fourier Transform that allows 
speeding up the computation time. However, the difference between the two tools is not only in the 
computation time since the GS2008 foresees two steps search to find the best mismatch between the input 
images. In this section we show some synthetic experiments comparing the performance of the two routines. 

Figure 4.3.1 shows the setup of the first experiment where we artificially created two DCC like images, the 
reference and the shifted one (left and middle panels respectively) and displayed the norxcorr2 correlation 
function between the two images (right panels) overimposing the estimated displacements (red squares for 
normxcorr2 and cyan diamonds for and GS2008). The true displacement is represented by a  black square. 
In the shifted image we did not perform a shift only (case a in the upper panels) but we also varied the 
footprint size and introduced some noise (cases b and c, respectively). The results are different as a function 
of the Noise and the footprint size variations introduced. Only solid shifts without noise and footprint size 
variations produce a perfect estimate (top right panel). It is worth noting that the footprint size variations 
produce the multiple peak issue in the normxcorr2 (red squares in case b right panel) and a considerable 
displacement error in the GS2008 approach. To have an idea of the overall result we varied the original size 
in the reference image by a factor ±50% and introduced a normally distributed noise with standard deviation 
varied within 10% to 100% of the input signal amplitude. For each noise variation step, 50 realizations are 
generated. Doing so, we obtained the results in Figure 4.3.2 where the GS2008 outperforms normxcorr2 in 
all considered cases. We also verified (not shown) the use of gradients for the cases shown in Figure 4.3.1 
but we did not find any improvement (not shown). 
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Figure 4.3.1 DCC Synthetic correlation functions experiment. Left column: reference image in three cases 
a), b) and c) described in the panel titles. Middle column: Modified image (shift+ size variation + noise). 
Right column: correlation function from normxcorr2 and estimated shift from normxcorr2 (red square) and 
GS2008 (cyan diamond). The True shift is shown as a black square.  

   

Figure 4.3.2 Relative displacement error estimation as a function of signal to noise ratio and size factor. 

Similarly to what was done in Figure 4.3.1, in Figure 4.3.3 we performed a second test where a WVM-like 
feature is reproduced. In this case we did not introduce any size variation because the WVM-like feature is 
intended to reproduce a water vapor front that is moving eastward and is not completely included in the 
ROI. The perfect displacement estimation is achieved only in the ideal case without noise (cases a and c). 
Note that in the case c) we considered the gradients of the simulated input images. The quantitative results 
introducing normally distributed noise variations with standard deviation varying within 10% to 100% of 
the input signal amplitude are displayed in Figure 4.3.4. In this case, if we consider the gradients of the 
WVM-like input feature and signal to noise ratio larger than 2, we did not obtain any difference between 
using normxcorr2 and the GS2008 routine. 
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Figure 4.3.3 as in Figure 4.3.1 but for a WVM-like feature. 

 

Figure 4.3.4. Left panel: error as a function of signal to noise ratio  for WVM-like features  as in Figure 
4.3.3. Right panel: case where gradients of WVM-like features are considered. 
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5. Absolute geolocation methods based on atmospheric targets 

5.1 Goal 

The main goal of this section is to verify the absolute geolocation accuracy that can be obtained using DCC 
and WVM targets. In order to achieve this goal three algorithms have been developed one for DCC, 
(described in section 5.2) and two for WVM (in section 5.3-5.4). 

This verification has been based on a dataset of SEVIRI and SSMIS coincident observations that spans over 
17 days, i.e., the same days of the case studies listed in table 2.1.3 including all the SSMIS F17 orbits and 
all the SEVIRI time frames for a given day (see section 2.3). 

5.2 DCC Algorithm 

The DCC algorithm is composed of two blocks: a ROI Definition block and a Geolocation Error Estimate 
Block. The external inputs of the algorithm are: 

1)    The SSMIS TBs, the 3 channels in the 183.31 GHz band, with SSMIS TBs coordinates and 
referencing times, and satellite position (latitude, longitude and altitude); 

2)    SEVIRI TBs from channel 10.8 µm, together with pixel latitude, longitude and time; 

3)    Temperature and geopotential height profiles (together with latitude, longitude time and pressure 
levels) from NWP model. 

  

The ROI Definition Block takes as inputs the SSMIS and SEVIRI TBs. The first step of the algorithm is 
finalized to synchronize in space and time the SSMIS and SEVIRI observations. For every SSMIS orbit the 
portion of the orbit within MSG Full Disk region (defined here as the region with observation angle smaller 
than 27.4°) is selected. Then, the SSMIS is separated in 15-min long observation frames and corresponding 
to each MSG time frame. Finally, the MSG image is cut selecting the area with SSMIS observations (TBs). 
In a second step he ROI definition block applies some preliminary tests in order to verify if the SSMIS-
MSG data may include some DCC target: the first test is applied to MW TBs and corresponds to the Hong 
et al. (2005) test (described in section 2.4 – Eq.1), the second test is applied to thermal IR and is: 

��10.8 < 215 �                                                            (7) 

This test has been already used by other authors (Bedka et al. 2010) as a preliminary test for the 
identification of the OTs and should be able to identify 96% of the OTs with relatively large false alarms. 
In the framework of GAMES, the presence of false alarms is mitigated by the contemporary use of the MW 
data. The regions where both tests are verified is defined as a new ROI. In order to take into account the 
geographic shifts due to observation geometry between IR and MW at this stage of the algorithm it is 
sufficient that the DCC in IR and MW (the pixels that passed both tests) are found within 1 pixel (SSMIS 
or SEVIRI) from each other. A ROI is a Latitude and Longitude box and all IR and MW data (TBs, 
coordinates, etc.) inside a ROI are the input of the Geolocation Error Estimate Block. We want to highlight 
that a ROI can include several storm cells and overshooting tops. 

The Geolocation Error Estimate Block first calculates the Cloud Top Height (CTH) using the MSG TBs 
(channel at 10.8 µm) and the temperature profile from NWP model as described in section 3.2.3. Then the 
IR-CTH are translated in the SSMIS grid and observation geometry with the methodology described in 
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detail in section 3.2.4 (IR-CTH are parallax corrected, projected into the SSMIS line of sight, and convolved 
with a gaussian antenna pattern). The CTH in the MW and IR grids are used to compensate for parallax 
effect the IR and MW TBs. The MW TBs are also tested with the Hong et al. (2005) test (see section 3.2.2 
– Eq.1) to create the screening mask that selects only the pixels with DCCs. Finally, the parallax corrected 
TBs (10.8 µm for MSG and 183.31±1 GHz for SSMIS) are the input for the cross-correlation calculation 
step. This algorithm uses as a metric for geolocation error the Masked Correlation Coefficient Matrix 
(MCCM) method described in section 4.2. The geolocation error is the spatial shift (δθ,δϕ) corresponding 
with the maximum correlation coefficient of the correlation coefficient matrix, and expressed in km. We 
want to stress that for each ROI only one geolocation error is estimated. 

 

Figure 5.2.1 Scheme of the DCC Algorithm 

5.2.1 Results and Discussion 
The estimated geolocation errors from the DCC algorithm for the full 17-days dataset have been calculated 
and some descriptive statistics are reported in this section. However, it is clear that the DCC algorithm 
needs some additional conditions in order to avoid the scenes where for some reason it does not work 
properly.  A critical analysis of the conditions in which the DCC algorithm fails is given at the end of this 
section. Therefore, some further conditions have been imposed for selecting the ROI that are usable as 
geolocation targets. The first set of conditions are consistency checks: 
 

1. Number of MW pixel recognized as DCC in ROI >20 
2. Maximum correlation coefficient in the matrix > 0.5 
3. Maximum Cloud top height in ROI > 8 km 

 
The first condition is needed to assure that the correlation coefficient is calculated over a sufficient number 
of pixels. The second assures that some correlation exists between IR and MW TBs. Finally, the third 
condition verifies that the DCC features in the ROI include at least one OT. 
With these conditions the histogram of the estimated geolocation errors is the one shown in Figure 5.2.2, 
in the top panel (red line). This histogram clearly shows some outliers that can be eliminated by adding a 
further condition: 
 

4. Geolocation Error < 25 km 
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With this further constraint the errors histogram becomes the one plotted with a black line in Figure 5.2.2 
(top and bottom panel) and the error statistics are reported in Table 5.2.1. 

 

Figure 5.2.2 Histogram of the Geolocation Error from the DCC Algorithm: the top panel shows the error 
histogram with conditions 1-3 (red line) and including condition 4 (black line). The bottom panel shows 
the comparison of DCC results (test 1-4, black line) compared with the results from one of the geolocation 
targets of Task 1 the Ross Ice Shelf (red line). 

 

Table 5.2.1: Error statistics of the DCC Algorithm 

Days Orbits in 
MSG FD 

area 

Num. of 
SSMIS 

segments 

Num. of 
ROI 

Num. of 
Good ROI 

Mean 
Distance 

km 

Std 
Distance 

km 

Mean 
correlation 

17 180 203 170 109 9,7 5,33 0.71 

 

The statistics of the geolocation error from the DCC algorithm show that the use of DCC as target could 
increase the number of targets per day that have been identified by Task 1 to 6.4 targets per day. In principle 
this number can be further increased if the algorithm is applied also to other GEO satellites that are equipped 
with a thermal IR channel. Unfortunately, the error mean and standard deviation are high and the standard 
deviation is near to double the GAMES requirements of 2.5 km accuracy. It is worth noting, however, that 
the mode value of the geolocation errors from the DCC algorithm is very near to the one from Task 1 (Ross 
Ice shelf). The correlations between IR and MW TBs is not so high, even if some very low correlation cases 
have been removed from the statistics (consistency check 2). This relatively low correlation is very common 
for DCCs and is probably related to the different and complex relationship between IR or MW TBs and 
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cloud properties. IR TBs are sensitive to the cloud top temperature and (secondarily) to the mean effective 
radius in the higher cloud layers. MW TBs at 183.31 GHz , instead, are sensitive to ice scattering that is 
strongly dependent on ice hydrometeor (mostly snow flakes and aggregates) density, shape and 
concentration in the cloud at higher levels. In particular, there could be a strong difference in these variables 
between the cloud OT region and the anvil. If the correlation between IR and MW is usually weak in DCC 
it becomes nearly negligible in particular conditions: when the updrafts are particularly strong and long 
lasting and if a plume cirrus cloud is formed over the deep convective cloud. Both these conditions have 
been met in case 11 where an extreme hail storm hit the Naples city in Italy, producing tennis-ball sized 
hail. Figure 5.2.3 shows a comparison of the IR and MW TBs for a common DCC case study (case study 
01) and for an extreme case study (case study 11). The relation between IR and MW TBs is very different 
in the two cases due to the presence of a plume cirrus cloud over the deep convective cloud and to the 
strength and duration of the updraft in the second case (see Panegrossi et al. 2017). Another critical issue 
of the DCC algorithm is that it strongly relies on the calculation of the CTH from IR TBs, where several 
assumptions have been made and are not always satisfied: first, we have neglected any effect on the IR 
thermal channel of the water vapor above the cloud top; moreover outside of the OT region the algorithm 
assumes a simple relation of equivalence between CTT and environmental temperature that is satisfied only 
if that portion of the cloud is in thermal equilibrium with the environment; finally the 8 K/km lapse rate 
assumed for the OTs is a mean value, but it can vary from cloud to cloud. In order to conclude this critical 
discussion, DCCs cannot actually be used as geolocation targets without a more precise calculation of the 
CTH. 

 
Figure 5.2.3 Comparison of GMI TBs (parallax corrected) and MSG 10.8 µm TBs (parallax corrected and 
antenna pattern averaged) for case study 01 (23/08/2014) in the top panels and for case study 11 
(05/09/2013) bottom panels. 
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5.3 WVM-MCCM Algorithm 

The structure of the WVM-MCCM algorithm is similar to the DCC one. The algorithm is composed of two 
main blocks, the first is finalized to identify the ROIs, and the second to estimate the geolocation error. 

The ROI Definition Block is very similar to the same block in the DCC algorithm. The first modules are 
finalized to synchronize the MSG and SSMIS TBs in time and space. One main difference is related to the 
input data: the SSMIS TBs are all the channels in the 183.31 GHz band, however the main calculations are 
performed for the TBx as defined in section 3.3.1 Eq.6. The MSG inputs are both the thermal channel at 
10.8 µm (used for cloud screening) and the 6.2 µm WV channel (used to identify the WVM features). The 
second step of the ROI Definition Block consists of the cloud screening: a given pixel is identified as 
“cloud” if it satisfies the conditions: 

  

TB183.31±3 - TB183.31±1< 10 K                                                                 (8) 

  

TB10.8 < 260 K                                                                               (9)  

Where Eq.8 is valid for SSMIS and Eq.9 for MSG. 

The final step of the block is the identification of the WVM features, performed by searching for contiguous 
areas where the absolute value of the horizontal gradient of the MW TBx is greater  than 10 K/km. ROIs 
are identified in the last step of the block as the regions where there is a contiguous area of WVM feature 
with a sufficient extension in the MW scene of at least 100 pixels. 

The Geolocation Error Estimate Block is simpler than the one of the DCC algorithm since all the modules 
related to the parallax correction are not present. The algorithm takes as input the MSG 6.2 µm channel and 
the SSMIS derived TBx in the ROI. The TBx are tested for cloud masking applying the test defined in Eq.8. 
Then, the MW and IR TBs are used as input in the cross correlation calculation step that is performed 
following the MCCM scheme described in section 4.2, the same scheme that has been applied to DCCs. In 
particular, as for the DCC case, the geolocation error (δg) is the shift (δθ,δϕ) corresponding with the 
maximum correlation coefficient of the correlation coefficient matrix, and expressed in km. We want to 
stress that for each ROI only one geolocation error is estimated. 
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Figure 5.3.1 WVM-MCCM scheme 

  

 

Figure 5.3.1 Example of application of the ROI Detection Block for WVM-MCCM (central panel) with 
scatter plots for each ROI showing the correlation between IR TB and MW TBx. 
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5.3.1 Results and Discussion 

The application of the WVM-MCCM algorithm to the 17-days SSMIS-MSG dataset revealed that SSMIS 
TBx and SEVIRI 6.2 µm channel TBs aare strongly correlated in proximity of the WVM features. Figure 
5.3.1 shows an example of the application of the ROI Detection Block for one SSMIS orbit segment. After 
the antenna pattern convolution, the IR-TBs and the MW-TBx show very strong correlation coefficients 
(often higher than 0.9). A comparison of the correlation coefficients (Figure 5.3.2) obtained from DCC and 
from WVM-MCCM algorithms show that the second has higher correlation coefficients. 

 
Figure 5.3.2 Histogram of the correlation coefficients from the WVM-MCCM and DCC algorithms. 
 

However, the WVM-MCC algorithms suffer from the issue of multiple solutions. This issue can be well 
explained looking at the example in Figure 5.3.3. In this example the shape of the WVM feature is clearly 
visible in both MW and IR as a sharp variation from relatively cold TBs (around 255K for TBx and 235 K 
for IR) to relatively warm TBs (around 270 K and 245 K respectively). The shape of the feature, however, 
is very simple almost following a line, which makes the correlation coefficient matrix almost insensitive to 
translations along the feature main direction. This can be observed in the same figure looking at the 
correlation coefficient matrix, that shows very high values of the correlation coefficient along a diagonal 
direction. In this condition the position of the maximum value of the Correlation Coefficient Matrix is not 
a good metric for the geolocation error estimate: many positions correspond to the maximum value of the 
correlation coefficient. Therefore the MCCM-WVM algorithm has been modified in the computation of the 
geolocation error: instead of using  the position of the maximum correlation, the 90 th percentile region of 
the correlation coefficient is defined (black line contour in the upper-right panel of Figure 5.3.3), and the 
position in this area nearest to the origin of the axis is selected, corresponding to  geolocation error equal 
to 0 km. The applied metric does not represent a solution to the issue of multiple solutions, and it should 
be considered as an attempt (substantially failed) to control this issue. 
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Figure 5.3.3 Example of application of the WVM-MCCM algorithm to a ROI, left and central panels show 
the MW-TBx and the IR-TB at 6.2 µm. Upper right panel shows the resulting correlation coefficient matrix, 
while the bottom-right panel shows the correlation in the correlation coefficient matrix as a function of the 
percentile. 

Figure 5.3.4 shows the histogram of the geolocation errors obtained by applying the WVM-MCCM to the 
17-days SSMIS-MSG dataset; the figure shows also the corresponding histogram from the DCC algorithm 
for  comparison. The WVM-MCCM algorithm shows a geolocation error distribution that has its maximum 
around 0 km with a large spread between 1 and 35 km without a clear distribution. In this case it is therefore 
worthless to set a threshold value for determining outliers. Some descriptive statistical quantities of the 
error from WVM-MCCM are reported in Table 5.3.1. It appears clear that the main issue of the WVM-
MCCM algorithm is related to the multiple solutions (i.e., the insensitivity to horizontal shifts along the 
feature main direction). Summarizing, the WVM-MCCM algorithm results show a very high mean error 
and standard deviation (~4 times the GAMES accuracy requirements) and very high maximum correlation 
coefficients. 
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Figure 5.3.4 Histogram of geolocation errors from the WVM-MCCM algorithm, compared to the ones 
from DCC algorithm and from Task1 Ross Ice Shelf. 

  

Table 5.3.1: Error statistics of the WVM-MCCM Algorithm 

Days Orbits in 

MSG FD 

area 

N SSMIS 

segments 

N 

ROI 

N Good 

ROI 

Mean 

Distance 

km 

Std 

Distance 

km 

Mean 

correlation 

17 180 203 129 95 10.77 10.39 0.90 
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5.4 WVM-FCC Algorithm 

The WVM-FCC algorithm scheme is shown in figure 5.4.1. The ROI Detection Block has not been 
modified from the WVM-MCCM scheme. The Geolocation Error Estimate Block, however, is very 
different.  Both IR TB (6.2 µm) and MW TBx are processed by a series of modules: first the horizontal TB 
gradient module is calculated, then two different tests are applied to IR and MW TBs in order to identify 
the clouds and compute the TB gradients, pixel identified as cloudy are set to the default value of 0 K/km.  
Then, both IR and MW TBs are regridded to a common equally spaced grid (1 km spacing), using cubic 
interpolation. Finally, the cross correlation between the IR and MW gradients is calculated. In order to test 
the impact on the estimated geolocation errors, the cross correlation has been calculated using two different 
functions: 

1.    normxcorr2 MATLAB function. 

2.    TheGuizar-Sicairos et al. (2008) (GS2008) approach already described in section (4.3) 

The estimated error is the distance (in km) between the cross correlation matrix origin (0,0) and the position 
of the maximum of the cross correlation matrix. 

 

Figure 5.4.1 scheme of the WVM-FCC algorithm 
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5.4.1 Results and Discussion 

Applying the WVM-FCC to the 17-days SSMIS-MSG dataset the obtained maximum correlation 
coefficient between IR and MW are significantly lower than for the WVM-MCCM (see Figure 5.4.2). This 
is due to two main reasons: 1) the WVM-FCC algorithm compares gradients of TBs instead of TBs in the 
WMV-MCCM, and 2) the correlation coefficients are calculated in a high spatial resolution and regularly 
spaced grid in the WVM-FCC algorithm, while the MW spacing grid used in the WVM-MCCM algorithm 
has a lower spatial resolution (~ 16 km). 

 

 

Figure 5.4.2 Comparison of the maximum correlation coefficients obtained in the MCCM and in the FCC 
algorithms 

  

The geolocation errors resulting from the WVM-FCC method shown in Figure 5.4.3 and in Table 5.4.1, are 
smaller than for WVM-MCCM method (Fig. 5.3.4, and Table 5.3.1). Figure 5.4.3 shows the histogram of 
the geolocation error obtained from the WVM-FCC algorithm applying two different functions for the 
calculation of the cross correlation (normxcorr2 – blue line and dftregisration by GS2008 – black line). 
These are also compared with Task1 Ross Ice Shelf target statistics. These results have been obtained by 
imposing some further consistency checks: 

1.    Cloud Cover in the ROI less than 50% of the domain 

2.    Maximum correlation coefficient higher than 0.5 

Moreover, in order to exclude from the statistics the remaining outliers clearly visible in Figure 5.4.3 a 
further condition has been imposed: 

3.    Estimated geolocation error lower than 15 km 
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Imposing these conditions, we obtain the error statistics shown in Table 5.4.1. The number of usable targets 
per day is estimated to about 2, while the mean distance and standard deviations are very small compared 
to WVM-MCCM and DCC algorithm results. The standard deviation in particular (3.6 km) is close (but 
still higher) than the required accuracy of GAMES (2.5 km). The correlation coefficients, as already 
discussed in the previous paragraph, are lower than in the WVM-MCCM case. Last row of table 5.4.1 
shows the results that have been obtained applying the WVM-FCC algorithm to the 3-months SSMIS-MSG 
dataset described in section 2.4. This test has been performed in order to improve the robustness of the 
results with a more extended dataset. The main results are confirmed: both the standard deviation and mean 
error are very small (compared to DCC and WVM-MCCM algorithms) but still higher than the GAMES 
requirements. However, the number of targets needs to be highlighted: the use of a dataset based on selected 
case studies results in an overestimate of the number of usable targets per day, that in the 3-months dataset 
it is reduced to around 1 per day. 

