

This Document is Public

Doc.No.:EUM/OPS-SEN3/MAN/17/907205Issue:v2G e-signedDate:12 March 2021WBS/DBS::

EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 http://www.eumetsat.int

This Document is Public

Page left intentionally blank

This Document is Public

Document Change Record

lssue / Revision	Date	DCN. No	Changed Pages / Paragraphs	
V1E	1 December 2017		First issue	
V1F	5 January 2018		Correction of minor typos	
V1H	04 July 2018		Rearranging sections and text for consistency with SLSTR and SRAL handbooks (products and processing sections now separated).	
			New section on history of ocean colour. Updated cross referencing.	
			Addition of coda rep information.	
			L1 processing section updated to latest product notices 14/03/2018.	
			Formatting and minor typological updates. New section on coverage. Updated tense of text concerning S3B.	
V2B	25 February 2020		Addition of new coverage maps and updating information on S3B as required. Updates on processing baselines, formatting and consistency with other S3 handbooks.	
V2D	19 February 2021		Version not released	
V2G	12 March 2021		Updates reflecting baseline collection 003 changes in processor.	

This Document is Public

Table of Contents

1	INTRODUCTION	6
	1.1 Purpose	6
	1.2 Scope	6
	1.3 Document Structure	6
	1.4 Applicable Documents	
	1.5 Reference Documents	
	1.6 List of Abbreviations, Acronyms and Symbols	10
2	BACKGROUND	12
	2.1 The Copernicus Programme	
	2.2 European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)	12
	2.3 Sentinel-3 objectives	
	2.4 Disclaimer	13
	2.5 Useful links	14
	2.6 History of product changes	14
3	SENTINEL-3 AND OLCI	15
	3.1 Ocean colour: a brief historical background	15
	3.2 Complementarities with other ocean colour missions	16
4	OLCI: GEOPHYSICAL VARIABLES, INSTRUMENTS AND PRINCIPLE	
	4.1 Ocean colour coverage of all aquatic environments4.2 Instrument coverage	
	5	
	4.3 Ocean colour measurement principles4.4 OLCI instrument specifics	
	4.4 OLCI Instrument specifics	
	4.5 Calibration and validation activities	
		20
5	PROCESSING LEVELS AND SCHEMES	
	5.1 Level-1 processing approach	
	5.2 Level-2 processing approach	25
6	OLCI PRODUCTS AND FILE TYPES	29
	6.1 Product timeliness	29
	6.2 File naming	29
	6.3 Data format	30
	6.4 Level 1 product contents	
	6.5 Level 2 product contents	
	6.6 Product features and limitations	36
7	HELPDESK, DATA ACCESS AND TOOLS	37
	7.1 Registration	
	7.2 Helpdesk and Training	37
	7.3 Data Access Methods	37
	7.4 Software Tools	39
	7.4.1 Sentinel-3 Toolbox	39
	7.4.1.1 Installing the toolbox	39
	7.4.1.2 Opening a Sentinel-3 product	39
	7.4.1.3 Basic functionality	40
	7.4.2 METIS	40
8	DATA QUALITY	41
9	UPDATES TO PROCESSING BASELINES AND REPROCESSING CAMPAIGNS	42
10	FREQUENTLY ASKED QUESTIONS	43

This Document is Public

10.1 OL	.CI data characteristics	43
10.1.1	Camera-to-camera discontinuities	43
	South Atlantic Anomaly	
10.1.3	Sun glint affecting the right-hand side of scenes	44
10.1.4	OLCI anomalous spectral samples	45
Anomal	ously low radiances have been identified in OLCI Level-1B products at the edges of br	ight,
	saturated areas. These low radiances occur in some bands and do not correspond to geophy	sical
	expectations. The anomalies are present over bright clouds in both OLCI-A and OLCI-B.	No
	impact on OLCI operational Level-2 products has however been determined because L2 products	lucts
	are not available over bright surfaces. More detailed description of the anomaly is available	
	here https://www.eumetsat.int/media/47581	45
10.1.5	Anomalous low water reflectances in the NIR for waters with low-to-moderate TSM values	. 45
10.1.6	Open issues and future improvements	45
10.2 Ha	ndling the data	45
10.2.1	How to view the contents of a netCDF file?	45
10.2.2	How would I calculate the Top of Atmosphere Reflectance from a Level 1 product?	46
	Which Level 2 flags should I apply?	