From the results of the WVM-FCC algorithm, some concluding remarks can be drawn. The use of TB 
gradients instead of TBs in the WVM features identification has a strong impact on the magnitude of the 
accuracy of the method, substantially overcoming the multiple solution issue, due to the fact that the WVM 
features identified in the gradient space show sharper and better-defined shapes. However, the use of 
gradients of TBs implies a more conservative selection of the ROIs, resulting in ~ 1 usable targets per day 
in the WVM-FCC method versus ~5.6 targets per day of WVM-MCCM and ~6.4 targets per day of DCC. 
Moreover, the use of TB gradients implies a generally lower correlation coefficient between IR and MW. 
Finally, the choice of the function used to calculate the cross correlation has a minor impact on the error 
statistics. 

 

Figure 5.4.3 Error distribution with the WVM-FCC algorithm 
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Table 5.4.1: Error statistics of the WVM-FCC Algorithm 

  Days Orbits in 
MSG FD 

area 

N SSMIS 
segments 

N ROI N Good 
ROI 

Mean 
Distance 

km 

Std 
Distance 

km 

Mean 
correlation 

Normxcorr2 17 180 203 152 35 3.30 3.72 0.63 

DFTregistration 
by Guizar-

Sicairos 2008 
17 180 203 152 35 3.13 3.69 0.63 

Normxcorr2 90 969 2871 591 95 3.64 3.60 0.66 
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6. Relative geolocation based on atmospheric targets 
6.1 Goal  

This subtask aims at exploring the relative geolocation issue of ICI channels. Higher frequency ICI channels 
(i.e. from ICI-5 to ICI-11 having frequency equal or greater than 325.15 GHz) will be likely not able to 
observe any ground reference due to the strong gas absorption at these frequencies and consequently any 
classical geolocation strategy making use of ground reference cannot be applied on these channels. To 
verify the geolocation of test channels from ICI-5 to ICI-11 a possible way out strategy could be to assume 
ICI-1 or ICI-4 as reference channel assuming one of them, already geolocated using some ground reference 
technique previously applied as in AD1. Thus, the relative geolocation of the test channels can be verified 
comparing each single test channel with the selected geolocated reference channel. Of course, any 
geolocation error in the reference channel will propagate through the test channels analysed, quantitatively 
affecting the final result. The comparison we want to verify in this sub task is in terms of antenna 
temperatures, TA, of some atmospheric features previously detected. 
However, the sensitivity of TA to the selected atmospheric feature can vary as a function of the channel 
considered as well as of the sensor’s viewing geometry. Consequently, the comparison between the test and 
the reference channels could be affected by variations of TA caused by a different sensitivity to atmospheric 
vertical layers that could mask those TA variations that are specifically attributed to the geolocation pointing 
errors that we want to estimate. 
The ultimate goal of this sub task is to provide quantitative guidance to determine to what extent (and for 
which ICI test channels and atmospheric targets) a relative pointing error retrieval can be efficiently 
implemented. 
 

6.2 Input simulations  
To fulfill the subtask goal we considered a simulated dataset of TA for some ICI channels already generated 
in a previous study (AD1 AD2). ICI simulations are provided by MolFlow and they take in input ECMWF, 
ERA5 atmospheric scenarios with a horizontal resolution (0.25∘, i.e. about 30 km), vertical resolution 
variable up to an altitude of 80 km, and time sampling of 1 hour. The date considered includes four reference 
Metop-A orbits: 

● orbit 4655 and 4656: from 08:00 to 13:00 UTC from ERA5 forecast@2007-09-12T06:00:00  
● orbit 6985: from 08:00 to 11:00 UTC from ERA5 forecast @2008-02-23T06:00:00  
● orbit 9744: from 13:00 to 16:00 UTC from ERA5 forecast @2008-09-04T06:00:00  

 
Core calculations of TA are performed by ARTS v2.3.x (Buehler et al., 2018) taking into account the 
emissivities of open water according to TESSEM2 (Tool to Estimate Sea-Surface Emissivity from 
Microwaves to sub-Millimeter waves, (Prigent et al., 2017)), the emissivity of land according to a modified 
TELSEM2, (a Tool to Estimate Land Surface Emissivities at Microwave frequencies, (Aires et al, 2011)), 
absorption and emission of water vapour are considered according to (Rosenkranz et al., 1999) whereas 
particle single scattering data are taken from the database presented by (Eriksson et al., 2018). A Backus 
Gilbert (BG) interpolation method (Stogryn et al.,1976) has also been applied to some ICI channels to 
homogenise their Field of Views (FOVs). The BG is mainly needed because the exact projection of the 
FOVs differs among the various ICI channels even in absence of a geolocation error. This is caused by 
some pointing offsets, (Δθi, Δφi) for i-th channel in the elevation and azimuth direction, respectively, that 
are added to the main tilt direction, (θ, φ). Because of the MWI/ICI conical scan geometry, the azimuth 
angle, φ, is variable in time along the cross-track scan, whereas the elevation angle (θ), defined with respect 
to nadir, is constant (θ=44.767°). For completeness, Table 6.2.1 summarises these offsets (Δθi ,Δφi) for ICI 
whereas Figure 6.2.1 shows the FOV nominal positions (i.e. positions in case of error-free perfect 
geolocation) for some ICI channels. Table 6.2.1, in the last two columns also lists the true unknown pointing 
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errors (δθ0 ,δφ0)) that we artificially introduced in our simulations to check the pointing accuracy of some 
geolocation retrieval schemes, as it will be discussed later on. For a selected channel, the FOVs position 
separation is 2.7 km across track and 9 km (center scan) or 5 km (outer part of the scan) along track (Figure 
6.2.1c).  
Since the ICI radiometer integration time for each individual sample is about 0.661045 ms and it is shorter 
than the time period necessary to sweep out a single projected FOV across the scan, we have several 
footprints overlapping for a given position and for each channel. This allows for a footprint matching 
procedure using the Backus-Gilbert methodology by which we can produce a remapping of the original 
data for a test channel as it was observed in the viewing geometry of another reference channel. In short, 
the Backus-Gilbert methodology linearly interpolates TA from one test channel into the geometrical grid of 
another reference channel, thus compensating for the FOV spatial mismatch displayed in Figure 6.2.1b. 
Some pre-calculated static weights allow the above-mentioned interpolation. The weights are found, after 
a trade-off analysis which include a minimisation of a penalty function that considers both the effective 
noise of the remapped data and the fit to the target footprint. It should be noted that the optimal set of 
weights are channel-dependent as well as they depend on the scan position. Note that, in the outer part of 
the scan, a proper remapping is impossible to perform due to differences in swath width between channels.  
 
Table 6.2.1: Summary of ICI channels, their characteristic and relative instantaneous pointing offset. 

Ch. id Frequency 
 
 

(GHz) 

Bandwidth 
 
 

(Mhz) 

Nedt 
 
 

(K) 

Bias 
 
 

(K) 

Footprint  
size -3dB 

 
(km) 

Elevation  
Offset 

 
Δθi (°) 

Azimuth  
Offset 

 
Δφi (°) 

Elevation  
Pointing 

error 
 

δθ0(°) 

Azimuth  
Ponting error 

 
δφ0 (°) 

ICI-1 183.31±7.0 2x2000 
MHz 

0.8 1.0 16 km -0.7801282 0.000000 0 0 

ICI-2 183.31±3.4 2x1500 
MHz 

0.8 1.0 16 km -0.7801282 0.000000 0 0 

ICI-3 183.31±2.0 2x1500 
MHz 

0.8 1.0 16 km -0.7801282 0.000000 0 0 

ICI-4V 243.20±2.5 2x3000 
MHz 

0.7 1.5 16 km 0.71056695 -3.397678152 0.07 0.13 

ICI-4H 243.20±2.5 2x3000 
MHz 

0.7 1.5 16 km 0.7308017 3.384629254 0.07 0.13 

ICI-5 325.15±9.5 2x3000 
MHz 

1.2 1.5 16 km -0.82190055 -2.226341035 0.07 0.13 

ICI-6 325.15±3.5 2x2400 
MHz 

1.2 1.5 16 km -0.82190055 -2.226341035 0.07 0.13 

ICI-7 325.15±1.5 2x1600 
MHz 

1.5 1.5 16 km -0.82190055 -2.226341035 0.07 0.13 

ICI-8 448.00±7.2 2x3000 
MHz 

1.4  1.5 16 km -0.8221742 2.240223316 0.07 0.13 

ICI-9 448.00±3.0 2x2000 
MHz 

1.6 1.5 16 km -0.8221742 2.240223316 0.07 0.13 

ICI-10 448.00±1.4 2x1200 
MHz 

2.0 1.5 16 km -0.8221742 2.240223316 0.07 0.13 

ICI-11V 664.00±4.2 2x5000 
MHz 

1.6 1.5 16 km 0.7522477 -1.367038422 0.07 0.13 

ICI-11H 664.00±4.2 2x5000 
MHz 

1.6 1.5 16 km 0.8755013 0.94089788 0.07 0.13 
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Figure 6.2.1: Panel a): Viewing geometry for ICI and MWI. Panel b): Instantaneous, relative positions of 
-3 dB footprints on the geoid for some ICI channels. Panel c): relative positions of -3 dB footprints on 
geoid for some ICI channels and for every 5th cross track sample of a complete scan. 

6.3 Selected atmospheric targets: Atmospheric rivers 
Some case studies which include Atmospheric Rivers (ARs) have been selected from ERA5 forecast as 
indicated by the black boxes in Figure 6.3.1. Atmospheric rivers (ARs) are defined as narrow, long and 
transient corridors of strong horizontal water vapor transport that is typically associated with a low-level 
jet (Ralph et al., 2016). 
 

 
Figure 6.3.1: Integrated Precipitable Water Vapor (mm) from ERA5 forecasts as in the title of each panel 
for some selected Region of Interest (ROI) for five identified atmospheric rivers (ARs).  

Four examples of ARs are highlighted in more detail in Figure 6.3.2 in terms of TA for several MWI and 
ICI channels as specified in each figure panel. For each AR case, the vertical Integrated Precipitable Water 
Vapor (IPWV) in (mm), the Cloud Liquid and Ice equivalent Water Paths (mkg/kg), labeled as LWP and 
IWP, respectively,  are also shown in the first column of panels. As expected, the water vapor signature of 
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AR is well visible in the MWI-2V at 23.8 GHz channel that shows a good visual correlation with IPWV 
pattern. Contrarily, the IPWV pattern is partially detected in the other represented channels namely ICI-1 
(183±7 GHz), ICI-4V (243±2.5 GHz), ICI-5 (325.15 ±1.5 GHz), ICI-8 (448.00V±7.2 GHz), and ICI-11V 
(664.00V±4.2). In the ERA5 dataset, as evidenced in Figure 6.3.1, we found five signatures that are likely 
associated with ARs. Unfortunately, when looking at these signatures in terms of simulated MWI/ICI TA, 
we did not find any relevant signatures associated with ARs for channels above or equal to 183.31 GHz, as 
it can be deduced by analysing Figure 6.3.2. In practice, in the analysed cases, the IPWV patterns are not 
recognisable in the ICI channels. This can be due to the masking effects caused by coexisting higher level 
clouds and by a poor sensitivity of channels having weighting functions picking above the AR top that 
usually extend no more than 4 km a.sl.. In our AR case studies, we verified that ICI channels TA, match 
pretty well with coexisting IWP patterns, when they are present. This suggests that ARs could be hardly 
exploitable for higher channel ICI/MWI geolocation purposes, unless they are associated with the presence 
of coexisting ice aloft that causes scattering effects in the ICI channel TA. However, the latter condition is 
similar to what expected for convective cloud cases which are analyzed in more detail in the next section. 

6.4 Selected atmospheric targets: Deep convective Clouds 
Eight case studies of Deep Convective Clouds (DCC), have been selected from the ERA5 forecast as 
indicated by the black boxes in Figure 6.4.1. The selection was done by identifying regions with higher Ice 
Water Path. Figure 6.4.2 shows each selected region in terms of simulated TA for several ICI channels as 
indicated in each figure’s panel. As expected, it is evident as the DCC TA depression signature is quite 
detectable by all selected ICI channels, although the pattern of the TA can considerably vary when moving 
from ICI-1 to ICI-11.  

 

 
Figure 6.3.2: Simulated TA (K) Atmospheric River (AR) signatures for some MWI / ICI channels as in the 
title of each panel. The first column panels from the top show the vertical Integrated Water Vapor (mm), 
the cloud Liquid Water Path and the Ice equivalent Water Path in (mkg/kg), respectively. 
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Figure 6.4.1: Integrated Ice Water Path (m kg/kg) from ERA5 forecasts as in the title of each panel for 
some selected Region of Interest (ROI) for eight identified Deep Convective Clouds (DCCs).  

6.5 Proof of concept test dataset 
To assess the relative geolocation accuracy of ICI channels, a test dataset has been generated. In the test 
dataset we added a true unknown pointing error to all ICI channels to simulate a malfunctioning in the 
pointing system of ICI. The pointing error configuration that we assumed is listed in the last two columns 
in Table 6.2.1, where we indicated with the symbols δθ0 and δφ0 the true unknown pointing errors in the 
elevation and azimuth directions, respectively. Note that ICI-1, ICI-2 and ICI-3 channels are supposed to 
have no pointing errors in our tests because they could benefit by a geolocation correction procedure 
previously applied using some specific ground reference target. For this reason, in our initial tests we 
assumed ICI-1 as the perfectly geolocated reference channel. An example of the actual (error-affected) 
pointing position along the direction ���

(0,0)=(θi+δθ0, φi+δφ0) of an instantaneous FOV for channel i-th, is 
shown in Figure 6.5.1 (red star position A). The angles, θi=θ+Δθi and φi=φ+Δφi identify the direction 
���=(θi, φi) of the nominal satellite-Earth line of sight pointing (i.e. error-free case) for channel i-th (black 
circle position B in Figure 6.5.1). Point B is horizontally separated by approximately 3.2 km from the actual 
pointing position in A. Note that in Figure 6.5.1, Point A just represents the horizontal displacement of a 
single FOV which should have been positioned in B, whereas an exact illustration of the pointing error 
should represent the displacement to the North West by 3.2 km of all FOVs in each scan line (blue circles). 
However, since the pointing position in B is in principle unknow, one way to obtain an estimate of position 
B is to test several trial pointing positions around the nominal one (known) in B. To this aim, we simulated, 
for each FOV of several ICI channels and for each considered orbit, several trial pointing 
positions, ���

(�,�)=(θi+δθk, φi+δφl) (indicated by orange stars in Figure 6.5.1) around the position B of the 
nominal visited FOVs. The generated trial pointing errors (δθk, δφl) are listed in Table 6.5.1. The indexes k 
and l vary both from 0 to 8 and they identify the (k, l)-th trial pointing position error pair among the 9×9 
combinations that can be obtained picking up differently the values in Table 6.5.1. In order to have a test 
dataset in the same reference grid, for each modification of the pointing positions, we used the Backus-
Gilbert approach to remap all FOVs of channels ICI-2, ICI-4, ICI-5, ICI-8 and ICI-11 into the ICI-1 
reference channel. 
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Figure 6.4.2: Simulated TA (K) Deep Convective Cloud (DCC) signatures for some ICI channels as 
specified in the title of each panel. The upper left panel in each box shows the Ice Water Path (m kg/kg) of 
the scene. 
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Table 6.5.1: Assumed trial pointing positions with respect to the nominal pointing position 

Azimuth 
trial pointing  

positions δφl (°) 
-0.36 -0.27 -0.18 -0.09 0 0.09 0.18 0.27 0.36 

Elevation 
trial pointing  

positions δθk (°) 
-0.18 -0.135 -0.09 -0.045 0 0.045 0.09 0.135 0.18 

 
Figure 6.5.1: Example of the distribution of nominal FOV positions for ICI-5 (blue dots) The orange stars 
indicate the trial positions obtained according to the trial azimuth and elevations in Table 6.5.1. The red 
star (A) indicates the position for the assumed azimuth and elevation error of 0.13 and 0.07 degrees (about 
3.2 km in distance) with respect to the nominal FOV position in B. 
 

6.6 Relative geolocation strategies 
ICI relative geolocation aims at producing an estimate (�̂��, �̂��) of the pointing error (δθ0, δφ0), by using 
some correlation approach between TA(���

(0,0))  and TA(��1) which are the antenna temperatures of the tested 
(ICI-i-th) and reference channel (ICI-1) observed along the actual direction ���

(0,0)=(θi+δθ0, φi+δφ0) and the 
nominal direction ��1

(0,0)=(θ1, φ1), respectively. A perfect estimate would imply �̂��= ��0 and �̂��= ��0. 
However, since ���

(0,0)and ��1 vary on two different reference grids, a Backus-Gilbert remapping operation is 
applied to remap TA(���

(0,0))  on TA(��1). We indicated the remapped version of TA(���
(0,0))  on ��1 with 

TA(���
(0,0); ��1) . The two independent approaches followed to obtain (�̂��, �̂��), are described in Figure 6.6.1 

and 6.6.2 and explained in the next sections.  

 
6.6.1 Closed Loop Correlation (CLC) 

In Figure 6.6.1 we implemented the approach suggested in (Bennartz et al., 2005), hereafter referred to as 
Closed Loop Correlation (CLC) approach. In this approach some explicit iterations are applied to test 
several possible pointing errors (���, ���). Since the indexes k and l vary both from 0 to 8, we have 9×9 
iterations. At each iteration the correlation coefficient ��(���, ���) between TA(���

(�,�); ��1)  and TA(��1) is 
calculated and the result is stored. The indexes k and l are then updated before the next iteration starts again. 
The maximum number of iterations is set to 81 according to Table 6.5.1. The expected final result is a 9×9 
correlation matrix showing ��(���, ���) and where its argmax coincides with our final estimation (�̂��, �̂��). 
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It is worth noting that since the resolution of the trial pointing positions in Table 6.5.1 is low it does not 
allow an accurate position estimation. Thus, before calculating the argmax, we applied a cubic interpolation 
to ��(���, ���) to a finer grid of resolution of 0.0036° and 0.0073° in elevation and in azimuth, respectively. 
The procedure is applied to each of the eight regions of interest previously identified in Figure 6.4.2 to have 
8 × 9 × 9=648 values of ��. 

 

 
Figure 6.6.1: Block diagram of Closed Loop Correlation approach to test the relative pointing error of ICI 
channel i-th with respect to a ICI reference channel for DCC targets. 
 

6.6.2 Open Loop Correlation (OLC) 
The second approach implemented (figure 6.6.2) is slightly different from the CLC. It does not include any 
explicit closed loop and for this reason it is named Open Loop Correlation (OLC). Contrarily to CLC, in 
OLC a bi-dimensional correlation function, ��(xi,yi), instead of a correlation matrix ��(���, ���) between 
TA(���

(0,0); ��1)  and TA(��1), is calculated using the algorithm described inGuizar-Sicairos et al. (2008). 
Hence, the across (xi) and along track (yi) displacement between the two inputs, (�̂��, �̂��), is directly 
estimated looking at the argmax of Ci without the need of any loop. However, in order to make the results 
of the OLC and CLC approaches comparable each other, the following conversion formulas for a platform 
at altitude h, were used to convert (�̂��, �̂��) back into (�̂��, �̂��) or vice versa. 
 

∆��= ℎ ∙ ���∙ [���(��)]2                                                              (10) 
 

where ∆�� can be �̂��or �̂�� and ���is �̂�� or �̂��, respectively. In order to avoid including inputs that are 
poorly correlated with each other, and to avoid the risk of the final result deterioration, a correlation check 
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can be added in order to discard input ROIs  for which the correlation coefficient between the registered 
version (i.e. displacement compensated) of TA(���

(0,0); ��1) and reference TA(��1) is below a fixed threshold 
��ℎ . 
 

 
Figure 6.6.2: Block diagram of Open Loop Correlation approach to test the relative pointing error of ICI 
channel i-th with respect to a ICI reference channel for DCC targets. (*) subpixel image registration in 
(Guizar-Sicairos et al., 2008) is used to find the best correlation between reference and tested TA. 
 

6.6.3 Automatic detection of Region Of Interests (ROIs) 
Both schemes shown in Figures 6.6.1 and 6.6.2 for the relative geolocation of ICI channels start from a 
predefined region of interest (ROI). For a practical implementation, the ROI definition needs to be 
automated. The approach followed to define the ROI for DCC targets is inspired by the method suggested 
by Hong et al. (2005). Hence, the criteria used to identify a DCC pattern from ICI, foresees the following 
check: 
 

∆��31 > ∆��32 > ∆��21 > 0                                                         (11)  
 
where ∆����is the difference in (K) between TA at 183.31±i GHz and TA at 183.31±j GHz. Figure 6.6.3 
(left) shows an example of the implementation of Eq. (11) when it is applied to the simulated scenario of 
DCC 3, orbit 4656, shown in figure 6.4.2. Subsequent steps are needed in order to identify the final ROIs. 
ROIs are defined as bounding boxes containing DCCs. In the first step, after the DCC identification, some 
bounding boxes are defined around each DCC in the ICI-1 TA field (Figure 6.6.3 middle panel). Such 
bounding boxes are enlarged by 20% with respect to their natural minimum size in order to have the chance 
to include the same DCC feature in each tested ICI channel that in principle can be affected by some 
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geolocation error with respect to the reference channel (e.g. ICI-1). Note that bounding boxes expansion 
here implemented, considers the “box-expansion” in the number of pixels without any georeferencing. This 
can lead to differences when detecting DCC in the first or last part of the orbit. 
In the second step (right panel), the overlapping bounding boxes are merged together in the attempt of 
including those DCCs belonging to the same convective system.  
 

 
 

Figure 6.6.3: Deep convective clouds (DCCs) detection are highlighted by black contours (left) of TA at 183.31±7 GHz (ICI-
1). Some preliminarily regions of interest (ROIs) are defined as enlarged bounding boxes (magenta) around each DCC (middle). 
The overlapping bounding boxes are merged together thus defining the final ROIs (magenta lines on the right panel) used in 
input to CLC and OLC methods. 

 

6.7 Results  
Results of the CLC and OLC approaches are here presented. Figure 6.7.1, in each panel, shows the 9×9 
interpolated correlation matrix ��(���, ���) for the ICI-i-th channel averaged over the eight ROIs of DCC 
(grey colour) manually identified in Figure 6.4.2. To obtain the spatial displacement we assumed a constant 
sensor altitude and distance between scan lines and samples. In this figure, ICI-1 is set as reference and the 
lower bound threshold for the correlation coefficient ��ℎ used to discard poorly correlated ROIs, is set to 
zero, hence all the possible correlation degrees are considered. Geolocation error scores obtained applying 
the automatic detection of DCC features are discussed later. Overimposed to the average �� there are the 
circles and triangles markers that show the positions of estimated (�̂��, �̂��) for CLC (blue circles) and OLC 
(orange triangles) approaches. 
The empty cyan circles and yellow triangles are the average estimated pointing positions considering all 
the eight manually selected DCC cases and they represent the first final result of the two tested procedures. 
The unknown true pointing position is indicated by a red filled square. As can be noted, in three cases out 
of seven, the requirement of 2.5 km RMSE is not met (see for example orange RMSE values for OLC in 
each panel of figure 6.7.1 for ICI-8 and ICI-11). Contrarily, the STD error is in all cases well below 2.5 km 
for OLC approach. Hereafter, to have a more conservative error analysis, we compared the different channel 
performances in terms of RMSE than error STD. For ICI-8 and ICI-11 channels the relative pointing 
approach seems to be less accurate with RMSE above 2.5 km. Note that we included ICI-2 in the pointing 
verification although we do not expect that ICI-2 as well as ICI-3 can have a different pointing with respect 
to ICI-1 since these three channels share the same front end. Some differences between the CLC and OLC 
are also noted. OLC (orange markers) is in general more precise (lower error standard deviation) than CLC 
(blue markers) and shows a lower RMSE, especially when considering ICI-8 and ICI-11 where both OCL 
and CLC gives RMSE larger than the 2.5 km error requirement. Contrarily CLC outperforms OLC when 
considering ICI-4H, ICI-4V. As a general guidance for future implementation, if we accept an upper limit 
geolocation error higher than 2.5 km, let say below 5km, OLC could be good solution because it reasonably 
fulfil the geolocation requirement, it guarantees higher geolocation precision (i.e. lower dispersion) and it 
is expected to be fast to implement since it does not require estimation loops. 
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Figure 6.7.1: Average correlation diagrams and quantitative pointing retrieval errors for ICI channels as 
indicated in each panel’s title. 
 
Table 6.7.1, lists the geolocation errors for the open loop correlation (OLC) approach as a function of the 
method used for the identification of the DCC regions of interest. In this table, the geolocation errors shown 
in Figure 6.7.1 for the OLC method are indicated as “manually detected ROI” and labelled as “test case A”. 
Contrarily, when ROIs are automatically detected following the methodology previously exposed in 
Section 5.6.3, we obtain slightly different results in terms of RMSE (test case B) with respect to the 
“manually detected ROI” (test case A), albeit the overall conclusions remain substantially unchanged. The 
main difference between the two ROI detection methods are found in terms of STD that in some cases (e.g.: 
ICI-1 vs. ICI-11) can be more than double. In general, the scores in Table 6.7.1, point out the importance 
of the ROI selection. On top of this, it is evident that the geolocation error increases by approximately 70% 
for ICI-8 and ICI-11 with respect to ICI-4 and ICI-5, when ICI-1 is set as reference.  
The slightly worse performance obtained for ICI-8 and ICI-11 with respect to ICI-4 and ICI-5 shown in 
Table 6.7.1 test case B, could be related to the differences in the information content in the TA observations 
of these two sets of channels. Qualitatively, this is quite evident from Figure 6.4.2 where the TA depression 
due to the scattering by the ice in the convective cloud has a different pattern, i.e. clouds are more smeared, 
for ICI-11 than ICI-4, for example. 
To further test the performance of OLC method, we set ICI-4V as the reference channel. As done for ICI-
1, we assumed ICI-4 to be already (perfectly) geolocated using some external method previously applied. 
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For easier computation, we still continue remapping all the considered channels into ICI-1 grid and we 
consider the same channel’s error structure shown in Table 6.2.1. 
 
Table 6.7.1: Geolocation errors (km) for the open loop correlation (OLC) approach as a function of the 
method used for the identification of the DCC Regions Of Interest and for various channel comparisons. 
ICI-1 is set as a reference channel. In test case B, those displacements larger than 12 km are discarded by 
the analysis. 

 TEST CASE A TEST CASE B 

 Manually identified ROIs  
as in figure 5.4.2 

(8 ROIs are considered) 

Automatically identified ROIs 
as in section 5.6.3 

(all detected ROIs are considered) 
REF vs. TEST BIAS STD RMSE N ROIs BIAS STD RMSE N ROIs 

ICI-1 vs. ICI-2 0.88 0.62 1.07 8 1.07 0.70 1.28 18 
ICI-1 vs. ICI-4V  2.44 0.46 2.49 8 2.41 0.57 2.48 18 
ICI-1 vs. ICI-4H 2.48 0.42 2.51 8 2.44 0.55 2.50 18 
ICI-1 vs. ICI-5 2.30 0.65 2.39 8 2.48 0.70 2.58 18 
ICI-1 vs. ICI-8 3.32 0.94 3.45 8 4.92 3.15 4.40 16 
ICI-1 vs. ICI-11V 3.42 1.83 3.88 8 4.53 2.72 4.58 17 
ICI-1 vs. ICI-11H 3.37 1.74 3.80 8 4.46 2.63 4.54 17 

 

Table 6.7.2: As for Table 6.7.1 but when channel ICI-4V (243.2 ±2.5 GHz) is considered as reference. All 
the channels still continue to be remapped into ICI-1 grid for convenience. In test case B, those 
displacements larger than 12 km are discarded by the analysis. 

 TEST CASE A TEST CASE B 

 Manually identified ROIs  
as in figure 5.4.2 

(8 ROIs are considered) 

Automatically identified ROIs 
as in section 5.6.3 

(all detected ROIs are considered) 
REF vs. TEST BIAS STD RMSE N ROIs BIAS STD RMSE N ROIs 

ICI-4V vs. ICI-2  2.71 0.46 2.75 8 2.91 0.61 2.97 18 
ICI-4V vs. ICI-4V  0.00 0.00 0.00 8 0.00 0.00 0.00 18 
ICI-4V vs. ICI-4H 0.06 0.03 0.07 8 0.10 0.13 0.16 18 
ICI-4V vs. ICI-5 1.01 0.44 1.10 8 0.95 0.83 1.27 18 
ICI-4V vs. ICI-8 3.46 1.81 3.90 8 3.29 2.54 4.15 17 
ICI-4V vs. ICI-11V 2.65 1.02 2.84 8 2.92 2.44 3.81 18 
ICI-4V vs. ICI-11H 2.54 0.98 2.72 8 2.84 2.37 3.70 18 

 
 

The results obtained are listed in Table 6.7.2, which needs to be compared with Table 6.7.1. Comparing the 
RMSE values in these two tables, for test case B, it is noted that the use of ICI-4V as reference channel 
instead of ICI-1, substantially improves the geolocation error by a factor 2, for ICI-5, and 1.2 for ICI-11, 
respectively, but, on the other hand, the geolocation of ICI-2 deteriorates by a factor 2.3 whereas ICI-8 is 
unaffected. 
However, in general the ICI-4V seems to be a better choice than ICI-1 to be the pivot channel, since it 
produces, except for ICI-2, lower errors whereas the contrary is true when ICI-1 is selected as reference. 
Likely, similar conclusions are expected if we consider ICI-4H as reference. A special care needs to be put 
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for the geolocation of ICI-2 (and likely to ICI-1 and ICI-3) that could suffer from larger errors when ICI-4 
is the reference. 
The better performance obtained making use of the reference ICI-4V, could be fostered by a larger 
correlation of ICI-4V with the other tested channels. This can be deduced from Figure 6.7.2 where it is 
noted that the correlation among ICI-4V and all the other tested channels (panel b) is in general higher than 
in the cases where ICI-1 is set as reference (panel a). Particularly instructive is the case of ICI-2 that shows 
a lower correlation (larger error) in panel b) when ICI-4V is set as reference as opposed to panel a) where 
ICI-1 is the reference. This suggests that the lower correlation of ICI-4V vs. ICI-2 might be responsible for 
the larger ICI-2 geolocation error that we found.  
 

   
Figure 6.7.2: correlation coefficient between tested and ICI-1 (left) and ICI-4V (right) reference channel.  
 
A final consideration about the performance of ICI-4V is in terms of FOV geometrical aspects. Since ICI-
4 and ICI-11 align along the same across track direction (figure 6.2.1 b), it potentially has a viewing 
geometry closer to ICI-11 than ICI-1. This could contribute to explain the better results in geolocating ICI-
11 when using ICI-4 as reference channel instead of ICI-1. However, from our results, the benefits of using 
ICI-4 as reference, are not limited to ICI-11 but extend to ICI-5 as well (Table 6.7.2). Thus, once all the 
channels are remapped on the same reference system, the geometric proximity principle does not seem to 
be the key factor that drives the final results. 
 

6.8 Conclusions 
For what discussed in the previous sections the conclusion is that the relative pointing accuracy estimation 
methodology is mainly useful if the information content in the measured TA is similar (i.e. higher correlation 
level) between the two channels of concern: reference and test channel. This implies that if the geolocation 
error requirement is as low as 2.5 km, none of the methods tested strictly satisfy such requirement for all 
ICI channels in terms of RMSE albeit it does in terms of error STD. The Open Loop Correlation method, 
assuming ICI-4 as the perfectly geolocated reference channel, is promising since from our simulated tests 
it produces errors below 4.1 km. Contrarily, if ICI-1 can be accurately geolocated making use of some 
external methods previously applied (e.g. using ground reference targets as done in Task 1), we can verify 
the geolocation of ICI-2 (and likely ICI-3) as well as ICI-4 and ICI-5 with a satisfactory RMS error closer 
to 2.5 km, albeit, we do not expect pointing differences in ICI-1, ICI-2 and ICI-3 since they all share the 
same pointing frame. The drawback when selecting ICI-1 as a reference channel is that it produces larger 
RMS geolocation errors than those obtained with ICI-4, which result of the order of 4.5 km for ICI-8  and 
ICI-11.   
Obviously, it is worth noting that residual pointing errors in the assumed reference channel add to the 
relative geolocation errors that we found. In this respect, ICI-4 could be geolocated more accurately than 
ICI-1 by using the landmark approach, since ICI-4 it is less sensitive to surface emissivity than ICI-1.

Panel b) Panel a) 
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7. Practical guidance and future recommendations 

- As a general guidance for future implementation, Open loop Correlation approach for relative 
geolocation (Figure 6.6.2), could be a good solution because it is expected to fulfil the geolocation 
requirement (in terms of relative error STD), it guarantees higher geolocation precision (i.e. lower 
dispersion), and it is expected to be fast to implement since it does not require estimation loops. 

- Assuming ICI-4 as a reference channel in the OLC, we expect to achieve relative geolocation errors 
of less than 4.1 km for all the ICI channels with larger errors for ICI-8. The relative geolocation of 
ICI-1, ICI-2 and ICI-3 could be an issue when  ICI-4 is set as a reference,  and an absolute 
geolocation approach (e.g. using landmarks or water vapor masses features) could be a safer option 
in this case. 

- Water Vapor Masses (WVM) features analysed in this document as seen by ICI-2 and ICI-3-like 
SSMIS channels and MSG SEVIRI water vapor 6.3 μm channel, have demonstrated to be a good 
candidate target to be used for an absolute geolocation of ICI-2 and/or ICI-3. In this respect, the 
achieved geolocation errors are fully comparable, in terms of RMSE, with those obtained from the 
landmark approach. Then, for a future implementation, we suggest to accurately take the WVM 
approach into consideration at least as an optional off-line tool even operated by third parties. 
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1. INTRODUCTION

1.1 Purpose of this document

The EPS-SG Ice Cloud Imager (ICI) is a sub-millimetre wave conical imager on board of the
EUMETSAT Polar System – Second Generation (EPS-SG) and it will have 11 channels with frequencies
around 183, 243, 325, 448 and 664 GHz, as shown in Tab. 1.1.

Table 1.1: Summary of ICI channels
CHANNEL FREQUENC

Y   (GHz)
BANDWIDTH
(MHz)

NEΔT
(K)

BIAS
(K)

POLARISATION FOOTPRINT SIZE AT
3 dB

ICI-1 183.31±7.0 2x2000 MHz 0.8 1.0 V 16 km

ICI-2 183.31±3.4 2x1500 MHz 0.8 1.0 V 16 km

ICI-3 183.31±2.0 2x1500 MHz 0.8 1.0 V 16 km

ICI-4 243.2±2.5 2x3000 MHz 0.7 1.5 V, H 16 km

ICI-5 325.15±9.5 2x3000 MHz 1.2 1.5 V 16 km

ICI-6 325.15±3.5 2x2400 MHz 1.3 1.5 V 16 km

ICI-7 325.15±1.5 2x1600 MHz 1.5 1.5 V 16 km

ICI-8 448±7.2 2x3000 MHz 14 1.5 V 16 km

ICI-9 448±3.0 2x2000 MHz 1.6 1.5 V 16 km

ICI-10 448±1.4 2x1200 MHz 2.0 1.5 V 16 km

ICI-11 664±4.2 2x5000 MHz 1.6 1.5 V, H 16 km

These wavelengths allow to detect ice clouds, whereas the emission signal from the surface is
predominantly masked by high water vapour opacity. The latter is a problem for the geolocation
assessment because current methods, comparing coastlines in imagery data with the known geographic
locations, are not readily applicable to all ICI channels. However, in very dry atmospheric conditions,
geolocation validation techniques using landmark targets could still be applied on observations at 183.3±7
GHz and 243.2 GHz.

For the channels where high water vapour opacity masks out the emission signal from the surface an
alternative approach must be used, and it is suggested that the pointing of these channels are validated in a
relative sense, using atmospheric targets and correlate data to 183.3±7 GHz or 243.2 GHz data to obtain a
relative pointing error estimate compared to the 183.3±7 GHz or 243.2 GHz channel.

The purpose of this document is to describe the basis and details of the algorithms applied for geolocation
assessment of ICI data, both using land mark and atmospheric targets.
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1.2 Literature review
A wide experience has been accumulated so far on the geolocation error validation for satellite-based
microwave radiometers at lower microwave frequencies (10-50 GHz, outside the absorption bands) by
exploiting their strong difference in terms of surface emissivity between land and ocean. Global-scale
coastlines can be used as surface landmarks with a significant contrast in terms of measured brightness
temperature (BT). Comparing the latter with a reference coastline database [1], it is possible to assess the
spaceborne sensor geolocation error.

In [2] Purdy et al. the shoreline obtained from WindSat satellite imagery and the World Vector Shoreline
Data Bank II (WVS II) is compared. The position of the coastline is obtained taking the peak of the first
derivative of radiometric data along scan and cross scan direction, after a cubic spline interpolation to
obtain a more smoothed curve. Poe et al. [3] apply a similar method on Special Sensor Microwave
Imager/Sounder (SSMIS) using data provided by spacecraft F-16.

In [4] Heygster et al. exploit the fact that, when geolocation errors are present, the projected footprints
have different shifts considering ascending or descending swaths. Since the brightness temperature (BT)
differences between ascending or descending swaths are higher along coastlines, they evaluate the
geolocation error using data from AMSR-E at 89 GHz. Berg et al. [5] use the BT difference between
ascending and descending swaths to obtain the attitude error for SSM/I spacecraft. Finally, Moradi et al.
[6] correct the pitch, yaw and roll angles for Advanced Microwave Sounding Unit (AMSU) and
Microwave Humidity Sounders (MHS) minimizing the difference in brightness temperature between
ascending and descending swathes.

Along the coastline, the measured signal consists of radiation received from both land and water surfaces
and Bennartz [7] proposed to use a high-resolution land–sea mask to infer the fraction of water surface for
each measurement. He has developed a method to validate the geolocation accuracy using the convolution
of land-sea masks that is suitable to apply for channels that are sensitive to land/sea contrast. Han et al.
[8] adapted this so-called “Land/sea Fraction Method” for the NOAA 16-18 satellites and also for ATMS
on SNPP.

Several algorithms can be applied to extract contour from images, starting from the simplest and faster to
the most sophisticated, but with higher computational costs. In the following work we have focused on
the Canny edge detector [9], because it is a fast algorithm that is able to detect both strong and weak
edges [10], whereas its accuracy is slightly better than other algorithms [11], [12]. In addition we have
also used the Sobel filter [13] as it is a fast approximation of image gradient [14].

1.3 Organization of the report
This ATBD is organized as follows.

Section 2 contains a description of the algorithms involved in the proposed methodology for geolocation
assessment of MWI/ICI data using land mark targets, including a description of input and output data of
the algorithm.

Section 3 describes the proposed algorithm for validation of the geolocation of data from ICI/MWI
channels where high water vapour opacity masks out the emission signal from the surface, and where
atmospheric targets can be used to assess the relative pointing error between two channels.
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2. ASSESSMENT METHODOLOGY USING LANDMARK TARGETS
2.1 Overview

Figure 2.1.1: Logical scheme of proposed methodology to validate the geolocation using landmark targets (target-contour
matching algorithm). The methodology varies somewhat with type of targets and four different flows are shown.
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Figure 2.1.1 gives an overview of a target contour matching algorithm for geolocation error assessment of
MWI or ICI Level-1B data using landmark targets as reference. The algorithm varies with type of target
and four different but similar algorithms are shown.The algorithm operates on data covering one of a
number of predefined landmark targets. A landmark target is primarily defined by a bounding box (min
and max latitude/longitude) covering the target (e.g. the Titicaca Lake) with some margins. Four types of
landmark targets (lakes - coastline database, ice shelves - SAR imagery, water way - SAR imagery, and
mountain area targets - DEM database) are handled by the algorithm and the type of reference data and
details of the algorithm varies with type of target.

MWI or ICI data with a geolocation within a predefined bounding box associated to a given target is
gridded (upsampled) on a regular latitude and longitude grid (or using polar stereographic coordinates for
targets located at high latitudes), having a finer resolution than that of the original data. This is done using
a linear interpolation method, and this allows to extract more smooth features from the images.
Features/contours from the gridded data are extracted using image processing filters, i.e. the Canny [9
edge [9] detection or  Sobel filter [13] depending on the type of target.

Target specific reference data within the predefined bounding box associated to a given target is then used
to construct a reference contour at the same grid onto which MWI or ICI data was upsampled.

Images containing the extracted features/contours are then fed into a contour matching algorithm, where
shifts in the image based on MWI or ICI data relative to the reference image is detected and estimated.
Once the shift in the MWI/ICI image has been estimated it is a quite straightforward task to calculate the
geolocation error.

A target (except for a waterway target) is also defined by a number of predefined coordinates within the
bounding box in order to allow for a cloud filtering of data. A brightness temperature (BT) contrast of the
current data/image is derived considering these coordinates, and in order to validate that the derived shift
is acceptable a fuzzy-logic check is performed, considering both the value of the derived shift and that the
BT contrast present in the image is sufficient.

Two geolocation errors are derived for a water way target, using two different grid resolutions, and the
cloud filtering of data is done using a fuzzy logic check of the obtained geolocation errors.
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2.1.1 Landmark targets
Landmark targets that can be used for validation of the geolocation of ICI/MWI data are listed in Table
2.1.1. These targets can be classified into three categories: lakes located at high altitude, ice shelves and
mountain areas (see Games Report Task 1 for a more complete description of actual proposed landmark
targets).