Table of Figures

Figure 1: The average OLCI revisit time for two satellites during the boreal winter period, the 27-day
cycle centred on December 21st. Coverage has been masked for high glint, and zones where high
solar zenith angle are indicated. Note that, in boreal mid-winter, OLCI does not acquire data
poleward of ~60°N due to prevailing darkness at the overpass time 17
Figure 2: As in Figure 1, but for boreal summer, the 27-day cycle centred on June 21st. Note that, due
to the orbital inclination of the Sentinel-3 satellites the winter and summer coverage maps are not
symmetrical
Figure 3: L1 to L2 processing
Figure 4: OLCI file format
Figure 5: Data access routes
Figure 6: Choosing OLCI datasets within the EUMETSAT Data Centre
Figure 7: OLCI processing baseline changes and reprocessing campaigns since launch
Figure 8: Example arrays of (left) lamda0 and (right) FWHM for band Oa1
Figure 9: Subset of a Sentinel-3 FR scene with (top left) SNAP's World View and (top right) TOA
Tristimulus RGB colour composite with the South Atlantic Anomaly as visible in (bottom right) the
TOA band Oa21 radiance and (bottom left) atmospherically corrected data (Tristimulus RGB
colour composite)
Figure 10: Example L1 scenes showing sun glint down the right-hand side of the scene
Figure 11: Example (top) L1 scene (bottom) L2 equivalent with the recommended L2 flags applied. 48

Table of Tables

Table 1: OLCI wavebands; updated from [RD-7]	22
Table 2: OLCI ocean colour product primarily ATBDs	
Table 3: L1 Quality flags	
Table 4: OLCI L2 water reflectance and bio-optical products and atmospheric by-products	
Table 5: L2 Water quality flags	34
Table 6: L2 Science flags	
Table 7: Data access locations	38
Table 8: GCOS ocean-colour requirements for accuracy and stability	41
Table 9: Recommended L2 flags for masking unreliable or bad pixels	47

This Document is Public

1 INTRODUCTION

1.1 Purpose

The Sentinel-3 Ocean and Land Colour Instrument (OLCI) Marine Handbook is a user guide that summarises the key information needed to enable an end-user (both general and specialist) to understand the marine Level 1B (L1B) and Level 2 (L2) products. The handbook is aimed at all current and potential users of the Copernicus Marine Data Stream that are interested in the Sentinel-3 ocean colour products for use in the open-ocean, coastal domain and inland waters.

1.2 Scope

The handbook includes information on the components of the instrument system for OLCI, the specifics of measurement techniques used, details on applied corrections and the processing steps required to derive geophysical variables. The capability of the system is discussed in the context of its complementarity with, and improvements on, other ocean colour missions, with notes on existing limitations. A discussion of file formats, processing tools and data-access routes precedes a presentation of available support resources. Where the detail is not held in the handbook itself, the user is pointed to further (primarily internet-based) resources.

1.3 Document Structure

- Section 1 General information (this section)
- Section 2 Background information on EUMETSAT, the Copernicus programme and the aims of the Sentinel-3 mission.
- Section 3 Provides an overview of Copernicus, historical ocean colour missions, and the contribution of Sentinel-3 OLCI instrument.
- Section 4 Gives an overview of the OLCI instrument, coverage, quality, capability and accuracy
- Section 5 Gives a description of OLCI L1 and L2 marine processing.
- Section 6 Gives a description of OLCI L1 and L2 marine products.
- Section 7 Explains how to access and visualise OLCI data, and where to find help.
- Section 8 Description of the data quality.
- Section 9 Explains how to find information concerning updates to processing baselines and reprocessing campaigns.
- Section 10 Frequently Asked Questions, providing information on anomalies and other information not covered elsewhere.

1.4 Applicable Documents

Applicable documents incorporate additional provisions to the source document. A provision may be in the form of requirements, statements, instructions or recommendations.

AD-1	Sentinel-3 Mission Requirements Document, v2.0	EOP-SMO/1151/MD-md
AD-2	Sentinel-3 Mission Requirements Traceability	EOP-SM/2184/CD-cd
	Document, v1.0	

1.5 Reference Documents

Reference documents contain additional information related to this document.

RD-1	IOCCG Report 10 (2010). Atmospheric Correction for Remotely-Sensed Ocean-Colour Products.	ISBN: 978-1-896246-61-1
RD-2	Morel and Gentili. 1996. Diffuse reflectance of oceanic waters.	doi: 10.1364/AO.35.004850
RD-3	Morel et al. 2002. Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function.	doi: 10.1364/AO.41.006289
RD-4	Antoine. 2010. OLCI Level 2 Algorithm Theoretical Basis Document: Ocean Colour Products in Case 1 waters	S3-L2-SD-03-C10-LOV- ATBD
RD-5	Siegel et al. 2005. Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere	doi: 10.1029/2005GL024310
RD-6	IOCCG Report 13. 2012. Mission Requirements for Future Ocean-Colour Sensors.	ISBN: 978-1-896246-64-2
RD-7	Donlon et al. 2012. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission.	doi: 10.1016/j.rse.2011.07.024
RD-8	Antoine and Morel, 1999. A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying absorbing aerosols.	International Journal of Remote Sensing, Vol. 20
RD-9	Moore et al. 1999. The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS.	
RD-10	Moore, G., C. Mazeran and JP. Huot, 2017. Case II. S Bright Pixel Atmospheric Correction. MERIS ATBD 2.6, Issue 5.3. (mesotrophic to high turbidity)	https://www.eumetsat.int/o cean-colour-resources
RD-11	Aiken and Moore. 1997. Photosynthetic Available Radiation, v5	MERIS ATBD 2.18

RD-12	Morel et al. 2007. Examining the consistency of products derived from various ocean color sensors in open ocean (case 1) waters in the perspective of a multi-sensor approach.	doi: 10.1016/j.rse.2007.03.012		
RD-13	Doerffer and Schiller. 2007. The MERIS Case 2 water algorithm.	doi: /10.1080/01431160600821 127		
RD-14	Lindstrot et al. 2012. 1D-Var retrieval of daytime total columnar water vapour from MERIS measurements.	doi: 10.5194/amt-5-631-2012		
RD-15	Sentinel-3 Calibration and Validation Plan, v1.0	S3-PL-ESA-SY-0265		
RD-16	INSITU-OCR. 2012. International Network for Sensor Inter-comparison and Uncertainty assessment for Ocean Color Radiometry (INSITU- OCR).	http://www.ioccg.org/grou ps/INSITU-OCR_White- Paper.pdf		
RD-17	Mazeran et al. 2017. Requirements for Copernicus Ocean Colour Vicarious Calibration Infrastructure. v2.1	https://www.eumetsat.int/O C-SVC		
RD-18	Bonekamp et al. 2016. Core operational Sentinel-3 marine data product services as part of the Copernicus Space Component.	doi: /10.5194/os-12-787-2016		
RD-19	Sentinel 3 PDGS File Naming Convention, v1D	EUM/LEO- SEN3/SPE/10/0070		
RD-20	OLCI Level 1 Algorithm Theoretical Basis Document, v4.0	S3-ACR-TN-007		
RD-21	Product Data Format Specification – OLCI Level 1 & Level 2 Instrument Products, v1.10	S3IPF.PDS.004		
RD-22	O'Reilly et al. 1998. Ocean Color Chlorophyll Algorithms for SeaWiFS.	Journal of Geophysical Research, 103(C11).		
RD-23	The Global Observing System for Climate: Implementation Needs (GCOS-200, GOOS-214).	2016		
RD-24	Sentinel-3 OLCI L2 report for baseline collection OL_L2M_003	https://www.eumetsat.int/m edia/47794		
RD-25	Sentinel-3 OLCI Chlorophyll Index switch for low- chlorophyll waters. I. Cazzaniga and E. Kwiatkowska	<i>OLCI L2 ATBD,</i> <i>EUM/RSP/DOC/18/102836</i> <i>0, 2020,</i> <i>https://www.eumetsat.int/m</i> <i>edia/47752</i>		
RD-26	Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. C. Hu, Z. Lee, and B.A. Franz	J. Geophys. Res., 117, C01011, doi:		

This Document is Public

10.1029/2011JC007395, 2012.

- RD-27 VIIRS-derived chlorophyll-a using the ocean color index method. M. Wang and S. Son
- RD-28 SeaBASS, Bio-optical Archive and Storage System, NASA Ocean Biology Processing Group
- RD-29 Effective reflectance of oceanic whitecaps. P. Koepke.
- RD-30 Ocean Colour Turbid Water. OLCI Level 2 Algorithm Theoretical Basis Document. Roland Doerffer
- RD-31 Uncertainty estimation of case2 water IOP products of OLCI using artificial neural networks. Roland Doerffer
- RD-32 S3IPF PDS 007.2 i2r11 Auxiliary Data Format Specification OLCI Level 2
- RD-33 Sentinel-3: Mission Requirements Document, M.R Drinkwater and H. Rebhan (MRD)

Remote Sensing of Environment 182: 141–149, 2016.

https://seabass.gsfc.nasa.g ov/

Appl. Opt., 23, 1816–1824, 1984.

S3-L2-SD-03-C11-GKSS-ATBD, 2010, https://www.eumetsat.int/m edia/38636

2019, https://www.eumetsat.int/m edia/43613

2021, https://www.eumetsat.int/m edia/47943 EOP-SMO/1151/MD-md, Feb 2007, http://esamultimedia.esa.in t/docs/ GMES/GMES_Sentinel3_ MRD_V 2.0_update.pdf

This Document is Public

1.6 List of Abbreviations, Acronyms and Symbols

AAC	Alternative Atmospheric Correction
AAC	Atmospheric Correction
ADC	Analogue to digital converter
ATBD	Algorithm Theoretical Basis Document
BAC	Baseline Atmospheric Correction
BPAC	Bright Pixel Atmospheric Correction
BRDF	Bidirectional Reflectance Distribution Function
C2RCC	Case 2 Regional / Coast Colour processor
Cal/Val	Calibration and Validation
CCD	Charge-Coupled Device
CDOM	Coloured or Chromophoric Dissolved Organic Matter
CI	Chlorophyll Index
CMEMS	Copernicus Marine Environment Monitoring Service
CODA	Copernicus Online Data Access
CZCS	Coastal Zone Color Scanner
ECMWF	European Centre for Medium-Range Weather Forecasts
ECV	Essential Climate Variables
EO	Earth Observation
ESA	European Space Agency
EUMETSAT	European Organisation for the Exploitation of Meteorological Satellites
FOV	Field Of View
FR	Full Resolution
FTP	File Transfer Protocol
FWHM	Full Width at Half Maximum
GCOM-C	Global Change Observation Mission - Climate
GCOS	Global Climate Observation System
H ₂ O	water
IOCCG	International Ocean Colour Coordinating Group
IOPs	Inherent Optical Properties
IWV	Integrated Water Vapour column
L1	Level 1
L1B	Level 1B
L1D L2	Level 2
L2 L3	Level 3
MERIS	Medium Resolution Imaging Spectrometer
MODIS	Moderate Resolution Imaging Spectroradiometer
MRD	Mission Requirements Document
MRD	
MWR	Mission Requirements Traceability Document MicroWave Radiometer
NASA	National Aeronautics and Space Administration
netCDF	Network Common Data Format
NIR	Near Infrared
NO ₂	nitrogen
NOAA	National Oceanic and Atmospheric Administration