Table 2.1.1: Summary of proposed targets, reference source and daily detectability

Landmark target Contour reference source Detectability/day

Northern hemisphere

Qinghai lake GSHHG 1

Karakorum mountains DEM 1

Hudson Bay GSHHG 1

Nares Strait SAR 4-6

Southern hemisphere

Ross Antarctic ice shelf SAR 4-6

Filchner-Ronne Antarctic ice shelf SAR 4-6

Amery Antarctic ice shelf SAR 3-5

Titicaca lake GSHHG 1

Andean mountains DEM 1

2.1.2 Criteria for landmark target selection
The physical basis for why the targets described in the preceding selection can be used for a validation
purpose is here described. Considering a homogeneous isothermal (constant temperature and interaction
parameters) atmospheric layer of thickness H with a small albedo (thus neglecting the multiple scattering
contribution), it is possible to derive the analytical solution of the radiative transfer equation for the
upwelling BT as follows:
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Considering two different close pixels p1 and p2 and assuming a similar atmospheric layer with the same
transmittance t(L), the BT contrast TB =TB(p1) -TB2(p2)=TB1 -TB2 can be written as follows:∆
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Therefore, in order to have a sufficiently high BT contrast, from eq. (2.1.3) we can essentially consider
areas with different surface emissivity and/or surface temperature, such as sea/lake/ice coastlines or
mountain chains. In the latter case we have a surface temperature variability due to the height difference
between plain and mountain as well as a different atmospheric optical thickness (i.e., transmittance of the
mountain pixel larger than the plain one) entailed by the different heights of the pixels themselves. A
further feature to play with is the natural variability of surface emissivity.

Taking into account these concepts, for landmark target search we have basically considered the
following two major types:

a) surface water bodies (liquid or ice) sufficiently large (wrt satellite FOV);
b) mountain areas with strong slopes (altitude gradients) in relatively dry regions.

2.2 Target-contour matching block diagram and data flow

2.2.1 Input data

2.2.1.1 Data

Within the GAMES project, the proposed target-contour matching (TCM) algorithm is shown in Figure
2.1.1. Input data to the TCM algorithm are the satellite radiometric imagery containing the landmark
target, and reference data described in Table 2.2.1. The reference data to use depends on the type of
target; SAR data is used for ice shelf and water way targets, GSHHG data is used for high altitude lake
targets, and DEM data is used for mountain area targets.

Table 2.2.1: Summary of proposed reference data. Note that a pre-processing of SAR data is needed and this is further  described in
Appendix A.

Reference source Original source Spatial resolution Pre-processing
needed

SAR Level-1 GRD 10-40 m yes

GSHHG GSHHG with full resolution 40 m no

DEM GTOPO 30 30 arc seconds (~1 km) no
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2.2.1.2 Algorithm parameters

The parameters that defines a landmark target are the following:

● Minimum and maximum latitude/longitude covering the target
● A gridpoint spacing parameter used to create a regular grid covering the bounding box
● A number of coordinates within the bounding box to be used to extract the contrast of the image

or a second gridpoint spacing parameter

The GAMES TCM algorithm varies somewhat with type of target, and hence algorithm parameters for
extracting features/contours from MWI/ICI data and reference data varies with type of target, and these
are:

● Canny edge detection parameters (lower and upper bound for hysteresis thresholding and standard
deviation of the Gaussian filter) for extracting contours from MWI/ICI data for lake and ice shelf
targets

● Canny edge detection parameters for extracting contours from SAR data for ice shelf targets

The Sobel filter is applied for mountains area targets and this filter takes no adjustable input parameters.

Input parameter to the algorithm used for the actual contour matching, between the MWI/ICI and the
reference data, with sub-pixel precision is an upsampling factor. If this upsampling factor is set to e.g. 10
it will allow to detect shifts with a 0.1 pixel precision.

Three model parameter are used to define the fuzzy logic control of data and these are:

● a reference shift
● a reference contrast or a second reference shift
● a reference threshold for acceptance

2.2.2 Target contour matching algorithm
The target contour matching algorithm (TCM) is shown in Fig. 2.1.1. The TCM algorithm varies
somewhat with type of target as described in the following subsections.

2.2.2.1 Lake at high altitude target
The TCM algorithm using lake at high altitude target can be described by:

1) Extract MWI/ICI and GSHHG shoreline database data inside a predefined bounding box that
contains the target

2) Apply a DEM correction of MWI/ICI data if desirable
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3) Regrid MWI/ICI data onto a regular latitude and longitude grid covering the target bounding box
4) Apply Canny algorithm to extract a contour from the gridded MWI/ICI data
5) Project GSHHG shoreline database on the same grid obtained at step 3, using nearest neighbour

approach.
6) Apply a contour matching algorithm on the two images containing the contours in order to derive

(sub) pixel shifts
7) Convert these shifts to distance shift along latitude and longitude directions
8) Extract the BT contrast found in the MWI/ICI data
9) Fuzzy-logic control of data

2.2.2.2 Mountains area target

The TCM algorithm using mountains area target can be described by:

1) Extract MWI/ICI and DEM data inside a predefined bounding box that contains the target
2) Apply a DEM correction of MWI/ICI data if desirable
3) Regrid MWI/ICI and DEM data onto a regular latitude and longitude grid covering the target

bounding box
4) Apply Sobel filter on the DEM data to obtain the gradient magnitude
5) Apply Sobel filter to MWI/ICI to obtain the gradient magnitude
6) Follow step 6 to 9 of the of the lake at high altitude case, but applying the contour matching

algorithm on the gradient magnitude images

2.2.2.3 Ice shelf

The TCM algorithm using ice shelf target can be described by:

1) Extract MWI/ICI and SAR data inside a predefined bounding box that contains the target
2) Project MWI/ICI and SAR data on polar stereographic coordinates (x, y)
3) Regrid MWI/ICI onto a regular x and y grid covering the target bounding box
4) Apply Canny algorithm to extract a contour from the gridded MWI/ICI data
5) Apply Canny algorithm to extract SAR contour
6) Project SAR contour in the same grid obtained at step 3, using nearest neighbour approach
7) Follow step 6 to 9 of the of the lake at high altitude case

2.2.2.4 Water way target

The GAMES TCM algorithm for a water way target (i.e. Nares Strait) is very similar to the one of the ice
shelf targets. The difference is that the target of Nares Strait is defined by two grid spacing parameters but
no coordinates for deriving a BT contrast. That is, the algorithm does all its calculations (step 3 to 7 of the
Ice Shelf Target, excluding step 8 of the Lake at high altitude target) for two different grids and two
different results are consequently obtained. The obtained results are only considered valid if both results
are reasonably determined by fuzzy logic.
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2.2.3 Output data
The output data of the TCM algorithm is mainly an estimated displacement error of the ICI/MWI image
and a quality estimate describing if the result is useful or not. Other output variables are described below
(note that the output depends to some extent on the type of target, e.g. a second_shift is only obtained for
a water way target):

● filename: the name of the MWI/ICI Level1B file used
● sensor: the name of the sensor
● channel: the channel ID used
● date: a representative datetime of the measurement
● lat_center: latitude center [degrees] of the bounding box used
● lon_center:  longitude center [degrees] of the bounding box used
● shift_x: the derived shift in validated data [km] along longitude direction
● shift_y: the derived shift in validated data [km] along latitude direction
● shift: the derived shift in validated data [km]
● contrast: contrast in image [K]
● second_shift: the second derived shift in validated data [km]
● valid: a validity flag of derived shift
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2.3 Target contour matching algorithm details

2.3.1 Digital elevation model correction

Figure 2.3.1: Digital Elevation Model correction

In case of high-altitude targets, we can have an initial error in the data as shown in Fig. 2.3.1, if the pixel
positions of the original data has been estimated neglecting the topography of Earth. A DEM correction of
data applied in the TCM algorithm, to correct the position of a given pixel, can be described by:

1) Reduce DEM data match the resolution of MWI/ICI data by a simple box blur filter (each pixel in
the resulting DEM image has a value equal to the average value of its neighboring pixels)

2) Make a Delaunay triangulation of a set of points (latitude and longitude coordinates on a regular
grid) covering the geoid surface of interest or the bounding box associated to the target
(triangulation of points on a regular grid is in principal trivial)

3) Generate a set of triangles in ECEF (earth-centered, earth-fixed) Cartesian coordinates (x, y, z)
from the triangulation and the DEM data

4) Apply the Möller-Trumbore [22] ray-triangle intersection algorithm to find the closest point to the
sensor where the line of sight from the sensor towards Earth intersects with any of the triangles.
To speed up this part of the algorithm, only triangles that have a centroid within a distance 30 km
from the uncorrected position are considered. This simplification is safe to use for MWI/ICI
observations as incidence angles are smaller than 55°, so it is impossible that the corrected
positions should be more than 30 km away from the uncorrected position.

2.3.2 Polar stereographic coordinates
Extraction of contours from images associated with targets located at high latitudes is done using polar
stereographic coordinates. At high latitude, this coordinate system is better suited than geodetic
coordinates as directions can become complicated, with all geodetic north–south lines converging at the
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poles. The conversion back and forth between geodetic and polar Stereographic coordinates is done
following the description given on page 161-162 in [23].

2.3.4 Feature extraction
Two different image processing filters are used to extract contour/features from the data, and these are the
Canny edge detector and the Sobel filter. Prior to the feature extraction, MWI/ICI data is gridded onto a
regular grid using a linear interpolation of the original data. It was found that using a grid with a gridpoint
spacing of about 5 km is an adequate resolution to use. This is a coarser and finer resolution than that of
the spacing of original MWI/ICI data in the across and along track, respectively, but finer than that of the
footprints, and generally a coarser resolution than that of the reference data. Hence, it should be clear that
the gridpoint spacing parameter is a compromise taking many different types of resolutions into account.
Anyhow, it was found that a spacing of 5 km allows for extracting smooth contours from the data of
concerns, at the same time as average results does not critically depend on the resolution used.

2.3.4.1 Canny edge detector

The Canny edge detector [9] is an edge detection operator that uses a multi-stage algorithm to extract
edges in images. It uses a filter based on the derivative of a Gaussian in order to compute the intensity of
the gradients. The Gaussian reduces the effect of noise present in the image. Then, potential edges are
thinned down to 1-pixel curves by removing non-maximum pixels of the gradient magnitude. Finally,
edge pixels are kept or removed using hysteresis thresholding on the gradient magnitude. The Canny filter
has three adjustable parameters:

● the width of the Gaussian (the noisier the image, the greater the width)
● low and high threshold for the hysteresis thresholding

The Canny edge detector is used for lakes at high and ice shelf targets within the TCM algorithm. An
example is shown in Figure 2.3.4.1, that shows an image over the Qinghai lake on 2016/12/01 from
SSMIS. Displayed in the figure is also the extracted contour using the Canny filter (width=√2, low=0.2,
high=0.5) and the boundary between the lake and land from the GSHHG database. To obtain a reference
contour the Canny filter is also applied on SAR data for ice shelf targets. Contours describing the
boundary between the lake and land are directly available from the GSHHG database, and how these are
processed, in order to be useful as reference data, is described in Sect. 2.3.4.3.
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Figure 2.3.4.1: Brightness temperature (BT) image at 183±7 GHz H over Qinghai lake from SSMIS F17 on 2016/12/01. The red
line represents the lake coastlines from GSHHG database, described in Wessel and Smith (1996). Black markers indicate the
extracted contour by Canny method.

2.3.4.2 Sobel filter

The Sobel operator or Sobel filter [13] is a filter that computes an approximation of the gradient of the
image intensity. The operator uses two 3×3 kernels which are convolved with the original image to
calculate approximations of the derivatives, one for horizontal changes, and one for vertical changes. The
Sobel filter has no adjustable parameter and the magnitude of the gradient is used as an image feature for
mountains area targets (Figure 2.3.4.2) within the TCM algorithm. The Sobel filter is also applied on
DEM data to obtain a reference image.

Figure 2.3.4.2: Brightness temperature (BT) image at 183±6.6 GHz H over Karakorum mountains from SSMIS F17 on 2016/01/02. Eight
points are those used to calculate the BT contrast along mountain chain
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2.3.4.3 Gridding of contours

The Canny filter was described to be used to extract contour for lake at high altitude targets. The
boundary between lake and land, that can be obtained from the GSHHG database, is used as the reference
for contour matching. However, the contour extracted from MWI/ICI data is defined on grid points on a
regular latitude and longitude grid, whereas the reference land and lake boundary is not. To allow for a
contour matching the land and lake boundary must be defined on the same regular grid as is used for
MWI/ICI data. This transformation is done using a simple approach, where an image with pixel values of
zero or one is constructed. The closest image pixel of each point of the land and lake contour is given the
value one.

A similar approach is used to construct reference data from SAR images for ice shelf targets. The Canny
filter is used to extract contours using the original resolution of the SAR data. The obtained contour is
then translated to the regular grid used for MWI/ICI data using the same approach as in the lake and land
boundary case.

The approach used for gridding of contours introduces some error/noise in the reference contour, as the
gridded reference contour can be misplaced by a distance up to half the resolution of the grid compared to
the actual location. However, this applies to a single point of the grid, and it is unlikely that all points of
the reference contour are biased with the same offset. In other words, the error should be random rather
than systematic, and ultimately lead to a small random error in the contour matching.

2.3.5 Contour matching

The contours/features extracted from MWI/ICI and reference data are cross-correlated against each other
to detect and estimate shifts between the data. This is done using an efficient subpixel image registration
algorithm described in [17], or more exactly the algorithm referred to as the single-step discrete Fourier
transform (DFT) approach in [17]. This algorithm provides an estimate of the column and row shifts
of the features within the MWI/ICI image as compared to reference image. The algorithm uses
selective upsampling by a matrix-multiply DFT to dramatically reduce computation time and memory
without sacrificing accuracy. With this procedure all the image points are used to compute the upsampled
cross-correlation in a very small neighborhood around its peak. In GAMES Report for Task1 results
obtained using this algorithm is compared to an alternative image registration algorithm where the
cross-correlation is calculated in the spatial domain. Differences were found to be negligible small, and it
was concluded that the choice of contour matching algorithm is not a critical issue for TCM algorithm,
and [17] was selected as the preferable algorithm to use, as it is widely used and well described in the
literature. An implementation of the contour matching algorithm applied within the TCM is provided by
the author of [17] on the Matlab file exchange site, or more exactly from

https://se.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation

https://se.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation
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2.3.5.1 Image index shift to distance

Once the pixel displacement in x and y (column and row) direction of the image is estimated, the
corresponding latitudinal, longitudinal, and distance error can be determined as we know the position of
the grid points / pixels of the image, and the resolution of the grid. The distance error is calculated from
how much the center position of the grid must be moved to match the reference image, using a Haversine
/ great circle distance calculation, i.e. the geolocation error is the distance between the two coordinatesϵ

        (��������
����−������

, ���������
����−������

)

and

       (��������
����−������

+ ∆��������· ∆�,  ���������
����−������

+ ∆���������· ∆�),

where and is the derived sub-pixel column and row shift of the data, and and∆� ∆� ∆��������
is the latitudinal and longitudinal grid spacing, respectively. The Haversine calculation∆���������

applied uses the WGS84 radius corresponding to the mean of the two latitudes of concern.

2.3.6 Image contrast
For all targets, except Nares Strait, a brightness temperature (BT) contrast is calculated for each MWI/ICI
image covering the target, in order to allow for a cloud filtering of data. The way the contrast is calculated
is most easily understood by looking at Figure 2.3.4.2, where eight predefined target specific coordinates
(A, B, …, H) are displayed, and the image contrast or is calculated as:∆�
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or as the mean of the difference between four sets of points. For some other targets, like the Titicaca
Lake the contrast is calculated using five predefined coordinates, and the contrast is then calculates as:
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2.3.7 Fuzzy-logic approach to target cloud-masking
A fuzzy-logic check is applied to verify if the derived data of the TCM algorithm is useful. The scene
around the target may be cloud covered, and this can make the result useless, as the cloud coverage may
mask the contrast due to the landmark target.

In the proposed fuzzy-logic approach, the idea is to use the estimated geolocation error and brightness
temperature contrast of a specific target to decide if an overpass can be correctly used. For this purpose
we use the membership functions M1 and M2, shown in Fig. 2.3.7. If the geolocation error is greater than
a predefined maximum shift or the BT contrast is lower than a predefined minimum acceptable contrast,
the membership functions are linearly weighted. Thresholds are, to some extent, arbitrarily or empirically
defined mainly depending on the channel spatial resolution at ground.
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Figure 2.3.7: Proposed function for fuzzy approach

After the definition of the membership functions M1 and M2, the inference function I(x) is constructed by
a multiplicative rule of the 2 membership functions:

(2.3.7.1)�(�
1
, �

2
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1
(�

1
)�

2
(�

2
)

where and are arbitrary variables. Finally, an image can be used to evaluate the geolocation error if it�
1
 �

2
satisfies the following defuzzification step:
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where Ithreshold is typically set to 0.3 for all targets (see Appendix A, B and C in Games Report Task 1).
After a sensitivity analysis using a dataset from SSMIS, the proposed inference function is:
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The membership functions M and their parameters are provided in the Appendix A for high-altitude lake
targets, in Appendix B mountain-chain targets and in Appendix for ice-shelf targets of Games Report
Task 1. Note that for the water way target no BT contrast is calculated, but two different geolocation
errors are derived and the proposed interference function is

                              �ϵ
1
,  ϵ

2( ) = �
1

ε
1( )�

1
ε

2( )                                              (2. 3. 5. 7)

3. RELATIVE GEOLOCATION BASED ON ATMOSPHERIC TARGETS
Higher frequency ICI channels, i.e. from ICI-5 to ICI-11 operating at a frequency close to or greater than
325.15 GHz, will likely not be able to observe any ground reference due to the strong gas absorption at
those frequencies. Consequently, any classical geolocation assessment strategy making use of ground
reference cannot be applied on those channels. To verify the geolocation of channels from ICI-5 to ICI-11
a possible strategy could be to use ICI-1 or ICI-4 as a reference channel, assuming that one of them is
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already geolocated, using some ground reference technique previously applied, as described in Sect. 2.
Thus, the relative geolocation error of the test channels can be estimated comparing each single test
channel with the selected geolocated reference channel. Of course, any geolocation error in the reference
channel will propagate through test channels analysed, quantitatively affecting the final result.

Figure 3 describes the ICI observation geometry (conical scanner), and the figure also shows that at a
given time the position of footprints on ground from the various channels will differ. The integration time
for each individual sample is about 0.661045 ms, and this is shorter than the time period necessary to
sweep out a single projected field of view across the scan. Consequently, we have several footprints
overlapping each other for a given position and for each channel. This allows for a footprint matching
procedure using the Bakus-Gilbert methodology by which we can produce a remapping of the original
data for a given channel as it was observed in the view geometry of another reference channel. This is a
processing step that Eumetsat will perform for ICI and MWI data (a Level2 product). A pointing error in
one of the ICI channels will clearly show up in the Level1B data, and it is assumed that the error will also
show up with a corresponding error in the remapped Level2 data. The remapped Level2 data is therefore
used for the relative geolocation error assessment, as the data from two channels should be more directly
comparable as they should “see” the same scene for a given pixel, although it is noted that the remapping
itself can potentially introduce some errors.

Figure 3: Panel a): Geometry of view for ICI and MWI. Panel b): Instantaneous, relative positions of -3
dB footprints on the geoid for some ICI channels. Panel c): relative positions of -3 dB footprints on geoid
for some ICI channels and for every 5th cross track sample of a complete scan.

3.1 Atmospheric targets definition

3.1.1 Criteria for atmospheric target selection
An obvious requirement is that the atmospheric target must generate a signal in the observation for both
the reference and test channel. It was found (Games Report Task 2) that deep convective cloud (DCC)
systems are a useful type of atmospheric target in this respect, as such systems generate a signal in all ICI
channels, and the occurrence frequency is high enough to be useful for a validation purpose. A drawback
with using the DCC system as an atmospheric target is that ICI is designed to observe clouds, and the
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various channels are sensitive to different features of such systems. Therefore, we can not expect that the
correlation between data from two channels is perfect for observations around the DCC system, that
would have been the ideal situation in terms of a relative geolocation error assessment.

3.2 Relative geolocation block diagram and data flow

3.2.1 Input data

3.2.1.1 Data

Input data to the algorithm is remapped ICI / MWI data (a Level2 product as explained previously)

3.2.1.2 Algorithm parameters

The algorithm takes three input parameters related to how bounding boxes covering DCC systems are
constructed, and these are:

● BBOX_MIN_SIZE: (integer)  # minimum number of pixel in each bounding box
● BBOX_EXPANSION_FACTOR: (float) # expansion factor to be applied to each bounding box
● MERGE_BBOXES: (boolean)  # merges overlapping bounding boxes

The algorithm also uses MWI and ICI instrument parameters:

● Main tilt angle of the antenna
● Channel specific elevation offset angles

in order to  allow for a retrieval of a relative pointing error.

3.2.2 Data flow

Figure 3.3.2: Block diagram of Open Loop Correlation approach to test the relative pointing error of ICI
channel i-th with respect to a ICI reference channel for DCC targets. The contour matching is done using
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subpixel image registration (Guizar-Sicairos et al., 2008) to find the best correlation between reference
and tested TA.

Figure 3.3.2 gives an overview of the dataflow of the relative geolocation error retrieval algorithm.
Remapped MWI or ICI data is the input data to the algorithm. Data from channels around 183 GHz is
used to detect regions, or bounding boxes (min and max scan and sample numbers), covering DCC
systems. Data for the reference and test channels within each derived bounding box is extracted and fed
into a contour matching or subpixel image registration algorithm [17], where row and column (scan and
sample) shifts are detected. The derivation of the relative geolocation error is then a straightforward
geometrical task.