Sentinel-3 OLCI Marine User Handbook

This Document is Public

NRT Near Real-Time, delivered to the users less than 3 hours after ac					
	the data by the sensor				
NTC	Non-Time Critical products are delivered not later than 1 mon				
	(commitment) after acquisition or from long-term archives. Typically, available within 24 or 48 hours.				
O ₂	oxygen				
O ₃	ozone				
OAA	Observation (viewing) Azimuth Angle				
OC4Me	Ocean Colour for MERIS				
OCM	Ocean Colour Monitor				
OCTS	Ocean Color Temperature Scanner				
ODA	Online Data Access				
OES	Ocean Ecology Sensor				
OLCI	Ocean and Land Colour Instrument				
OZA	Observation (viewing) Zenith Angle				
PACE	Pre-Aerosols Clouds and ocean Ecosystems				
PAR	Photosynthetically Active Radiation				
PDGS	Payload Data Ground Segment				
POD	Precise Orbit Determination				
RR	Reduced Resolution				
S3VT	Sentinel-3 Validation Team				
SAA	Solar Azimuth Angle				
SAFE	Standard Archive Format for Europe				
SeaWiFS	Sea-viewing Wide Field-of-view Sensor				
SLSTR	Sea and Land Surface Temperature Radiometer				
SNAP	SeNtinel Application Platform				
SNR	Signal-to-Noise Ratio				
SRAL	SAR Radar Altimeter				
SSH	Sea Surface Height				
SST	Sea Surface Temperature				
STC	Short-Time Critical, not relevant to OLCI				
STEP	Science Toolbox Exploitation Platform				
SVC	System Vicarious Calibration				
SWH	Significant Wave Height				
SZA	Solar Zenith Angle				
ТОА	Top Of Atmosphere				
TSM	Total Suspended Matter concentration				
VIIRS	Visible Infrared Imaging Radiometer Suite				

This Document is Public

2 BACKGROUND

2.1 The Copernicus Programme

Copernicus is the European programme for the establishment of a European capacity for Earth observation and monitoring. The programme aims to deliver information services based on satellite and *in situ* (non-space) components. The Copernicus Programme is coordinated and managed by the European Commission. It is implemented in partnership with the Member States, the European Space Agency (ESA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Centre for Medium-Range Weather Forecasts (ECMWF), EU Agencies and Mercator Océan. The Copernicus programme provides users with free, full and open access to environmental data.

The satellite component of the Copernicus Programme encompasses the Sentinel satellite missions, including Sentinel-3. Sentinel-3 is dedicated to providing high-accuracy optical and radar altimetry data for marine, land and atmosphere services. EUMETSAT operates the Sentinel-3 satellite series, with ESA support, and is responsible for delivering the Sentinel-3 marine data stream and near-real-time atmospheric products. Looking ahead, EUMETSAT will also operate and deliver products from the Sentinel-4, and Sentinel-5 instruments, and the Sentinel-6/Jason-CS satellites, providing further atmosphere and ocean services.

2.2 European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)

Founded in 1986, EUMETSAT is a European-based and globally-focussed intergovernmental operational satellite agency. Its purpose is to gather accurate, reliable and timely satellite data on weather, climate and the environment, and to deliver this to its Member and Cooperating States, international partners, and to users world-wide. With a strategic goal to ensure improvements in, and continuity of, satellite observations, EUMETSAT oversees the development and operation of a range of complex satellite systems that are in constant use in monitoring weather, climate, the oceans and the atmosphere, and supports downstream services such as meteorological forecasting, air-travel safety and shipping.

EUMETSAT operates a fleet of satellites in geostationary and polar orbit from its Mission Control Centre (MCC), based at its headquarters in Darmstadt, Germany. The geostationary Meteosat platforms provide regular imagery over Europe, Africa and the adjacent seas, (Meteosat-9, 10 and 11), and over the Indian Ocean (Meteosat-8). More detailed observations of the global atmosphere, oceans and continents are provided by the three polar-orbiting Metop satellites. In partnership with NOAA, CNES and NASA, EUMETSAT supports the operational phase of the Jason-3 and Sentinel-6/Jason-CS reference altimeters, providing near real-time ocean topography products to support ocean forecasting and climate analysis.

Under the Copernicus Programme, EUMETSAT provides Earth Observation (EO) data, products and support services to the Copernicus information services and user communities, with a focus on marine, atmosphere and climate. In the marine context, this role encompasses operating the Sentinel-3, Jason-3 and Sentinel-6/Jason-CS satellites. The marine capability of the Sentinel-3 OLCI instrument is the sole focus of this document.