3.2.3 Output data
The main output of the algorithm is the estimated distance shift between data from two channels, and the
corresponding error in terms of the elevation and azimuth view angle of the test channel, and a more
complete description is found below:

● level2_file: the name of the Level2 file used
● sensor: the name of the sensor
● reference_channel: the reference channel ID used
● test_channel: the test channel ID used
● scan_number_min: minimum scan number of the bounding box
● scan_number_max: maximum scan number of the bounding box
● sample_number_min: minimum sample number of the bounding box
● sample_number_max: maximum sample number of the bounding box
● delta_x_est_km: estimated shift in the across-track direction [km]
● delta_y_est_km: estimated shift in the along-track direction [km]
● azm_est_deg: estimated error in azimuth viewing angle [degrees]
● elv_est_deg: estimated error in elevation viewing angle [degrees]
● corrcoef: correlation coefficient between the corrected data from the test channel and data from

the reference channel

3.3 Relative geolocation algorithm details

3.3.1 Automatic detection of Region Of Interests (ROIs)
ROIs need to be defined for the relative geolocation assessment of ICI channels. For a practical
implementation, the ROI definition needs to be automated. The approach followed to define the ROI for
DCC targets is inspired by the method suggested by [25]. Hence, the criteria used to identify a DCC
pattern from ICI, foresees the following check:

(12)∆��
31

> ∆��
32

> ∆��
21

> 0
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where is the difference in (K) between TA at 183±i GHz and TA at 183±j GHz. Figure 3.3.1 (left)∆��
��

shows an example of the implementation of eq. (12) when it is applied on a simulated scenario (see
Further in GAMES report Task2). The processing steps applied to derive ROIs or bounding boxes are the
following:

● Create a DCC mask (i.e. 2-dimensional array (scan and sample number) where values are True if
Eq. 12 is True)

● Apply a contour finding algorithm on the mask and convert obtained contours to bounding boxes,
by taking the min and max scan and sample numbers of each contour

● Filter the bounding boxes, remove small bounding boxes (suggestion is to require at least 20
pixels in both the along and across-track direction)

● Expand the remaining bounding bounding boxes (suggestion expansion is 20 %)
● Merge overlapping bounding boxes

The process described above is visualized by Figure 3.3.1. The bounding boxes are enlarged by 20% with
respect to their natural minimum size in order to have the chance to include the same DCC feature in each
tested ICI channel that in principle can be affected by some geolocation error with respect to the reference
channel (e.g. ICI-1). In the last step (right panel), the overlapping bounding boxes are merged together in
an attempt to include those DCCs belonging to the same convective system. That is, if two bounding
boxes overlap, a new larger bounding box that completely covers the two smaller bounding boxes is
created and this one replaces the two smaller bounding boxes.

The derivation of bounding boxes is in principle a non-complex algorithm except for the contour finding
part. For this purpose the contour finding algorithm from openCV (Open Computer Vision Library) is
used, that is based on the algorithm presented in [25].

Figure 3.3.1: Deep convective clouds (DCCs) detection are highlighted by black contours (left) of TA at 183±7 GHz (ICI-1).
Some preliminarily regions of interest (ROIs) are defined as enlarged bounding boxes (magenta) around each DCC (middle).
The overlapping bounding boxes are merged together thus defining the final ROIs (magenta lines on the right panel) used in
input to CLC and OLC methods.

3.3.2 Extraction of data within bounding box covering a DCC system
Bounding boxes covering DCC systems are derived following the description in the preceding section,
and a bounding box is defined in terms of minimum and maximum scan and sample numbers.
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Consequently, the extraction of data from the reference and test channel within a given bounding box is a
trivial task.

3.3.3 Contour matching / Image registration and displacement retrieval
The registration of images, covering a DCC bounding box, from two ICI channels is done using an
efficient subpixel image registration algorithm [17], that also is deployed for the landmark targets. But
here no preprocessing image filter is applied, except from that the Fourier transform of the two images
holding TB data are calculated prior to the actual image registration.

The algorithm provides image sub-pixel shifts (rows and columns or scan and sample number shifts) or
of data from the test channel compared to the reference channel. That is, the estimated shift is∆� ��� ∆�

the shift that results in the greatest correlation between the test and reference data. It is noted that for a
given case, the estimated shift is not necessarily due to a pointing error of the test channel as it could also
be related to the actual scene and difference in sensitivity of the two channels. However, biases that
remain after averaging obtained results from many scenes are very likely to be due to pointing errors,
since it is difficult to imagine that the mean shift is not close to zero if there is no relative pointing error
between the channels.

3.3.3.1 Quality control

The image registration algorithm applied provides a corrected/shifted version of the test image. The
correlation coefficient of the corrected and the reference image is calculated and this measure is
considered to give the opportunity to be used to discard situations with very low unphysical correlation
coefficients.

3.3.3.2 Displacement retrieval

The displacement of data from the test channel as compared to the reference channel is estimated as

[km]                   ∆ ����� ������ =  ∆�· ∆������

[km]                 ∆ ����� ����� =  ∆�· ∆�����

where and is the sub-pixel sample and scan number shifts, respectively, as obtained from the∆� ∆�
contour matching algorithm, and and is the distance between samples in the across and∆������∆�����
along-track direction, respectively, of the bounding box center position and its neighbors, and this data is
available from the input data as geodetic latitudes and longitudes are available in the Level2 data. The
distance is estimated using the Haversine / great circle calculation using the WGS84 radius corresponding
to the mean of the two latitudes of concern.
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3.3.4 Displacement to pointing error conversion
An estimate of the pointing error, in terms of an azimuth and elevation offset angle, is given by the
algorithm, and calculated as:

∆�� = ∆ ����� ������ · ���(θ) / �

and

∆�� = ∆ ����� ����� / (� / ���2(θ))

where is the altitude and is  the test channel view angle.� θ

4. CONCLUSION

Details of algorithms developed to allow for a geolocation error assessment of MWI and ICI data are
presented in this document. Four similar algorithms using data for landmark targets as a reference that can
be applied for data from channels where water vapor absorption does not mask out the sensitivity to the
surface, and one algorithm for a relative geolocation error estimation method, primarily developed for the
higher frequency channels of ICI, are described.

The algorithms developed for the landmark targets were previously tested on data from SSMIS, primarily
for the channel operating around 183±6.6 GHz, and found to provide error estimates fitting with earlier
independent studies. Hence, it is therefore likely that the algorithms will be useful for geolocation
assessments of ICI/MWI data.

The algorithm developed for the relative geolocation error assessment has only been tested on a limited
simulated dataset, giving that it can not be guaranteed that the method will provide useful error estimates
for actual data.
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Appendix A. Preprocessing of SAR data

Sentinel-1 level-1 GRD products consist of focused SAR data that have been detected, multi-looked and

projected to ground range using an Earth ellipsoid model. The Sentinel-1 GRD scene is composed of

square pixels. To preprocess the data we use SNAP toolbox (https://step.esa.int/main/toolboxes/snap/) and

this appendix describes a standard generic workflow to preprocess Sentinel-1 GRD data. In particular the

necessary steps are listed in the following:

A.1 Apply Orbit File

The orbit state vectors provided in the metadata of a SAR product are generally not accurate and can be

refined with the precise orbit files which are available days-to-weeks after the generation of the product.

The orbit file provides accurate satellite position and velocity information. The operation of applying a

precise orbit available in SNAP allows the automatic download and update of the orbit state vectors for

each SAR scene in its product metadata, providing an accurate satellite position and velocity information.

A.2 Thermal Noise Removal

Sentinel-1 image intensity is disturbed by additive thermal noise and thermal noise removal reduces noise

effects in the inter-sub-swath texture. In particular, normalizing the backscatter signal within the entire

Sentinel-1 scene and resulting in reduced discontinuities between sub-swaths for scenes in multi-swath

acquisition modes. The thermal noise removal operator available in SNAP for Sentinel-1 data can also

re-introduce the noise signal that could have been removed during level-1 product generation, and update

product annotations to allow for re-application of the correction [26]. Sentinel-1 level-1 products provide

a noise look-up table (LUT), provided in linear power, for each measurement data set and used to derive

calibrated noise profiles matching the calibrated GRD data.

A.3 Border Noise Removal

While generating level-1 products, it is necessary to correct the sampling start time in order to

compensate for the change of the Earth’s curvature. At the same time, azimuth and range compression
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leads to radiometric artefacts at the image borders. The border noise removal algorithm [27], available as

an operator in SNAP, was designed in order to remove low intensity noise and invalid data on scene

edges.

A.4 Calibration

Calibration is the procedure that converts digital pixel values to radiometrically calibrated SAR

backscatter. The information required to apply the calibration equation is included within the Sentinel-1

GRD product; specifically, a calibration vector included as an annotation in the product allows simple

conversion of image intensity values into sigma nought values. The calibration reverses the scaling factor

applied during level-1 product generation, and applies a constant offset and a range-dependent gain,

including the absolute calibration constant. Sigma nought specifies the strength of reflection in terms of

the geometric cross section of a conducting sphere, and represents the radar cross section of a distributed

target over that expected from an area of one square meter.

A.5        Multilook Operator

Generally, a SAR original image appears speckled with inherent speckle noise. To reduce this inherent

speckled appearance, several images are incoherently combined as if they corresponded to different looks

of the same scene. This processing is generally known as multilook processing and we adopted 10 x 10

number of looks as processing parameters, obtaining a final spatial resolution of about 400 m x 400 m.
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CHAPTER

ONE

GAMES

1.1 Overview

This is GAMES Python package toolbox. GAMES is an acronym for Geolocation Assessment/validation Methods
for EPS-SG ICI and MWI. The Ice Cloud Imager (ICI) and Microwave Imager (MWI) are two instruments that will
perform meteorological observations from the polar orbit, within the EUMETSAT Polar System - Second Generation
(EPS-SG), that will be in operation in the 2022-2043 timeframe. The GAMES Python package contains tools that
will allow for making a geolocation assessment/validation of data from such instruments, and the toolbox has been
developed inside an EUMETSAT funded activity. The GAMES toolbox has been developed using data from the
Special Sensor Microwave Imager/Sounder (SSMIS) to test various algorithms, and the toolbox therefore also handles
SSMIS data.

Geolocation validation methods using both various types of landmark targets as a reference source and correlative
measurements of atmopsheric targets are covered by GAMES. The input data and algorithms applied to derive ge-
olocation error in ICI and MWI data varies with the type of target used. A geolocation validation method using a
specific type of target is denoted as a pipeline in this document. The GAMES package can be built in such a way that
you can run these pipelines from a command line interface, given that required input data is provided, so even a non
experienced Python user should be able to use GAMES.

1.1.1 Purpose of this document

The purpose of this doucment is to describe how to install and run the pipelines of GAMES and how to use the GAMES
toolbox. A description of the basis of the algorithms used for the geolocation validation is found in a GAMES-ATBD,
and is not covered in this document.

1
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CHAPTER

TWO

INSTALLATION

2.1 Building a GAMES Docker image

The GAMES package contains a build script that can be invoked in order to build a GAMES Docker image. This
GAMES Docker image is portable, and GAMES pipelines (see Chapter 3) can be executed inside a Docker container
through a command line interface (CLI) on a host machine that has the Docker Engine installed:

• a docker image is a non-changeable file containing libraries, source code, tools and other files needed to run
applications.

• a docker Container is the run time instance of the image, and data files can be mounted into this container

Docker Engine is available for a variety of platforms and instructions how to install it is available here . The GAMES
docker image can simply be built by:

$ ./build.sh

2.2 Installing requirements in a virtualenv

It is also possible to use the GAMES package outside the GAMES Docker image, but then you have to follow the
installation guide below. Python packages should almost never be installed on the host Python environment, in order to
avoid problems that can arise due to dependencies on different versions of packages. The requirements of the GAMES
package are preferably installed in a virtualenv. A suitable virtualenv for the GAMES package can be created by first
installing the package virtualenvwrapper on the host (so check that you are not in a virutalenv before installing):

$ sudo pip install virtualenvwrapper

Also add this to your shell startup file:

export WORKON_HOME=$HOME/.virtualenvs # The virtualenvs are stored here.
export PROJECT_HOME=$HOME/Devel # Location of your development project directories
source /usr/local/bin/virtualenvwrapper.sh

Then you can create a virtualenv named games by:

$ mkvirtualenv --python=/usr/bin/python3.8 games

and you can change to this envorinment by:

$ workon games

and if yoy want to change back:

3
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$ deactivate

The dependecies of GAMES can then be collected from PyPI and installed by:

$ workon games
$ pip install -r requirements.txt

2.2.1 Running tests

The GAMES package contains tests for each of its modules, in order to facilitate further development. These tests can
be executed using tox, which can be installed by:

$ pip install tox

and the tests can then be runned by:

$ tox

4 Chapter 2. Installation
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CHAPTER

THREE

QUICKSTART

3.1 Running a pipeline using the GAMES Docker image

You can query the GAMES Docker image, in order to find out what pipelines that are available, by:

$ docker run --rm molflow/games --help

usage: games.sh [-h] {gshhg,gtopo30,sar,rpe}

Games Admin

positional arguments:
{gshhg,gtopo30,sar,rpe,rpe}

The service to run. For more help on a particular
service do `SERVICE --help`

optional arguments:
-h, --help show this help message and exit

The help message above basically tells you that four different pipelines are available, and how you can proceed if you
want to run one of those. For instance, if you now want to run the gshhg pipeline, you can ask for more help by:

$ docker run --rm molflow/games gshhg --help

usage: games.sh gshhg [-h] [-g GSHHG_DIR] [-l LEVEL1B_DIR] [-t GTOPO_DIR]
[-o OUT_DIR] [-d] [-r] [-w] [-f UPSAMPLING_FACTOR]
[-a HIGH_THRESHOLD] [-b LOW_THRESHOLD] [-c SIGMA] [-v]
{ici,mwi,ssmis} channel level1b_files [level1b_files ...]
{qinghai,hudson,titicaca}

Gelocation validation of microwave imager data using
boundary between land and lake or ocean from the GSHHG
database as reference data

positional arguments:
{ici,mwi,ssmis} Name of the sensor
channel ChannelID to be used for validation
level1b_files Level1B file(s)
{qinghai,hudson,titicaca}

Target to be used for validation

optional arguments:
-h, --help show this help message and exit
-g GSHHG_DIR, --gshhg-dir GSHHG_DIR

(continues on next page)
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(continued from previous page)

Datadir where the GSHHG dataset is found, i.e. the
gshhg-shp-2.3.6/GSHHS_shp/ directory,
default value is /gshhg

-l LEVEL1B_DIR, --level1b-dir LEVEL1B_DIR
Datadir where Level1B files for the sensor are found,
default value is /level1b

-t GTOPO_DIR, --gtopo-dir GTOPO_DIR
Datadir where GTOPO30 dataset is found,
default value is /gtopo

-o OUT_DIR, --out-dir OUT_DIR
Datadir for saving output, default value is /outdir

-d, --demcorrection Flag used to deterimine if a DEM correction, using the GTOPO30
data, shall be applied on imager data

-r, --orthorectified Flag used to determine if a reconstruction of the
orthorectified latitudes and longitudes shall be applied based
on correction data from the Level1B file. This option can only
be used for ICI and MWI data and not together with the
demcorrection flag

-w, --storeresult Flag for writing output to file
-f UPSAMPLING_FACTOR, --upsampling-factor UPSAMPLING_FACTOR

Upsampling factor for image registration, default value is 10
-a HIGH_THRESHOLD, --high-threshold HIGH_THRESHOLD

Upper bound for hysteresis thresholding in Canny edge filter,
default value is 0.5

-b LOW_THRESHOLD, --low-threshold LOW_THRESHOLD
Lower bound for hysteresis thresholding in Canny edge filter,
default value is 0.2

-c SIGMA, --sigma SIGMA
Standard deviation of the Gaussian filter applied in Canny
edge filter, default value is 1.4142135623730951

-v, --verbose Be verbose

From the description above you can see that this pipeline can run for three different sensors and three different targets.
As an example, the pipeline can be run for SSMIS channel 9 data of a given Level1B file and using the Qinghai Lake
(qinghai) as target reference by:

$ gshhg="/your/local/path/to/gshhg-shp-2.3.6/GSHHS_shp/"
$ gtopo30="/your/local/path/to/gtopodata/"
$ level1b="/your/local/path/to/smissdata/"
$ outdir="/your/local/path/to/where/you/want/results/"
$ level1bfile="CSU_SSMIS_FCDR_V01R01_F17_D20161221_S2348_E0130_R52279.nc"
$
$ docker run --rm \

-v $gshhg:/gshhg -v $gtopp:/gtopo -v $level1b:/level1b -v $outdir:/outdir \
molflow/games gshhg ssmis 9 qinghai $level1bfile \
-g /gshhg -t /gtopo -l /level1b -r /outdir \
--demcorrection --storeresult --verbose

Note that a number of data sources are needed as input for the pipeline, and you need to mount data directo-
ries into the GAMES Docker container. This is what happens with the -v flag above. For example, the directory
“/your/local/path/to/gshhg-shp-2.3.6/GSHHS_shp/” is mapped to a /gshhg directory of the Docker container, and you
then use “-g /gshhg” to give this information to the gshhg pipeline. In practise, giving this information to the gshhg
pipeline is not needed as the /gshhg is the default location.

The output of the pipeline is written to a file that can be found in the directory
“/your/local/path/to/where/you/want/results/”.

6 Chapter 3. Quickstart
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Note also that you can process many level1b files in single run, and this is recommended to do in order to save
computation time, as this will avoid loading of DEM data (if you use the demcorrection flag) over and over again.

3.2 Running a pipeline in a virtualenv

The GAMES pipelines can also be runned in a virtualenv, but you need to run it from the src directory. The description
of available pipelines can be obtained from:

games/src$ python3 -mgames --help

This will give you the same help as described in the preceeding section. You can then proceed and run the pipeline in
a similar manner as described in the previous section, but there is no need to mount any directories.

3.3 Import modules from GAMES

You need to add the the path to the GAMES package to your PYTHONPATH by:

$ export PYTHONPATH=$PYTHONPATH:/your/local/path/to/games/src

in order to be able to import GAMES modules in the Python interpreter. Then you can import the qinghai module
(main module for the “gshhg” pipeline) as:

>>> from games.utils import qinghai

More examples are given in the following chapters, including an API description (Chapter GAMES API) of available
GAMES functions and methods.

3.3.1 Source code modification

If the GAMES package source code is modified:

• the modification will be applied directly if you run a pipeline in a virtualenv

• you should restart your Python interpreter, if you prior to the change have started a Python interpreter, in order
to apply the modification

• you must rebuild the GAMES Docker image in order to apply the modification within the Docker image

3.2. Running a pipeline in a virtualenv 7
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CHAPTER

FOUR

TUTORIALS

4.1 Available validation methods and targets

The GAMES toolbox contains geolocation validation methods using both landmark and atmospheric targets. These
targets are:

• lake at high altitude or high latitude

• ice shelf, i.e. a large floating platform of ice that forms where a glacier or ice sheet flows down to a coastline
and onto the ocean surface

• mountain area target

• deep convective clouds (DCC), a DCC system is composed of cumulonimbus type of clouds that can be many
kilometers thick and with cloud tops in the upper part of the troposphere.

• waterway (i.e. Nares Strait, a waterway between Ellesmere Island and Greenland)

Three different type of methods, denoted as pipelines, are using landmark targets as a reference source, and one
pipeline is using an atmospheric type of target. These pipelines, targets, and prefedined members, are listed below:

Table 1. GAMES pipelines/validations methods, type of target, and target members.

Name of
pipeline

Type of target Target members

gshhg lake at high altitude or coast-
line at high latitude

Qinghai Lake, Titicaca Lake, and Hudson Bay

gtopo30 mountains area Andean Mountains and Karakorum mountains
sar ice shelf and waterway Ross Antarctic ice shelf, Filchner-Ronne Antarctic ice shelf,

Amery Antarctic ice shelf, and Nares Strait
rpe deep convective clouds N/A

The name of each pipeline for landmark targets is based on the main data source used for validating the imager data
and input data is described in more details in a later section.

The GAMES landmark targets are prefedined inside a GAMES module called targets (see Section targets). The
definition of a target, in GAMES, depends on which pipeline it belongs to. All targets are defined by a bounding box
(min and max latitude and longitude) covering the target (see Section utils for details about bounding box objects), and
a grid spacing parameter that can be used to create a regular 2-dimensional grid covering the bounding box. This grid
will be used by the calculation within the pipeline. Furthermore, all targets, except “Nares Strait”, are also defined
by a number of coordinates (five or eight) located within the bounding box. These five or eight coordinates are used
for a cloud screening purpose, or more specifically to calculate the contrast of the imager data across the target, and
the obtained result from running the pipeline can be considered invalid if the contrast is not high enough. The target
of Nares Strait is defined by a second grid spacing parameter. That is, the sar pipeline will do all its calculations

9
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for two different grids for Nares Strait, and two different results are consequently obtained. The obtained results
are only considered valid if both results are reasonable determined by fuzzy logic. An additional difference between
the pipelines/targets is the coordinates system used. The gshhg and gtop30 piplines are using geodetic latitude and
longitude coordinates. The sar pipeline, with associated targets located at high latitudes, are using polar stereographic
coordinates. In GAMES, a target object has an attribute named grid that is a Grid object, and this Grid object “knows”
useful things about the grid (see Section grid for a full reference).

An example of how to load a target using the Python interpreter is given below:

>>> from games.utils import targets
>>> qinghai = targets.get_lake_target(targets.Lake.QINGHAI_LAKE)
>>> qinghai.bbox
BoundingBox(lat_min=36.2, lat_max=37.7, lon_min=99.3, lon_max=101)
>>> qinghai.grid
Grid(bbox=BoundingBox(lat_min=36.2, lat_max=37.7, ...), spacing=5.0)

The pipeline named rpe (relative pointing error) is using data influenced by deep convective clouds (DCC) for a
validation purpose. The occurence of DCC is not stationary in space, and hence, there is no predefined region of
interest or bounding box related to this type of target. Instead data that is to be validated, either from ICI or MWI, is
used to identify bounding boxes covering DCC (more specifically data from three channels around 183 GHz are used
for this purpose). This means that it is a bit more complicated to obtain these bounding boxes, as you need to load
some data, but this can be done as described below:

>>> from games.utils.dcc_mask import get_dcc_bboxes
>>> from games.utils.sensor import Sensor, SensorType, ChannelICI
>>> from games.utils.ici_and_mwi_reader import load_channel_set
>>> # example showing how to get bounding boxes covering DCC systems
>>> BBOX_MIN_SIZE = 20 # minimum number of pixel in each bbox
>>> BBOX_EXPANSION_FACTOR = 1.2 # expansion factor to be applied to each bbox
>>> MERGE_BBOXES = True # merges the overlapping boxes
>>> level1_file = "/full/path/to/the/file"
>>> sensor = Sensor.from_type(SensorType.ICI)
>>> ref_channel = sensor.get_channel(ChannelICI.ICI1)
>>> test_channel = sensor.get_channel(ChannelICI.ICI11V)
>>> # load data from a set of channels including the ones around 183 GHz
>>> channel_set = load_channel_set(

level1_file, sensor, ref_channel, test_channel)
>>> # channel_set.dcc_channel_set contains data from the three 183 GHz channels
>>> bounding_boxes = get_dcc_bboxes(

channel_set.dcc_channel_set,
BBOX_MIN_SIZE,
BBOX_EXPANSION_FACTOR,
MERGE_BBOXES

>>> )

The return type of get_dcc_bboxes, in the example above, is a list containing BoundingBoxDCC objects, as it is
possible that several DCC systems are detected. Note that a BoundingBoxDCC is a different type of bounding box
object than used for the landmark targets. The BoundingBoxDCC object is using scan and sample number coordinates
(see details in Section dcc mask).

10 Chapter 4. Tutorials
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4.2 Sensors and channels

The GAMES pipelines have been developed to handle data from the three sensors ICI, MWI, and SSMIS (the rpe
pipeline only handles data from ICI and MWI), and this section gives an overview how these sensors and their associ-
ated channels are defined inside the GAMES package.

A sensor and channel is implemented as a Sensor and Channel object, respectively, in the GAMES toolbox (see
Section sensor for a more detailed description). An attribute of a Sensor object is channels, that is a list of Channel
objects. Both Sensor objects, representing ICI, MWI, and SSMIS, and associated Channel objects are predefined in
the sensor module of GAMES. An example of how to load instances of the ICI Sensor and the ICI-1 Channel object
in the Python interpreter is given below:

>>> from games.utils.sensor import Sensor, SensorType, ChannelICI
>>> sensor_ici = Sensor.from_type(SensorType.ICI)
>>> channel = sensor_ici.get_channel(ChannelICI.ICI1)

The attributes of a Channel object can be used to identify where associated data is located in a Level1B file, and
example how to load data using the Python interpreter is given in the following section. The Sensor object has an
attribute channels_for_dcc_boxes,

>>> sensor_ici.channels_for_dcc_boxes
(<ChannelICI.ICI1: 1>, <ChannelICI.ICI2: 2>, <ChannelICI.ICI3: 3>)

and these channels will be used by the rpe pipeline to detect DCC, as described in the previous section. The channel
viewing angle is also described by the Sensor and Channel objects, and can be obtained as:

>>> sensor_ici.get_theta_deg(ChannelICI.ICI1)
43.9868718

A relevant usecase for the viewing angle is that it can be used for mapping a horizontal displacement of a point on
ground, as seen by a sensor at a given altitude, into azimuth and elevation offset angles, e.g:

>>> from games.utils.validation import displacement_to_pointing_error
>>> sensor_altitude = 825.0 # km
>>> displacement_across = 1.0 # km
>>> displacement_along = 1.0 # km
>>> view_angle = sensor_ici.get_theta_deg(ChannelICI.ICI1)
>>> azimuth_offset, elevation_offset = displacement_to_pointing_error(

displacement_across, displacement_along, view_angle, sensor_altitude)
>>> azimuth_offset, elevation_offset
(0.04996879166935218, 0.0359524930761808)

In the example above a function was imported from the GAMES validation module, and this module contains methods
/ functions that are responsible for the core calculation of the GAMES pipelines (see Section validation for interfaces),

4.3 Input data

Common input data to all of the pipelines is imager data, i.e. data from one of the three sensors ICI, MWI, and SMMIS
(except for the rpe pipeline that only handles ICI and MWI data). It should be noted that the pipelines that are using
landmark targets operate on Level1B data, whereas the rpe pipeline is using Level1C data. The meaning of Level1C
data here is that data from the various channels of ICI or MWI have been remapped onto the “footprints” from one
reference channel. This is a Level1C product that EUMETSAT intends to produce.

Other input data types varies between pipelines (see Table 2) and data sources handled by GAMES are:

4.2. Sensors and channels 11
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• DEM (digital elevation model) data: GAMES only supports the use of GTOPO30 data, having a horizontal grid
spacing of 30 arc seconds (approximately 1 kilometer)

• boundary between lake and land data: GAMES only supports the use of GSHHG data (Global Self-consistent,
Hierarchical, High-resolution Geography Database), that is high-resolution (40 m) geography data set

• Level-1 Ground Range Detected (GRD) products consist of focused SAR data that has been detected, multi-
looked and projected to ground range using an Earth ellipsoid model.

DEM data is used for two purposes, both for correcting the center position of samples (Level1B data) that originally
was estimated neglecting the topography of Earth and for creating a reference image for mountain chain area targets.

SAR data, for monitoring of ice shelf targets, is used by the sar pipeline and it should be noted that the usage of the
sar pipeline and SAR data is a bit demanding for the user:

• ice shelf edges are not stationary in time, and consequently the sar pipeline is using time varying reference SAR
data, while the other pipelines are using static reference datasets.

• sar pipeline is using data based on Level-1 GRD SAR data as reference data, the SAR data must be preprocessed,
outside the GAMES toolbox, prior to be used by the sar pipeline. The required preprocessing procedure is
described in GAMES-ATBD.

This means that it is more demanding for the user to use the “sar” pipeline compared to the other pipelines. The user
must provide the sar pipeline a preprocessed SAR file that covers the target of interest. A preprocessed SAR file can
potentially be used for a validation purpose for a long time period (e.g a year or so), as the edges of the predefined
ice shelf targets normally only vary slowly with time. However, iceberg calving can occur, and it is up to the user to
keep track of ice shelf changes, and updating of the reference SAR file to use, accordingly. Additionally, the setting
of Canny edge detection parameters, used by the sar pipeline is of particular importance for SAR data, as an optimal
setting is image specific and is difficult to derive without actually inspecting obtained contours. This means that if the
reference SAR file is updated for a target, you might need to tune the Canny edge detection parameters in order to
obtain adequate edges.

Table 2. Input data to GAMES pipelines/validations methods.

Name of pipeline Input data
gshhg ICI, MWI, or SSMIS Level1B data, DEM data, boundary between lake and land data
gtopo30 ICI, MWI, or SSMIS Level1B data and DEM data
sar ICI, MWI, or SSMIS Level1B data, and SAR data
rpe ICI or MWI Level1C data

Example of how to load input data relevant for running the gshhg pipeline for SSMIS channel 9 data is given below:

>>> from games.utils import targets
>>> from games.utils.sensor import Sensor, SensorType, ChannelSSMIS
>>> from games.utils import gshhs_reader
>>> from games.utils import gtopo30_reader
>>> from games.utils import ssmis_reader
>>> # example showing how to load some data
>>> gtopo_dir = "/path/to/gtopo30/data"
>>> gshhg_dir = "/path/to/gshhg/data"
>>> level1b_file = "/path/to/ssmis/level1b/file"
>>> target = targets.get_lake_target(targets.Lake.QINGHAI_LAKE)
>>> sensor = Sensor.from_type(SensorType.SSMIS)
>>> channel = sensor.get_channel(ChannelSSMIS.SSMIS9)
>>> dem = gtopo30_reader.get_dem(target.bbox, gtopo_dir)
>>> lakes_data = gshhs_reader.get_features(

target.bbox,
gshhs_reader.GshhsResolution.Full,

(continues on next page)
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(continued from previous page)

gshhs_reader.GshhsLayer.Lake,
gshhg_dir

>>> )
>>> ssmis_data = ssmis_reader.get_data(level1b_file, channel, target.bbox)

Example of how to load SAR data relevant for running the sar pipeline and to qualitatively check your Canny edge
detection setting is given bellow:

>>> import os
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from games.utils import targets
>>> from games.utils import sar_reader
>>> from games.utils.polar_stereo import polar_lonlat_to_xy
>>> from games.utils.validation import GeolocationValidator
>>> HIGH_THRESHOLD = 0.1
>>> LOW_THRESHOLD = HIGH_THRESHOLD * 0.4
>>> SIGMA = np.sqrt(2)
>>> sarfile = os.path.join(
>>> "your/local/path/to",
>>> "S1A_EW_GRDM_1SSH_20160724T111725_20160724T111829_012289_0131CA_1241_Orb_
→˓Noise-Cor_Cal_ML.nc"
>>> )
>>> target = targets.get_ice_shelf_target(targets.IceShelf.ROSS_ANTARCTIC_ICE_SHELF)
>>> sar = sar_reader.get_data(sarfile, target.bbox)
>>> # project sar data on polar stereographic map
>>> bbox_xy = target.bbox.to_xy()
>>> x, y = polar_lonlat_to_xy(
>>> sar.lon.flatten(), sar.lat.flatten(), lat_ts=bbox_xy.lat_ts
>>> )
>>> # extract sar contour
>>> geo = GeolocationValidator(target.grid)
>>> edges = geo.get_edges(
>>> sar.sigma0_hh_filled,
>>> LOW_THRESHOLD,
>>> HIGH_THRESHOLD,
>>> SIGMA,
>>> True,
>>> validate=False
>>> )
>>> # plot the data and check that the edges appear where you expect
>>> edge_filter = edges.flatten() == 1
>>> plt.scatter(x, y, s=5, c=np.log10(sar.sigma0_hh_filled))
>>> plt.plot(x.flatten()[edge_filter], y.flatten()[edge_filter], 'r.')
>>> plt.xlim([bbox_xy.lower_left.x, bbox_xy.lower_right.x])
>>> plt.ylim([bbox_xy.lower_left.y, bbox_xy.upper_left.y])
>>> plt.show()

The interfaces of available data import functions are further described in Sect. Data import functions and objects.

4.3. Input data 13
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4.4 Pipelines

The four available pipelines of GAMES are defined in four different modules/scripts (each of them contains a CLI as
described in the previous chapter):

• gtopo30: andean.py

• gshhg: qinghai.py

• rpe: relative_pointing_error.py

• sar: ross.py

Input data to the pipelines varies as described in the previous section, but the main task of each pipeline is to apply
image processing filters on the imager data to be validated and on the pipeline specific reference data, in order to
extract features from the data (such as a contour representing the boundary between land and lake). The extracted
features from the imager and reference data are then cross-correlated in order to detect and estimate possible shifts in
the imager data.

Even though the actual calculation performed for a given pipeline is rather complex, the pipeline scripts have been
written to be readable (relatively easy to understand). Methods / functions that are responsible for the actual calculation
are imported from a validation module of GAMES (see Section validation for interfaces).

How to import requried input for the gshhg pipeline was described in the preceeding section, and an example of how
to run the last steps of the pipeline in the Python interpreter using this data is given below:

>>> from games.utils import qinghai
>>> from games.utils import dem_correction
>>> # preceeding section describes how to load data!
>>> DEM_REDUCTION_FACTOR = 11 # factor for downsampling DEM data
>>> out_dir = "/path/to/where/you/want/to/store/data"
>>> dem.reduce_dem(DEM_REDUCTION_FACTOR)
>>> corrected_pos = dem_correction.dem_correction(

ssmis_data.samples_to_latlon(),
ssmis_data.sat_to_latlonalt(),
dem

>>> )
>>> ssmis_data.update_positions(corrected_pos)
>>> result = qinghai.validate(ssmis_data, lakes_data, target)

The validate function of the qinghai module is the core function of the pipeline, and the function returns an instance
of a ValidationResult object described in the next section. Above, it can also be seen that a DEM correction of SSMIS
data is performed prior to the validation. The code example below shows basically what happens inside the function
validate:

>>> from games.utils.validation import GeolocationValidator, isvalid
>>> # preceeding section describes how to load data used below!
>>> # Uppsampling factor for image registration
>>> UPSAMPLING_FACTOR = 10
>>> # Canny edge detection parameters
>>> HIGH_THRESHOLD = 0.5
>>> LOW_THRESHOLD = HIGH_THRESHOLD * 0.4
>>> SIGMA = np.sqrt(2)
>>> # Fuzzy logic parameters for function isvalid
>>> CONTRAST0 = 8. # [K]
>>> SHIFT0 = 15. # [km]
>>> THRESHOLD = 0.3
>>> geo = GeolocationValidator(target.grid)
>>> # up-sample radiometric data

(continues on next page)
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(continued from previous page)

>>> highres_tb = geo.griddata(
ssmis.lon.flatten(), ssmis.lat.flatten(), ssmis.tb.flatten()

>>> )
>>> # Edge filter the data using a Canny algorithm
>>> edges = geo.get_edges(

highres_tb, LOW_THRESHOLD, HIGH_THRESHOLD, SIGMA, True
>>> )
>>> # get lake contours on the high resolution grid
>>> lakes_highres = geo.features_to_meshgrid(lakes_data)
>>> # cross correlate and get shifts
>>> shift_idx, shift_idy, _ = geo.register_images(

lakes_highres, edges, UPSAMPLING_FACTOR
>>> )
>>> # transform these shifts to distance errors
>>> shift_x, shift_y, shift = geo.grid.index_shift_to_distance(shift_idx, shift_idy)
>>> # get contrast
>>> contrast = geo.get_contrast(

highres_tb, target.points, target.first_point_reference
>>> )
>>> # fuzzy logic check
>>> valid = isvalid(contrast, shift, CONTRAST0, SHIFT0, THRESHOLD)

The other GAMES pipelines in the list above can be run in a similar manner (see Section Pipeline core functions for an
interface description), but examples are not included here. The reader is recommended to have a look in the pipeline
scripts, if this is of interest.

4.5 Output data

The obtained result from running a pipeline is a ValidationResult object, that is written to a netcdf formatted file, if the
pipeline is run through the CLI.

The content of this file, for the landmark target pipelines, is:

Output file format for landmark target pipelines

netcdf CSU_SSMIS_FCDR_V01R01_F17_D20160114_S1006_E1148_R47438_qinghai_ssmis_9 {

dimensions:

date = 1 ;

variables:

string filename(date) ;

description = the name of the Level1B file ;

string sensor(date) ;

description = the name of the sensor ;

int channel(date) ;

description = “the channel ID used” ;

double date(date) ;
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description = a representative datetime of the measurement ;

units = seconds since 2020-01-01 00:00:00.000 ;

string target(date) ;

description = target ID ;

float lat_center(date) ;

description = latitude center of the bounding box used ;

units = degrees ;

float lon_center(date) ;

description = longitude center of the bounding box used ;

units = degrees ;

float shift_x(date) ;

description = the derived shift in validated data along longitude direction ;

units = km ;

float shift_y(date) ;

description = the derived shift in validated data along latitude direction ;

units = km ;

float shift(date) ;

description = the derived shift in validated data ;

units = km ;

float second_shift(date) ;

description = the second derived shift in validated data ;

units = km ;

float contrast(date) ;

description = contrast in image ;

units = K ;

int valid(date) ;

description = a validity flag of derived shift based on a fuzzy logic check: 0 =
unvalid, 1 = valid ;

int coverage_problem(date) ;

description = data coverage problem: 0 = no problem, 1 = no imager data found
within the target bounding box, 2 = no target data found within the target bounding
box ;

string sarfile(date) ;

description = the name of the SAR file used ;

int dem_correction(date) ;

description = dem correction using GTOPO30 data flag: 0 = not applied, 1 =
applied ;
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int dem_reduction_factor(date) ;

description = factor for downsampling DEM data ;

float dem_spacing(date) ;

description = spacing of DEM data for triangulation ;

units = m ;

int orthorectified(date) ;

description = orthorectified flag: 0 = not applied, 1 = applied ;

int upsampling_factor(date) ;

description = upsampling factor for image registration ;

float high_threshold_tb(date) ;

description = upper bound for hysteresis thresholding in Canny edge filter used for
imager data ;

float low_threshold_tb(date) ;

description = lower bound for hysteresis thresholding in Canny edge filter applied
on imager data ;

float sigma_tb(date) ;

description = Standard deviation of the Gaussian filter inside the Canny edge filter
applied on imager data ;

float high_threshold_sar(date) ;

description = upper bound for hysteresis thresholding in Canny edge filter applied
on SAR data ;

float low_threshold_sar(date) ;

description = lower bound for hysteresis thresholding in Canny edge filter applied
on SAR data ;

float sigma_sar(date) ;

description = Standard deviation of the Gaussian filter inside the Canny edge filter
applied on SAR data ;

}

The name of the output file has the format:

• {filename_no_extension}_{target}_{instrument}_{channel}.nc

In the Python interpreter, you can load the content of the file into a ValidationResult instance as:

>>> from games.utils.validation import ValidationResult
>>> outputfile = "/full/path/to/the/file.nc"
>>> data = ValidationResult.from_file(outputfile)

The content of the the output file for the rpe pipeline is:

Output file format for rpe pipeline
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netcdf test_orbit4655_scene1_ICI_relative_error_sensor_ici_channel12 {

dimensions:

bbox = unlimited ;

setting = 1 ;

variables:

string level1_file(bbox) ;

description = the name of the Level1 file used ;

string sensor(bbox) ;

description = the name of the sensor ;

int reference_channel(bbox) ;

description = the reference channel ID used ;

int test_channel(bbox) ;

description = the test channel ID used ;

int scan_number_min(bbox) ;

description = minimum scan number of the bounding box ;

int scan_number_max(bbox) ;

description = maximum scan number of the bounding box ;

int sample_number_min(bbox) ;

description = minimum sample number of the bounding box ;

int sample_number_max(bbox) ;

description = maximum sample number of the bounding box ;

float delta_x_est_km(bbox) ;

description = estimated shift in the across-track direction ;

units = km ;

float delta_y_est_km(bbox) ;

description = estimated shift in the along-track direction ;

units = km ;

float azm_est_deg(bbox) ;

description = estimated error in azimuth viewing angle ;

units = degrees ;

float elv_est_deg(bbox) ;

description = estimated error in elevation viewing angle ;

units = degrees ;

float corrcoef(bbox) ;

description = correlation coefficient between the corrected data from the
test channel and data from the reference channel ;
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int upsampling_factor(setting) ;

description = upsampling factor for image registration ;

int bbox_min_size(setting) ;

description = minimum size of bounding boxes to keep, both width and
height must be greater or equal to min_size ;

float bbox_expansion_factor(setting) ;

description = expansion factor applied to each bounding box ;

int merge_bboxes(setting) ;

description = merge overlapping bounding boxes flag: 0 = not applied, 1
= applied ;

}

and can be loaded as

>>> from games.utils.relative_pointing_error import load_result
>>> outputfile = "/full/path/to/the/file.nc"
>>> data = load_result(outputfile)
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CHAPTER

FIVE

GAMES API

This section contains automatically generated reference documentation.

5.1 Utils

5.1.1 coordinates

coordinates.py: Coordinate definitions

class games.utils.coordinates.ECEF(x, y, z)
Bases: object

Object for ECEF coordinates.

Parameters

• x (Union[float, ndarray]) – x-coordinate(s) [m]

• y (Union[float, ndarray]) – y-coordinate(s) [m]

• z (Union[float, ndarray]) – z-coordinate(s) [m]

as_array()

Return type array

class games.utils.coordinates.LatLon(lat, lon)
Bases: object

Object for geodetic coordinates.

Parameters

• lat (Union[float, ndarray]) – latitude(s) [degrees]

• lon (Union[float, ndarray]) – longitude(s) [degrees]

property coordinates

Return type Tuple[ndarray, ndarray]

class games.utils.coordinates.LatLonAlt(lat, lon, alt)
Bases: games.utils.coordinates.LatLon

Object for geodetic coordinates.

Parameters alt (Union[float, ndarray]) – altitude(s) [m]

property coordinates
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Return type Tuple[ndarray, ndarray]

class games.utils.coordinates.XY(x, y)
Bases: object

Object for polar stereographic coordinates.

Parameters

• x (Union[float, ndarray]) – x-coordinate(s) [m]

• y (Union[float, ndarray]) – y-coordinate(s) [m]

property coordinates

Return type Tuple[ndarray, ndarray]

5.1.2 ecef

ecef.py Convert between lat/lon and earth-centered/earth-fixed coordinates.