This Document is Public

2.3 Sentinel-3 objectives

Sentinel-3 is a dedicated Copernicus satellite delivering high-quality ocean measurements. In the marine environment, the primary objective of Sentinel-3 is to determine ocean-surface colour parameters, sea-surface topography, sea-surface temperature; offering EO data with global coverage every two days (with two satellites) in support of marine applications, and with near real-time products delivered in less than three hours.

Sentinel-3A and 3B were launched in February 2016 and April 2018, respectively. In its commissioning phase, Sentinel 3B flew in tandem with Sentinel 3A, 30 seconds apart on the same orbital track. Sentinel-3B transitioned to its final orbital track and entered its operational phase in autumn 2018. In the longer term, the Sentinel-3 mission will have further satellites (Sentinel-3C and Sentinel-3D), to extend the time series for this global monitoring. Requirements of the Sentinel-3 mission related to OLCI instrument include:

• Visible and Near-Infrared radiances ('Ocean Colour') for oceanic, coastal and inland waters, determined to an equivalent level of accuracy and precision as MERIS data, with complete Earth coverage in two to three days, and co-registered with SST measurements.

Other requirements of the Sentinel-3 mission, not related to OLCI - but to other instruments on the platform(s) - include:

- Sea surface temperature (SST) determined globally to an equivalent accuracy and precision as that presently achieved by A/ATSR (i.e. <0.3 K), at a spatial resolution of 1 km (SLSTR).
- Sea surface height/topography (SSH) and, significant wave height (SWH) over the global ocean to an accuracy and precision exceeding that of Envisat RA-2 (SRAL).

For more information, users should consult the specific objectives for the Sentinel-3 mission. These are defined in the Mission Requirements Document (MRD) [AD-1], which is adopted in a traceable format through the Mission Requirements Traceability Document (MRTD) [AD-2].

Within the Copernicus framework, the major user of Sentinel-3 marine products is the Copernicus Marine Environment Monitoring Service (CMEMS). CMEMS provides regular and systematic core reference information on the state of the physical and biological oceans and regional seas to support marine applications. The products come from EO data (including Sentinel-3), in situ measurements and numerical modelling, and are made available via the CMEMS website¹.

2.4 Disclaimer

The use of these products is granted to every interested user, free of charge.

¹ CMEMS: <u>http://marine.copernicus.eu/</u>

This Document is Public

EUMETSAT is interested in receiving your feedback; we would appreciate your acknowledgment in any usage of, and publications concerning the data, and would like to receive copies of any publications released. Your feedback helps us in improving product quality and maintaining the resources for the EUMETSAT marine data services. Feedback can be provided through the EUMETSAT user helpdesk (ops@eumetsat.int).

2.5 Useful links

EUMETSAT Copernicus homepage: https://www.eumetsat.int/who-we-work/copernicus EUMETSAT ocean-colour homepage: https://www.eumetsat.int/ocean-colour-services EUMETSAT training: https://training.eumetsat.int/

EUMETSAT YouTube home: https://www.youtube.com/channel/UCiN59j5b1fAGnXVzIYFpaMw

Copernicus YouTube playlist:

https://www.youtube.com/playlist?list=PLOQg9n6Apif1ODObv39j43j8IAvJDOAVY

How to access Copernicus ocean colour data: <u>https://youtu.be/V3NAuafvlFM</u>

Meet the Satellite: Sentinel-3: https://www.youtube.com/watch?v=ZRxB5mSassg&list=PLOQg9n6Apif1ewrVmKRcyBaIN 2jkxjYAv

Atlantic Ocean Colour: https://youtu.be/n2hpWMRWfr0

Sentinel-3 for oceans: https://www.youtube.com/watch?v=T9WCWnk_qN4

Sentinel-3 playlist: https://www.youtube.com/playlist?list=PLbyvawxScNbus9n8rmw0GElhPqrCwcsiD

2.6 History of product changes

A history of changes to products can be found in the relevant product notices and specification documents via the following link:

https://www.eumetsat.int/ocean-colour-services Further details on the status of the Sentinel-3 mission can be found via the data quality reports at the following link:

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-olci/data-quality-reports

This Document is Public

3 SENTINEL-3 AND OLCI

The Sentinel-3 missions are low-earth polar-orbiting satellites, operating at an average altitude of 815 km above the Earth's surface with a repeat cycle of 27 days. Sentinel-3A and Sentinel-3B have the same orbital parameters, but the latter is positioned 140° earlier in its orbit. Consequently, the ground tracks of the two satellites are "interleaved", giving a more complete and even sampling of the Earth's surface, so as to better fulfil the monitoring role of the Sentinel missions. They each carry three instrument packages focusing on high-accuracy optical, thermal and altimetry data for marine and land services:

- Optical: OLCI for medium resolution marine and terrestrial optical measurements,
- Thermal: Sea and Land Surface Temperature Radiometer (SLSTR) for marine and terrestrial thermal measurements,
- Altimetry: SAR Radar Altimeter (SRAL) together with the MicroWave Radiometer (MWR) and Precise Orbit Determination (POD) for surface topography measurements.

It is the first of these, OLCI, which is the subject of this handbook, within a marine context.

3.1 Ocean colour: a brief historical background

The satellite ocean colour era began in the late 1970's with the Coastal Zone Colour Scanner (CZCS). Though experimental, this sensor provided vastly more data than expected and showed the potential of satellite data for observing and understanding the dynamics of marine ecosystems at a global scale. More than ten years passed before new sensors were launched, and the continuous ocean colour record began. The Japanese Ocean Colour and Temperature Sensor (OCTS) preceded long data records from the Sea-viewing Wide Field-of-view sensor (SeaWiFS), launched in 1997 on board the NASA SeaStar satellite, soon followed by the Moderate-resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites, launched in 1999 and 2002 respectively, and then in 2002 the MEdium Resolution Imaging Spectrometer (MERIS), onboard the European Space Agency (ESA) Envisat satellite. The overlap between these missions has been crucial for developing an understanding of how sensor design affects applications, and has facilitated the development of ocean colour data as a time series for climate scale studies. Further sensors were also launched, including the first geostationary sensor (Geostationary Ocean Color Imager (GOCI) from Korea), and the Indian Ocean Colour Monitor (OCM-2) onboard ISRO's Oceansat-2 satellite. Each sensor has offered different advantages in terms of spatial, temporal, and spectral resolution, as well as signal to noise ratios.

The next generation of ocean colour satellites is now being launched, with lessons learned from previous missions improving both sensor design and programme contingency. The NOAA VIIRS sensors and NASA-planned hyperspectral PACE mission, provide a follow-on to NASA's historical ocean colour sensors. Whilst in Europe, the legacy of MERIS formed the basis for the OLCI sensor, on board Sentinel 3A and 3B, as part of the Copernicus programme. OLCI has more spectral bands than MERIS, enhancing both the ability to atmospherically correct the data, as well as to extract a wider range of information about optically significant constituents in ocean waters. OLCI also provides global coverage at 300 m, a further advancement from the MERIS era, when 300 m data saw a huge growth in the use of ocean colour data for coastal and inland applications. A further strength of the Copernicus

programme is the planned continuity with Sentinel 3A and Sentinel 3B currently in operational phase, and with Sentinel-3C and 3D planned, this will not only provide more regular imagery than from a single sensor, but also redundancy, ensuring the ocean colour record continues into the future.

3.2 Complementarities with other ocean colour missions

Sentinel-3 OLCI opens an era of European operational ocean colour observations and represents a significant achievement in the maturity, accessibility, continuity and routine utilization of ocean colour measurements, together with the United States' Visible Infrared Imaging Radiometer Suite (VIIRS).

All these missions, from CZCS to OLCI, tend to follow a set of recommendations provided by the International Ocean-Colour Coordinating Group (IOCCG) [RD-6]. IOCCG also provides a more complete list of missions², allowing for near-continuous global observations of water radiometry and Chl. OLCI is based on its MERIS heritage, in terms of both the sensor design and algorithms that have been used for generating the products.

² IOCCG list of missions and instruments: <u>http://ioccg.org/resources/missions-instruments/</u>

This Document is Public

4 OLCI: GEOPHYSICAL VARIABLES, INSTRUMENTS AND PRINCIPLE

4.1 Ocean colour coverage of all aquatic environments

Throughout this document, we refer to 'ocean colour'. However, the reader should be aware that OLCI provides products over all aquatic environments: the open ocean, seas, coastal zones and inland waters. Unless information is specified as only relevant to a given domain (e.g. open ocean only), then it should be considered as relevant to all.

4.2 Instrument coverage

The Sentinel-3 satellites are in a sun-synchronous orbit, completing 385 orbits (i.e. 770 poleto-pole tracks) in exactly 27 days. Sentinel-3B orbits 140° out of phase in advance of Sentinel-3A to give a denser pattern of coverage. The mean global coverage revisit time for OLCI observations is 1.9 days at the equator (one operational spacecraft) or 0.9 days (two satellites in constellation) with these values increasing at higher latitudes, due to orbital convergence. Due to changes in available light with season, OLCI's coverage is periodically limited at high latitudes, as shown in Figure 1 and Figure 2.

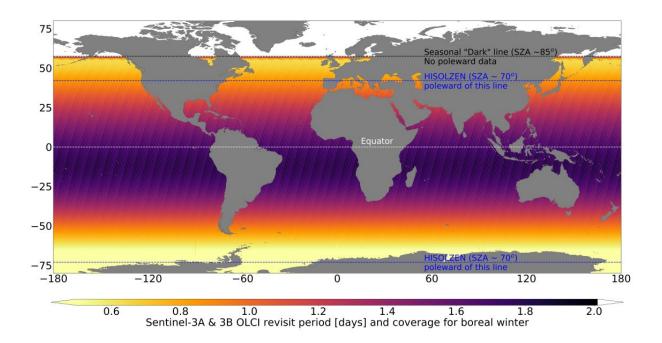


Figure 1: The average OLCI revisit time for two satellites during the boreal winter period, the 27-day cycle centred on December 21st. Coverage has been masked for high glint, and zones where high solar zenith angle are indicated. Note that, in boreal mid-winter, OLCI does not acquire data poleward of $\sim 60^{\circ}N$ due to prevailing darkness at the overpass time.