Notes: This function assumes the WGS84 model. Latitude is customary geodetic (not geocentric).

Source: “Department of Defense World Geodetic System 1984” Page 4-4 National Imagery and Mapping Agency
Last updated June, 2004 NIMA TR8350.2

Implemented based on original by: Michael Kleder

games.utils.ecef.ecef_to_latlonalt(coords)
Convert earth-centered earth-fixed (ECEF) cartesian coordinates to latitude, longitude, and altitude.

Inputs may be scalars, vectors, or matrices of the same size and shape. Outputs will have that same size and
shape.

Parameters coords (ECEF) – ECEF coordinates object having attributes x: ECEF X-coordinate
[m] y: ECEF Y-coordinate [m] z: ECEF Z-coordinate [m]

Returns:

LatLonAlt coordinates object with lat: geodetic latitude [degrees] lon: longitude [degrees] alt: altitude
above WGS84 ellipsoid [m]

Return type LatLonAlt

games.utils.ecef.latlonalt_to_ecef(coords)
Convert latitude, longitude, and altitude to earth-centered, earth-fixed (ECEF) cartesian

Inputs may be scalars, vectors, or matrices of the same size and shape. Outputs will have that same size and
shape.

Parameters coords (LatLonAlt) – LatLonAlt coordinates object with attributes lat: geodetic
latitude [degrees] lon: longitude [degrees] alt: altitude above WGS84 ellipsoid [m]

returns:

ECEF coordinates object with attributes x: ECEF X-coordinate [m] y: ECEF Y-coordinate [m] z:
ECEF Z-coordinate [m]

Return type ECEF
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5.1.3 polar stereo

polar_stereo.py Convert back and forth between Polar Stereographic (x, y) coordinates and geodetic longitude and
latitude following Map Projections - A Working manual - by J.P. Snyder. 1987

games.utils.polar_stereo.polar_lonlat_to_xy(lon, lat, lat_ts, lon_0=0.0, re=6378137,
e=0.0818191908426215)

Convert from geodetic longitude and latitude to Polar Stereographic (X, Y) coordinates in m following Map
Projections - A Working manual - by J.P. Snyder. 1987

Parameters

• lon (array) – longitude array in degrees

• lat (array) – latitude array [degrees]

• lat_ts (float) – true-scale latitude [degrees]

• lon_0 (float) – meridian along positive Y axis

• re (float) – Earth radius [m]

• e (float) – Earth eccentricity

Returns: two-element tuple of numpy arrays containing (X, Y) in m

Return type Tuple[array, array]

games.utils.polar_stereo.polar_xy_to_lonlat(x, y, lat_ts, lon_0=0.0, re=6378137,
e=0.0818191908426215)

Convert from Polar Stereographic (x, y) coordinates to geodetic longitude and latitude following Map Projec-
tions - A Working manual - by J.P. Snyder. 1987

Parameters

• x (array) – X coordinate(s) in m

• y (array) – Y coordinate(s) in m

• lat_ts (float) – true-scale latitude in degrees

• lon_0 (float) – meridian along positive Y axis

• re (float) – Earth radius in m

• e (float) – Earth eccentricity

Returns: two-element tuple of numpy arrays containing (longitude, latitude).

Return type Tuple[array, array]

5.1.4 utils

utils.py Bounding box objects for latitude/longitude and polar stereographic coordinates.

class games.utils.utils.BoundingBox(lat_min, lat_max, lon_min, lon_max)
Bases: object

Bounding box using latitude/longitude coordinates.

Parameters

• lat_min (float) – min latitude coordinate [degrees]

• lat_max (float) – max latitude coordinate [degrees]
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• lon_min (float) – min longitude coordinate [degrees]

• lon_max (float) – max longitude coordinate [degrees]

property as_tuple

Return type Tuple[float, float, float, float]

property center

Return type LatLon

in_bbox(point)

Return type bool

intersect(other)

Return type bool

property lat_extension

Return type float

property lat_extension_km

property lon_extension

Return type float

property lon_extension_km

property lower_left

Return type LatLon

lower_left_xy(lat_ts)

Return type XY

property lower_right

Return type LatLon

lower_right_xy(lat_ts)

Return type XY

to_xy()
Returns a bounding box specifying x_min, x_max, y_min, ymax in Polar Stereographic (x, y) coordinates.
Note that this bounding box covers a larger area than the lat/lon bounding box due to the difference between
the two coordinates systems.

Return type BoundingBoxXY

property upper_left

Return type LatLon

upper_left_xy(lat_ts)

Return type XY

property upper_right

Return type LatLon

upper_right_xy(lat_ts)

Return type XY

24 Chapter 5. GAMES API



games, Release 1.1

validate_points(points)
raises if any of the point is oustide the bounding box

Return type None

class games.utils.utils.BoundingBoxXY(x_min, x_max, y_min, y_max, lat_ts)
Bases: object

BoundingBox using Polar Stereographic (x, y) coordinates. Can be initialised by the bounding box using lati-
tude/longitude coordinates (see to_xy method of BoundingBox).

Parameters

• x_min (float) – min x coordinate [m]

• x_max (float) – max x coordinate [m]

• y_min (float) – min y coordinate [m]

• y_max (float) – max y coordinate [m]

• lat_ts (float) – true-scale latitude [degrees]

property center

Return type XY

in_bbox(point)

Return type bool

property lower_left

Return type XY

property lower_right

Return type XY

property upper_left

Return type XY

property upper_right

Return type XY

validate_points(points)
raises if any of the point is oustide the bounding box

Return type None

property x_extension_km

Return type float

property y_extension_km

Return type float
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5.1.5 distance

distance.py Calculate distance between lat/lon pairs.

games.utils.distance.get_distance(orig, dest)
Get Haversine distance in km between lat/lon pairs.

Parameters

• orig (LatLon) – coordinates of origin(s) [degrees]

• dest (LatLon) – coordinates of destination(s) [degrees]

Returns: distance(s) between pairs [km]

Return type Union[float, ndarray]

games.utils.distance.get_distance_xy(p1, p2, lat_ts)
Returns the distance in km between two points in Polar Stereographic (x, y) coordinates.

Parameters

• p1 (XY) – Polar Stereographic coordinate

• p2 (XY) – Polar Stereographic coordinate

• lat_ts (float) – true-scale latitude in degrees

Returns: distance (float) in km between the two points

Return type float

5.1.6 grid

grid.py Grid objects with handy methods for bounding box objects using geodetic or polar stereographic coordinates.

class games.utils.grid.Grid(bbox, spacing)
Bases: object

Grid object for a BoundingBox using latitude/longitude coordinates.

Parameters

• bbox (BoundingBox) – a bounding box using latitude/longitude coordinates

• spacing (float) – grid spacing [km]

closest_ids(lat, lon)

Return type Tuple[int, int]

closest_lat_id(lat)

Return type int

closest_lon_id(lon)

Return type int

property delta_lat

Return type float

property delta_lon
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Return type float

index_shift_to_distance(shift_idx, shift_idy)
Get index shifts as an error in distance.

Parameters

• shift_idx (float) – index shift in longitude direction

• shift_idy (float) – index shift in latitude direction

Returns:

a tuple of three shifts [km] or signed error in longitude direction, latitude direction, and total shift

Return type Tuple[float, float, float]

property lats

Return type array

property lons

Return type array

property meshgrid

Return type Tuple[ndarray, ndarray]

property n_lats

Return type int

property n_lons

Return type int

validate_x(x)
raises if x has inconsistent shape

Return type None

property zeros

Return type ndarray

class games.utils.grid.GridXY(bbox, spacing)
Bases: object

Grid object for a BoundingBox using Polar Stereographic coordinates.

Parameters

• bbox (BoundingBoxXY) – a bounding box using Polar Stereographic coordinates

• spacing (float) – grid spacing [km]

closest_ids(y, x)

Return type Tuple[int, int]

closest_x_id(x)

Return type int

closest_y_id(y)

Return type int
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property delta_x

Return type float

property delta_y

Return type float

index_shift_to_distance(shift_idx, shift_idy)
Get index shifts as an error in distance.

Parameters

• shift_idx (float) – index shift in longitude direction

• shift_idy (float) – index shift in latitude direction

Returns:

a tuple of three shifts [km] or signed error in longitude direction, latitude direction, and total shift

Return type Tuple[float, float, float]

property meshgrid

Return type Tuple[ndarray, ndarray]

property n_xs

Return type int

property n_ys

Return type int

validate_x(x)
raises if x has inconsistent shape

Return type None

property xs

Return type array

property ys

Return type array

property zeros

Return type ndarray

exception games.utils.grid.InputError
Bases: Exception

args

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
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5.1.7 targets

targets.py: Definitions of gelocation validation targets for GAMES pipelines

class games.utils.targets.IceShelf(value)
Bases: enum.Enum

An enumeration.

AMERY_ANTARCTIC_ICE_SHELF = 'amery'

FILCHNER_RONNE_ANTARCTIC_ICE_SHELF = 'filchner'

ROSS_ANTARCTIC_ICE_SHELF = 'ross'

class games.utils.targets.IceShelftTarget(members)
Bases: object

Parameters members (Dict[IceShelf, TargetXY]) – dict holding GAMES ice shelf targets

class games.utils.targets.Lake(value)
Bases: enum.Enum

An enumeration.

HUDSON_BAY = 'hudson'

QINGHAI_LAKE = 'qinghai'

TITICACA_LAKE = 'titicaca'

class games.utils.targets.LakeTarget(members)
Bases: object

Parameters members (Dict[Lake, TargetLayer]) – dict holding GAMES lake at high alti-
tude targets

class games.utils.targets.Mountain(value)
Bases: enum.Enum

An enumeration.

ANDEAN_MOUNTAINS = 'andean'

KARAKORUM_MOUNTAINS = 'karakorum'

class games.utils.targets.MountainTarget(members)
Bases: object

Parameters members (Dict[Mountain, Target]) – dict holding GAMES mountains area tar-
gets

class games.utils.targets.Target(id, bbox, points, spacing)
Bases: games.utils.targets.TargetBase

Target class for mountains area targets.

Parameters

• id (Union[Lake, Mountain]) – id of target

• bbox (BoundingBox) – a bounding box object

• points (List[LatLon]) – a list of latitide/longitude coordinates within the bounding
box to be used to determine the contrast in an image

• spacing (float) – spacing [km] for grid covering the bounding box
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property first_point_reference
True if five points are used

Return type bool

property grid

Return type Grid

class games.utils.targets.TargetBase(points)
Bases: object

Target base object.

Parameters points (Union[List[LatLon], List[XY]]) – a list of coordinates (five or eight)
to be used to determine the contrast in an image

property first_point_reference
True if five points are used

Return type bool

class games.utils.targets.TargetLayer(id, bbox, points, spacing, layer)
Bases: games.utils.targets.Target

Target class for lake targets.

Parameters layer (GshhsLayer) – layer of GSHHS data to use

property first_point_reference
True if five points are used

Return type bool

property grid

Return type Grid

class games.utils.targets.TargetSpacing(id, bbox, spacing1=5.0, spacing2=6.0)
Bases: object

Target class for water way targets.

Parameters

• id (WaterWay) – id of target

• bbox (BoundingBox) – a bounding box object

• spacing1 (float) – spacing [km] for grid covering the bounding box

• spacing2 (float) – a second spacing [km] for grid covering the bounding box

property grid1

Return type GridXY

property grid2

Return type GridXY

class games.utils.targets.TargetXY(id, bbox, points, spacing=5.0)
Bases: games.utils.targets.TargetBase

Target class for ice shelf targets.

Parameters

• id (IceShelf) – id of target
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• bbox (BoundingBox) – a bounding box object

• points (List[XY]) – a list of polar stereographic coordinates within the bounding box to
be used to determine the contrast in an image

• spacing (float) – spacing [km] for grid covering the bounding box

property first_point_reference
True if five points are used

Return type bool

property grid

Return type GridXY

class games.utils.targets.WaterWay(value)
Bases: enum.Enum

An enumeration.

NARES_STRAIT = 'nares'

class games.utils.targets.WaterWayTarget(members)
Bases: object

Parameters members (Dict[WaterWay , TargetSpacing]) – dict holding GAMES water
way targets

games.utils.targets.get_ice_shelf_target(ice_shelf)
Get predefined target setting for a specific ice shelf.

Parameters target – the name of the target

Returns: a target object

Return type TargetXY

games.utils.targets.get_lake_target(lake)
Get predefined target setting for a specific lake.

Parameters target – the name of the target

Returns: a target object

Return type TargetLayer

games.utils.targets.get_mountain_target(mountain)
Get predefined target setting for a specific mountain.

Parameters target – the name of the target

Returns: a target object

Return type Target

games.utils.targets.get_water_way_target(water_way)
Get predefined target setting for a specific water way.

Parameters target – the name of the target

Returns: a target object
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Return type TargetSpacing

5.1.8 sensor

sensor.py Defintion of ICI, MWI, and SSMIS channels.

class games.utils.sensor.Channel(sensor, id, receiver, id_receiver=0, id_horn=0, eleva-
tion_offset=0)

Bases: object

Object derived for ICI, MWI, and SSMIS channels.

Note that the purpose of three of the attributes of a channel object is to be used to identify where associated data
is located in a Level1B file holding ICI, MWI, and SSMIS data, and predefined instances of Channel objects for
these instruments are available from a “Sensor” class of this module.

Parameters

• sensor (SensorType) – sensor type

• id (Union[ChannelICI, ChannelMWI, ChannelSSMIS]) – channel type

• receiver (str) – name of the receiver (name of the variable where data for this channel
is found in the Level1b file)

• id_receiver (int) – id of the receiver (as defined in the EPS-SG ICI/MWI Level 1B
Product Format Specification)

• id_horn (int) – id of the horn (as defined in the EPS-SG ICI/MWI Level 1B Product
Format Specification)

• elevation_offset (float) – elevation offset angle [degrees] relative to the main tilt
angle of the antenna

property index

Return type int

property index_horn

Return type int

property index_receiver

Return type int

property ncvar_radiance_name

Return type str

class games.utils.sensor.ChannelICI(value)
Bases: enum.Enum

An enumeration.

ICI1 = 1

ICI10 = 11

ICI11H = 13

ICI11V = 12

ICI2 = 2

ICI3 = 3
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ICI4H = 5

ICI4V = 4

ICI5 = 6

ICI6 = 7

ICI7 = 8

ICI8 = 9

ICI9 = 10

class games.utils.sensor.ChannelMWI(value)
Bases: enum.Enum

An enumeration.

MWI10 = 18

MWI11 = 19

MWI12 = 20

MWI13 = 21

MWI14 = 22

MWI15 = 23

MWI16 = 24

MWI17 = 25

MWI18 = 26

MWI1H = 2

MWI1V = 1

MWI2H = 4

MWI2V = 3

MWI3H = 6

MWI3V = 5

MWI4H = 8

MWI4V = 7

MWI5H = 10

MWI5V = 9

MWI6H = 12

MWI6V = 11

MWI7H = 14

MWI7V = 13

MWI8H = 16

MWI8V = 15

MWI9 = 17
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class games.utils.sensor.ChannelSSMIS(value)
Bases: enum.Enum

An enumeration.

SSMIS10 = 10

SSMIS11 = 11

SSMIS8 = 8

SSMIS9 = 9

class games.utils.sensor.Sensor(type, channels, channels_for_dcc_boxes, theta=45.0)
Bases: object

Sensor object for ICI, MWI, and SSMIS.

Note that an instance of a predefined sensor object can be obtained from the from_type method, e.g sensor_ici
= Sensor.from_type(SensorType.ICI)

Parameters

• type (SensorType) – type of sensor

• channels (List[Channel]) – channels of the sensor

• channels_for_dcc_boxes (Tuple[Union[ChannelICI, ChannelMWI,
ChannelSSMIS], Union[ChannelICI, ChannelMWI, ChannelSSMIS],
Union[ChannelICI, ChannelMWI, ChannelSSMIS]]) – channels to use for
DCC detection

• theta (float) – main tilt angle of the antenna [degrees]

static from_type(sensor_type)

Return type Sensor

get_channel(channel_id)

Return type Channel

get_theta_deg(channel_id)

Return type float

class games.utils.sensor.SensorType(value)
Bases: enum.Enum

An enumeration.

ICI = 'ici'

MWI = 'mwi'

SSMIS = 'ssmis'
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5.2 Data import functions and objects

5.2.1 gtopo30

gtopo30_reader.py Reader of the GTOPO30 digital elevation model dataset, that is divided into 33 tiles. GTOPO30 is
a global data set covering the full extent of latitude from 90 degrees south to 90 degrees north, and the full extent of
longitude from 180 degrees west to 180 degrees east. This code does not support the reading of the special GTOPO30
antarctic tile.

games.utils.gtopo30_reader.get_dem(bbox, demdatadir)
Get digital elevation model data within a bounding box.

Parameters

• bbox (BoundingBox) – a bounding box object

• demdatadir (str) – datadir where the GTOPO30 dataset is found

Returns:

GTOPO30 data within a bounding box

Return type DEM

5.2.2 sar

class games.utils.sar_reader.SarData(filename, lat, lon, sigma0_hh)
Bases: object

property sigma0_hh_filled

Return type ndarray

games.utils.sar_reader.get_data(sar_file, bbox)
Get SAR data within a bounding box.

Parameters

• sar_file (str) – full path of the SAR file

• bbox (BoundingBox) – a bounding box object

Returns:

SAR data within a bounding box

Return type Optional[SarData]

5.2.3 gshhs

gshhs_reader.py Get features from the GSHHS dataset, e.g. the boundary between lake and land.

class games.utils.gshhs_reader.GshhsLayer(value)
Bases: enum.Enum

An enumeration.

AntarcticGround = 'L6'

AntarcticIce = 'L5'
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IslandInLake = 'L3'

Lake = 'L2'

LandOcean = 'L1'

PondInIsland = 'L4'

class games.utils.gshhs_reader.GshhsResolution(value)
Bases: enum.Enum

An enumeration.

Crude = 'c'

Full = 'f'

High = 'h'

Intermediate = 'i'

Low = 'l'

games.utils.gshhs_reader.get_features(bbox, resolution, layer, datadir)
Get features from the GSHHS dataset.

Parameters

• bbox (Union[BoundingBox, Iterable[BoundingBox]]) – a bounding box object

• resolution (GshhsResolution) – data resolution

• layer (GshhsLayer) – the layer to extract

• datadir (str) – datadir where the GSHHS dataset can be found

Returns:

features form the GSHHS dataset within a bounding box

5.2.4 ssmis

ssmis_reader.py Reader of SSMIS LevelB data files.

class games.utils.ssmis_reader.ImagerData(filename, channel, time, lat, lon, tb, lat_sat,
lon_sat, alt_sat)

Bases: object

property nsamples

Return type int

property nscans

Return type int

samples_to_latlon()

Return type List[LatLon]

sat_to_latlonalt()

Return type List[LatLonAlt]

update_positions(corrected)

Return type None
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games.utils.ssmis_reader.get_data(ssmis_file, channel, bbox, atleast_four=True)
Get SSMIS data.

Parameters

• ssmis_file (str) – full path to the SSMIS level1b file

• channel (Channel) – a channel of SSMIS

• bbox (BoundingBox) – a boudning box object

• atleast_four (bool) – four points flag, if set to True the function will return None if
less than two data points are found in any of the two dimension of the data

Returns:

SSMIS data within a bounding box for a given channel

Return type Optional[ImagerData]

games.utils.ssmis_reader.get_start_time(ssmis_file)

Return type Optional[datetime]

5.2.5 ici and mwi

ici_and_mwi_reader.py Reader of ICI and MWI Level1B data files.

class games.utils.ici_and_mwi_reader.ChannelSet(lat_sensor, lon_sensor, alt_sensor,
lat_fov, lon_fov, ref_data, test_data,
dcc_ch1_data, dcc_ch2_data,
dcc_ch3_data)

Bases: object

property dcc_channel_set

Return type DCCChannelSet

delta_acrosstrack_km_fov(id0, id1)

Return type float

delta_alongtrack_km_fov(id0, id1)

Return type float

scancut()
Returns filtered data, scan and sample numbers that only contain non-finite data are removed

Return type ChannelSet

games.utils.ici_and_mwi_reader.get_data(imager_file, channel, bbox, atleast_four=True, or-
thorectified=True)

Get imager data.

Parameters

• imager_file (str) – full path to the imager level1b file

• channel (Channel) – a channel of ICI or MWI

• bbox (BoundingBox) – a boudning box object

• atleast_four (bool) – four points flag, if set to True the function will return None if
less than two data points are found in any of the two dimension of the data
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• orthorectified (bool) – flag used to determine if a reconstruction of the orthorecti-
fied latitudes and longitudes shall be applied

Returns:

imager data within a bounding box for a given channel

Return type Optional[ImagerData]

games.utils.ici_and_mwi_reader.get_start_time(level1_file)

Return type datetime

games.utils.ici_and_mwi_reader.load_channel_set(level2_file, sensor, ref_channel,
test_channel)

Get data from a set of channels.