This Document is Public

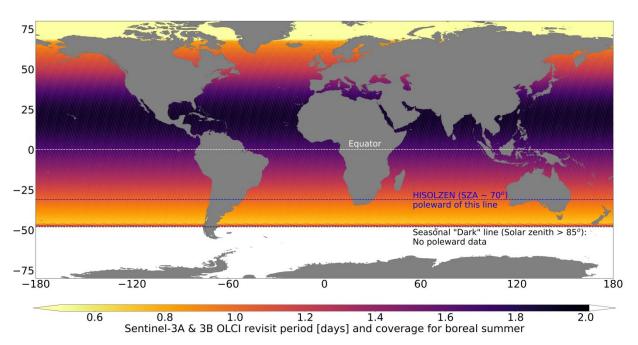


Figure 2: As in Figure 1, but for boreal summer, the 27-day cycle centred on June 21st. Note that, due to the orbital inclination of the Sentinel-3 satellites the winter and summer coverage maps are not symmetrical.

4.3 Ocean colour measurement principles

Ocean colour is the change in the colour of the ocean, and other water bodies such as seas and lakes, due to the substances dissolved and particles suspended within the water. In the middle of the open ocean the water tends to be blue in colour. Close to the coast, the water varies in colour from blue to green, to brown and to white depending on what is present in it. By numerically quantifying this change in colour, concentrations of in-water constituents can be determined. Of major interest are phytoplankton, the microscopic algal plants in the ocean, as well as suspended sediments and coloured dissolved organic matter.

Space sensors retrieve the spectral distribution of upwelling radiance just above the sea surface, which is termed the water-leaving radiance (L_w) . From the water-leaving radiance, concentrations of in-water constituents and their inherent optical properties are derived. However, the sensors actually measure the Top Of Atmosphere (TOA) radiance and so the contribution resulting from the atmosphere's scattering and absorption needs to be accounted for through Atmospheric Correction (AC).

Atmospheric correction for ocean colour data is challenging [RD-1] as only about 10% of the radiance measured by a satellite instrument in visible blue and green wavelengths originates from the water and significantly less in the red. The sensors thus require very low radiometric and spectral uncertainties and a high signal to noise ratio (SNR), particularly for the 'blue' bands (~ 400 nm). Ocean colour instrument design must therefore incorporate extremely sensitive and stable radiometry, dedicated on-board calibration and spectral bands located at wavelengths of specific interest, not only to quantify suspended phytoplankton and other particles and substances in the water, but also to quantify the atmospheric constituents in order to better correct for the atmospheric effects.

Once corrected, the water-leaving radiance is normalized, L_{wN} , to approximate the Sun at zenith, absence of the atmosphere, and a mean Sun-Earth distance (Morel and Gentili, 1996 [RD-2]):

$$L_{wn}(\lambda_i) = \frac{L_w(\lambda_i)}{t_{down}(\lambda_i)\mu_s C_s}$$
(Eq. 1)

where t_{down} is the total (i.e. direct plus diffuse, Rayleigh plus aerosol) downward transmittance of the atmosphere, μ_s -the cosine of the solar zenith angle, and C_s -a coefficient accounting for the variation in the Sun-Earth distance. Conversion to remote-sensing reflectance and water reflectance is expressed in Eqs 2 and 3, where F_0 is the mean extraterrestrial solar spectral irradiance. Water reflectance is also sometimes called water-leaving reflectance. The name 'water reflectance' will be used in the rest of this document.

$$R_{rs}(\lambda_i) = \frac{L_{wn}(\lambda_i)}{F_0(\lambda_i)}$$
(Eq. 2)

$$\rho_{w}(\lambda_{i}) = \frac{\pi L_{w}(\lambda_{i})}{F_{0}(\lambda_{i})} \quad \text{or} \quad \rho_{w}(\lambda_{i}) = \frac{\pi L_{w}(\lambda_{i})}{t_{down}(\lambda_{i})F_{0}(\lambda_{i})\mu_{s}C_{s}}$$
(Eq. 3)

Note that both reflectances in Eq. 2 and 3 are not corrected for the Bidirectional Reflectance Distribution Function (BRDF) (Morel et al., 2002 [RD-3]). These are directional reflectances and are still dependent on their viewing direction, i.e. on the angular distribution of the upwelling underwater radiance and on the transmittance through the sea surface from water to air. Radiance or reflectance products from various missions are often corrected for the BRDF. OLCI standard product is the directional water reflectance from Eq. 3, i.e. OLCI water reflectance product is not corrected for the BRDF effect.