Parameters

• level2file – full path to a level2 file

• sensor (Sensor) – a sensor

• ref_channel (Channel) – the channel to consider as reference channel

• test_channel (Channel) – the channel to consider as test channel

Returns:

data from a set of channels

Return type ChannelSet

games.utils.ici_and_mwi_reader.orthorectify(lats, lons, delta_lats, delta_lons)
Reconstruction of the orthorectified latitudes and longitudes.

Parameters

• lats (ndarray) – geodetic latitudes [degrees]

• lons (ndarray) – geodetic longitudes [degrees]

• delta_lats (ndarray) – distance between latitude obtained using DEM and latitude
on ellipsoid [m]

• delta_lons (ndarray) – distance between longitude obtained using DEM and longi-
tude on ellipsoid [m]

Return type Tuple[ndarray, ndarray]

5.2.6 dcc mask

dcc_mask.py This module is responsible for identifying regions or bounding boxes containing deep convective clouds
(DCC).

The approach to identify DCC is inspired by Hong et al. 2005 “Detection of tropical deep convective clouds from
AMSU-B water vapor channels measurements”, and uses antenna temperature data from three channels for this pur-
pose.

class games.utils.dcc_mask.BoundingBoxDCC(x_min, x_max, y_min, y_max)
Bases: object

BoundingBox for coverage of a deep convective cloud system using scan and sample number coordinates.
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Parameters

• x_min (int) – min sample number

• x_max (int) – max sample number

• y_min (int) – min scan number

• y_max (int) – max scan number

property center

Return type Tuple[int, int]

static from_contour(contour)
Transforms a contour to a bounding box.

Parameters contour (List[List[Tuple[int, int]]]) – contour surrounding typically a
DCC system

Returns:

a bounding box

Return type BoundingBoxDCC

property height

Return type int

resize(width, height, x_max, y_max)

Return type BoundingBoxDCC

property width

Return type int

class games.utils.dcc_mask.DCCChannelSet(ch1_data, ch2_data, ch3_data)
Bases: object

Class for holding antenna temperature data from three channels.

Parameters

• ch1_data (TaData) – antenna temperature data from a first channel

• ch2_data (TaData) – antenna temperature data from a second channel

• ch3_data (TaData) – antenna temperature data from a third channel

class games.utils.dcc_mask.TaData(scan_number, sample_number, ta)
Bases: object

Class for holding antenna temperature data.

Parameters

• scan_number (ndarray) – scan number

• sample_number (ndarray) – sample number

• ta (ndarray) – antenna temperature data

slice_ta(bbox)

Return type ndarray
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games.utils.dcc_mask.get_dcc_bboxes(channel_set, min_size, expansion_factor, merge)
Returns a list of bounding boxes where each bounding box is supposed to cover a region containing deep
convective clouds (DCC).

Parameters

• channel_set (DCCChannelSet) – data from three channels

• min_size (int) – minimum size of bounding boxes to keep, both width and height must
be greater than or equal to min_size

• expansion_factor (float) – expansion factor

• merge (bool) – flag for merging overlapping bounding boxes

Returns:

a list of bounding boxes

Return type List[BoundingBoxDCC]

games.utils.dcc_mask.get_dcc_mask(ref1, ref2, ref3)
Get a deep convective clouds (DCC) mask, inspired by Hong et al. 2005 “Detection of tropical deep convective
clouds from AMSU-B water vapor channels measurements”

Parameters

• ref1 (TaData) – antenna temperature data ideally at 183.31 +- 7.0 GHz

• ref2 (TaData) – antenna temperature data ideally at 183.31 +- 3.4 GHz

• ref3 (TaData) – antenna temperature data ideally at 183.31 +- 2.0 GHz

Returns:

a DCC mask (2-d array)

Return type ndarray

5.3 Data processing modules

5.3.1 dem correction

dem_correction.py Correcting positions (lat, lon) of imager data where the position originally has been estimated
neglecting the topography of Earth.

class games.utils.dem_correction.DEM(lat, lon, alt)
Bases: object

Class derived to be able to generate a triangle mesh covering a digitial elevation model (DEM) surface

Parameters

• lat (array) – latitudes [degrees]

• lon (array) – longitudes [degrees]

• alt (ndarray) – altitudes [m]
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get_triangle_mesh()
Returns a triangle mesh covering the DEM, triangles are derived from triangulation of a set of points, the
(lat, lon) coordinates of the DEM.

Returns:

a list of Triangle objects

Return type List[Triangle]

property latmax

Return type float

property latmin

Return type float

property lonmax

Return type float

property lonmin

Return type float

reduce_dem(n)
Reduce resolution of DEM data by n times, by calculating averages in blocks of n x n of the DEM

Parameters n (int) – DEM reduction factor, must be an odd number

Returns:

None, updates alt attribute, the alt array will have the same size but data will be smoothed

Return type None

regrid_dem(spacing)
Regrid DEM data to a resolution of spacing.

Parameters spacing (float) – desired grid resolution [m]

Returns:

None, updates the lat, lon, and alt attributes

Return type None

class games.utils.dem_correction.Triangle(vertex0, vertex1, vertex2)
Bases: object

Triangle class.

Parameters

• vertex0 (ECEF) – position of first corner of a triangle

• vertex1 (ECEF) – position of second corner of a triangle

• vertex2 (ECEF) – position of third corner of a triangle

centroid()

Return type ECEF

5.3. Data processing modules 41



games, Release 1.1

class games.utils.dem_correction.TriangleMesh(triangles)
Bases: object

Class derived to be able to efficiently find the intersection of a line and a triangle mesh.

Parameters triangles (List[Triangle]) – a list of triangles objects

filter(dest, maxdist)
Filters the triangles in the triangle mesh.

Parameters

• dest (ECEF) – a position

• maxdist (float) – distance [m]

Returns:

an array of booleans, the value is true if the triangle centroid is found within a distance maxdist
from dest

Return type array

intersection_line_triangle(orig, dest, maxdist)
Finds the intersection between a line and a triangle mesh based on the Möller-Trumbore ray-triangle inter-
section algorithm

Parameters

• orig (ECEF) – origin of the line or ray

• dest (ECEF) – destination of ray

• maxdist (float) – distance [m], used to filter which triangles to consider in the calcu-
lation, only triangles with a centroid located within this distance are considered

Returns:

the ecef position of the closest point to orig where the line of sight from orig to dest intersects
with any of the triangle. returns the position of dest if no intersection is found

Return type ECEF

games.utils.dem_correction.dem_correction(positions_samples, positions_sat, dem, spac-
ing=5000.0, maxdist=30000.0)

Returns DEM corrected positions of the observed samples.

Corrects positions (lat, lon) of e.g SSMIS data where the position has been estimated neglecting the topography
of Earth. The corrected position is the closest point to the satellite where the line of sight from the satellite to
the old position intersects with a triangulated Earth surface (using DEM data).

Parameters

• positions_samples (List[LatLon]) – sample positions that has been estimated by
neglecting the topography of Earth

• positions_sat (List[LatLonAlt]) – satellite positions from where the samples
were measured

• dem (DEM ) – DEM data

• spacing (float) – spacing of dem [m], DEM data is regridded to have this spacing prior
to the triangulation. Hence, this parameter will have an impact on the size of the triangles.

• maxdist (float) – distance [m], used to filter triangles to us in calculation
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Returns:

DEM corrected positions

Return type List[LatLonAlt]

5.3.2 validation

validation.py Module for methods and functions that are responsible for the actual calculation for gelocation validation
of data.

class games.utils.validation.GeolocationValidator(grid)
Bases: object

Class derived for gelocation validation of imager data using land mark target as reference.

Parameters grid (Union[Grid, GridXY]) – grid object that defines a regular grid onto which
imager and reference data can be gridded, and further used by the methods of this class

difference(image, p1, p2)
Returns the difference between the image pixel value at point p2 and p1.

Parameters

• image (ndarray) – image

• p1 (Union[LatLon, XY]) – a position

• p2 (Union[LatLon, XY]) – a position

Returns:

difference (float)

Return type float

features_to_meshgrid(features)
Projects a list of positions onto a regular grid following a nearest neighbour approach.

Parameters features (Union[List[LatLon], List[XY]]) – a list of points describing
e.g. the boundary between lake and land

Returns:

a 2-d array (a gridded representation of the input features)

Return type ndarray

get_contrast(image, points, first_point_reference)
Get the contrast of the image, following the GAMES Report Task 1 definition.

Parameters

• image (ndarray) – gridded observations [K]

• points (Union[List[LatLon], List[XY]]) – list of positions to use for deriving
contrast

• first_point_reference (bool) – if set to True the first point is used as the ref-
erence point, and if set to False the contrast is calculated as the mean of the difference
between the image pixel value for every consecutive pair of points, i.e. the average of
image(p1) - image(p0) and image(p3) - image(p2) if we consider four points.
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Returns: the contrast (float) [K]

Return type float

get_edges(image, low_threshold, high_threshold, sigma, scale, validate=True)
Edge filter an image using the Canny algorithm.

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 8(6):679–698, 1986.

Parameters

• image (ndarray) – image

• low_threshold (float) – lower bound for hysteresis thresholding

• high_threshold (float) – upper bound for hysteresis thresholding

• sigma (float) – standard deviation of the Gaussian filter

• scale (bool) – if this flag is set to True, data will be scaled to be in the range 0 to 1
before Canny filter is applied

• validate (bool) – if this flag is set to True, the shape of image is validated against the
grid attribute

Returns:

edge filtered image (2-d array of floats)

Return type ndarray

get_gradient_magnitude(image)
Calculates the gradient of an image using a Sobel filter and returns the gradient magnitude.

Sobel, I., Feldman, G., “A 3x3 Isotropic Gradient Operator for Image Processing”, presented at the Stan-
ford Artificial Intelligence Project (SAIL) in 1968.

Parameters image (ndarray) – image

Returns:

gradient of image (2-d array of floats)

Return type ndarray

griddata(lons, lats, values)
Get data gridded on a regular grid.

Parameters

• lons (array) – logitudes [degrees]

• lats (array) – latitudes [degrees]

• values (array) – values [unit of values]

Returns:

gridded data (2-d array)

Return type ndarray

44 Chapter 5. GAMES API



games, Release 1.1

static register_images(image1, image2, upsampling_factor)
Returns shifts detected between the two input images using an efficient subpixel image registration by
crosscorrelation following the algorithm descibed in

Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, “Efficient subpixel image registration
algorithms” Opt. Lett. 33, 156-158 (2008).

Parameters

• image1 (ndarray) – reference image

• image2 (ndarray) – image to register

• upsampling_factor (int) – upsampling factor, must be greater than 0

Returns:

index shifts in x, y direction (tuple of floats) of image2 w.r.t. image1, (i.e. shift image2 by these
#’s to match image1) and the correlation between the registered and reference image

Return type Tuple[float, float, float]

class games.utils.validation.ValidationResult(filename, sensor, channel, date=None,
lat_center=nan, lon_center=nan,
shift_x=nan, shift_y=nan, shift=nan,
contrast=nan, second_shift=nan,
valid=False, coverage_problem=0,
sarfile=None)

Bases: object

Class for holding validation result for a landmark target.

Parameters

• filename (str) – the name of the Level1B used

• sensor (str) – the name of the sensor

• channel (int) – the channel ID used

• date (Optional[datetime]) – a representative datetime of the measurement

• lat_center (float) – latitude center [degrees] of the bounding box used

• lon_center (float) – longitude center [degrees] of the bounding box used

• shift_x (float) – the derived shift in validated data [km] along longitude direction

• shift_y (float) – the derived shift in validated data [km] along latitude direction

• shift (float) – the derived shift in validated data [km]

• contrast (float) – contrast in image [K]

• second_shift (float) – the second derived shift in validated data [km]

• valid (bool) – a validity flag of derived shift

• sarfile (Optional[str]) – the name of the SAR file used

Para coverage_problem data coverage problem within target bounding box, 0 = no problem, 1 =
no imager data found within the target bounding box, 2 = no target data found within the target
bounding box
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asdict(recurse=True, filter=None, dict_factory=<class 'dict'>, retain_collection_types=False)
Return the attrs attribute values of inst as a dict.

Optionally recurse into other attrs-decorated classes.

Parameters

• inst – Instance of an attrs-decorated class.

• recurse (bool) – Recurse into classes that are also attrs-decorated.

• filter (callable) – A callable whose return code determines whether an attribute or
element is included (True) or dropped (False). Is called with the attr.Attribute as the
first argument and the value as the second argument.

• dict_factory (callable) – A callable to produce dictionaries from. For ex-
ample, to produce ordered dictionaries instead of normal Python dictionaries, pass in
collections.OrderedDict.

• retain_collection_types (bool) – Do not convert to list when encountering
an attribute whose type is tuple or set. Only meaningful if recurse is True.

Return type return type of dict_factory

Raises attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

New in version 16.0.0: dict_factory

New in version 16.1.0: retain_collection_types

static from_file(filename)

Return type ValidationResult

outfile(outdir, target)

Return type str

write(outdir, target, settings)
Write results to a file in netcdf format.

Parameters

• outdir (str) – name of directory where to write results

• target (str) – name of the target

Return type None

games.utils.validation.displacement_to_pointing_error(displacement_acrosstrack,
displacement_alongtrack,
view_angle, altitude)

Converts horizontal displacement of a point on ground, as seen by a sensor at a given altitude and view angle,
into an azimuth and elevation offset angle.

Parameters

• displacement_acrosstrack (float) – displacement in acrosstrack direction [km]

• displacement_alongtrack (float) – displacement in alongtrack direction [km]

• view_angle (float) – sensor view angle [degrees] (0 means nadir)

• altitude (float) – platform altitude [km]

Returns:

tuple of azimuth and elevation offset angles [degrees]
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Return type Tuple[float, float]

games.utils.validation.isvalid(contrast, shift, contrast0, shift0, threshold)
Validate derived shift and contrast.

Parameters

• contrast (float) – derived contrast [K]

• shift (float) – derived shift [km]

• contrast0 (float) – reference contrast [K]

• shift0 (float) – reference shift [km]

• threshold (float) – reference threshold [-]

Returns:

a boolean, True if contrast and shift is high and low enough, respectively, following a “fuzzy logic”
approach described in GAMES Report Task 1

Return type bool

games.utils.validation.isvalid_by_shifts(shift1, shift2, shift0, threshold)
Validate derived shifts.

Parameters

• shift1 (float) – derived shift [km]

• shift2 (float) – derived shift [km]

• shift0 (float) – reference shift [km]

• threshold (float) – reference threshold [-]

Returns:

a boolean, True if shifts are low enough, following a “fuzzy logic” approach described in GAMES
Report Task 1

Return type bool

5.4 Pipeline core functions

5.4.1 andean

games.utils.andean.validate(ssmis, dem, target, upsampling_factor=10)
Returns derived shift and contrast in imager data using DEM data and mountains area target, following method
described in GAMES Report Task 1. A Sobel filter is applied on both DEM and imager data to obtain the
gradient magnitude of data, and the data are then cross-correlated against each other, in order to derive a possible
shift between the data.

Parameters

• ssmis (ImagerData) – imager data

• dem (DEM ) – digital elevation model data
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• target (Target) – target instance defining a bounding box and grid to use in calculation,
and coordinates to use to derive contrast in image

• upsampling_factor (int) – upsampling factor for image registration

Returns:

validation result (a ValidationResult object)

Return type ValidationResult

5.4.2 ross

games.utils.ross.validate(ssmis, sar, target, upsampling_factor=10,
high_threshold_tb=0.45, low_threshold_tb=0.18000000000000002,
sigma_tb=1.4142135623730951, high_threshold_sar=0.1,
low_threshold_sar=0.04000000000000001,
sigma_sar=1.4142135623730951)

Returns derived shift and contrast in imager data using reference SAR data for target, following methods de-
scribed in GAMES Report Task 1. A Canny edge filter is applied on both imager and SAR data, in order to
derive a possible shift between the data.

Parameters

• ssmis (ImagerData) – imager data

• sar (SarData) – SAR data

• target (Union[TargetXY , TargetSpacing]) – target instance defining a bounding
box and two differents grid to use in calculation

• upsampling_factor (int) – upsampling factor for image registration

• high_threshold_tb (float) – upper bound for hysteresis thresholding in Canny edge
filter for imager data

• low_threshold_tb (float) – lower bound for hysteresis thresholding in Canny edge
filter for imager data

• sigma_tb (float) – standard deviation of the Gaussian filter applied in Canny edge filter
for imager data

• high_threshold_sar (float) – upper bound for hysteresis thresholding in Canny
edge filter for SAR data

• low_threshold_sar (float) – lower bound for hysteresis thresholding in Canny edge
filter for SAR data

• sigma_sar (float) – standard deviation of the Gaussian filter applied in Canny edge
filter for SAR data

Returns:

validation result (a ValidationResult object)

Return type ValidationResult
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5.4.3 qinghai

games.utils.qinghai.validate(ssmis, lakes, target, upsampling_factor=10, high_threshold=0.5,
low_threshold=0.2, sigma=1.4142135623730951)

Returns derived shift and contrast in imager data using boundary between land and lake or ocean as reference
data, following a method described in GAMES Report Task 1. A Canny edge filter is applied on the imager
data, and resulting data is cross-correlated with the reference data, in order to derive a possible shift between the
data.

Parameters

• ssmis (ImagerData) – imager data

• lakes (List[LatLon]) – a list of coordinates describing the boundary between lake and
land

• target (TargetLayer) – target instance defining a bounding box and grid to use in
calculation, and coordinates to use to derive contrast in image

• upsampling_factor (int) – upsampling factor for image registration

• high_threshold (float) – upper bound for hysteresis thresholding in Canny edge
filter

• low_threshold (float) – lower bound for hysteresis thresholding in Canny edge filter

• sigma (float) – standard deviation of the Gaussian filter applied in Canny edge filter

Returns:

validation result (a ValidationResult object)

Return type ValidationResult

5.4.4 relative pointing error

class games.utils.relative_pointing_error.PointingError(level1_file, sensor,
reference_channel,
test_channel,
scan_number_min,
scan_number_max,
sample_number_min,
sample_number_max,
delta_x_est_km=nan,
delta_y_est_km=nan,
azm_est_deg=nan,
elv_est_deg=nan, cor-
rcoef=nan)

Bases: object

Class for holding result from the relative pointing error estimation.

Parameters

• level1_file (str) – the name of the Level1C file used

• sensor (str) – the name of the sensor

• reference_channel (int) – the reference channel ID used

• test_channel (int) – the test channel ID used
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• scan_number_min (int) – minimum scan number of the bounding box

• scan_number_max (int) – maximum scan number of the bounding box

• sample_number_min (int) – minimum sample number of the bounding box

• sample_number_max (int) – maximum sample number of the bounding box

• delta_x_est_km (float) – estimated shift in the across-track direction [km]

• delta_y_est_km (float) – estimated shift in the along-track direction [km]

• azm_est_deg (float) – estimated error in azimuth viewing angle [degrees]

• elv_est_deg (float) – estimated error in elevation viewing angle [degrees]

• corrcoef (float) – correlation coefficient between the corrected data from the test chan-
nel and data from the reference channel

asdict(recurse=True, filter=None, dict_factory=<class 'dict'>, retain_collection_types=False)
Return the attrs attribute values of inst as a dict.

Optionally recurse into other attrs-decorated classes.

Parameters

• inst – Instance of an attrs-decorated class.

• recurse (bool) – Recurse into classes that are also attrs-decorated.

• filter (callable) – A callable whose return code determines whether an attribute or
element is included (True) or dropped (False). Is called with the attr.Attribute as the
first argument and the value as the second argument.

• dict_factory (callable) – A callable to produce dictionaries from. For ex-
ample, to produce ordered dictionaries instead of normal Python dictionaries, pass in
collections.OrderedDict.

• retain_collection_types (bool) – Do not convert to list when encountering
an attribute whose type is tuple or set. Only meaningful if recurse is True.

Return type return type of dict_factory

Raises attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

New in version 16.0.0: dict_factory

New in version 16.1.0: retain_collection_types

games.utils.relative_pointing_error.get_relative_pointing_error(level1_file,
sensor,
ref_channel,
test_channel,
min_size=20,
expan-
sion_factor=1.2,
merge_bboxes=False,
upsam-
pling_factor=100)

Returns derived relative pointing error between a reference and a second channel of MWI or ICI, following
method described in GAMES Report Task 2.

Three MWI or ICI channels around the 183.31 GHz water vapor line are used to identify regions (bounding
boxes) with deep convective clouds and pointing errors are derived for data within bounding boxes covering
these regions.
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Parameters

• level1_file (str) – full path to a level1c file

• sensor (Sensor) – sensor

• ref_channel (Channel) – channel to be considered as reference channel

• test_channel (Channel) – channel to be considered as test channel

• min_size (int) – minimum size of bounding boxes to keep, both width and height must
be greater than or equal to min_size

• expansion_factor (float) – bounding box expansion factor

• merge_bboxes (bool) – flag for merging overlapping bounding boxes

• upsampling_factor (int) – upsampling factor for image registration

Returns:

derived relative pointing error

Return type List[PointingError]

games.utils.relative_pointing_error.load_result(filename)
Load result.

Parameters filename (str) – full path to the file to load

Return type List[PointingError]

games.utils.relative_pointing_error.write_result(outdir, pointing_errors, settings)
Writes derived pointing errors to a netcdf formated file.

Parameters

• outdir (str) – name of directory where to write results

• pointing_errors (List[PointingError]) – list of derived errors

Return type None
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