These radiometric products are then used to estimate geophysical parameters through the application of specific bio-optical algorithms e.g. estimates of phytoplankton biomass through determining the Chlorophyll-a (Chl) concentration. The Ocean Colour for MERIS (OC4Me) Chl algorithm uses the irradiance reflectance (R) as the input [RD-4]:

$$log_{10}[Chl] = \sum_{x=0}^{4} \left(A_x \log_{10} R_j^i \right)^x$$
(Eq. 4)

A ₀	A ₁	A ₂	A ₃	A ₄
0.4502748	-3.259491	3.522731	-3.359422	0.949586

$$R_{j}^{i} = \max\left(\begin{smallmatrix} 443\\555 \end{smallmatrix}, \begin{smallmatrix} 490\\555 \end{smallmatrix}, \begin{smallmatrix} 510\\555 \end{smallmatrix}\right)$$
(Eq. 5)

$$R(\lambda) = \frac{\rho_w(\lambda)Q}{\pi \Re}$$
(Eq. 6)

where Eq. 6 applies the BRDF correction with the Q factor being Chl-dependant, and \Re is a geometrical factor that encompasses the air-sea interface effects [RD-2]. OC4Me algorithm is applied for OLCI for chlorophyll levels higher than 0.1 mg/m³.

Chl is more difficult to quantify in complex waters, as opposed to open waters, due to a more complex bio-optical signal. Clear waters in the open ocean, seas and some lakes have the spectral signature dominated by phytoplankton pigments. On the other hand, complex waters are significantly influenced by Coloured Dissolved Organic Matter (CDOM) [RD-5] and/or suspended sediments (Total Suspended Matter, TSM) and phytoplankton and primarily occur in coastal and inland zones. Therefore, OLCI has separate Open Water and Complex Water approaches for deriving its ocean colour products. Open and Complex water classification has been also called Case 1 and Case 2 water, respectively. [Table 4 in section 6.5 explains which approaches are used to derive individual OLCI standard products, e.g. OC4Me chlorophyll-a is developed for Open Waters and a neural network based approach (NN) for Complex Waters.]

4.4 **OLCI instrument specifics**

The key mission driver for the Sentinel-3 OLCI instrument is continuity of the Envisat MERIS instrument capability [RD-7]. As such, it is a push-broom imaging spectrometer with 5 camera modules sharing the Field Of View (FOV):

- The five cameras' FOV are arranged in a fan-shaped configuration in the vertical plane perpendicular to the platform velocity,
- Each camera has an individual FOV of 14.2 degrees with a 0.6 degree overlap with its neighbours,
- Each camera is equipped with a CCD composed of 740 x 520 detectors, where 740 pixels correspond to the spatial extent of the camera FOV and 520 pixels to the decomposition of radiance into spectral components from 390 nm to 1040 nm,
- Five camera FOV is tilted westwards across-track by 12.58 degrees away from the Sun to minimise the Sun glint impact.

OLCI has the following significant improvements when compared to MERIS:

- An increase in the number of spectral bands (from 15 to 21),
- Improved SNR and a 14-bit analogue to digital converter (ADC),
- Improved coverage of global aquatic environments when there are 2 satellites (A & B): ~ 3 days ignoring the effect of clouds.
- A long time-series dataset, made by launching 4 missions (A to D) over 20+ years.
- Improved data delivery timeliness for L1B and L2 products, for NRT products being 3 hours from the time of sensing,
- 100% overlap with SLSTR swath, and simultaneous acquisitions facilitating the use of OLCI and SLSTR in synergy.

The 21 wavelengths used to measure TOA radiance are as shown Table 1, alongside the SNR for a reference radiance (Lref) that approximates the expected signal from an open-ocean water pixel; see [RD-7] for the reference radiance values. The measured spectral response functions, which described the true shape of the wavebands, are available for both Sentinel 3A and 3B. These can be accessed via the link in the footnote of this page³.

The sampling period of the OLCI detectors (CCD's) runs at 44 ms, which correspond to a mean along-track distance of about 300 m. Therefore, OLCI produces the Full Resolution (FR)

³ Link to the OLCI-A and OLCI-B Spectral Response Functions Document:

 $[\]underline{https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/olci-instrument/spectral-response-function-data}$

product with a spatial resolution of approximately 300 m. In addition, the Reduced Resolution (RR) product is generated with a spatial resolution of approximately 1.2 km with 16 (nominally four by four) FR pixels averaged to create a RR pixel; the number of pixels used is varied in the across track direction, as a function of the across track pointing angle from the RR product pixel centre, so that spatial resolution degradation is minimised at the FOV edges.

4.5 Calibration and validation activities

Sentinel-3 calibration and validation (Cal/Val) activities are essential to the quality of the mission. Calibration determines the quantitative response of a system or measuring instrument, to known and controlled inputs. The calibration of satellite instrument allows it to provide reliable data to meet the mission requirements (AD-2) and the requirements of applications and services.

In terms of the onboard calibration, OLCI is equipped with a calibration assembly, which includes a motorized wheel with three fixed diffusers, a shutter, and an Earth View port that allows the cameras free access to the Earth in imaging mode. Calibrations happen periodically, mostly at the ecliptic South Pole where the sunlight can reach the exposed diffuser in the calibration assembly [RD-15]. There are 3 Sun diffusers: 2 "white" diffusers dedicated to radiometric calibration, and one doped with erbium dedicated to spectral calibration [RD-15].

In addition to instrument pre-launch and onboard calibrations, a System Vicarious Calibration (SVC) must be applied to achieve the required ocean colour product uncertainties ([AD-2]; [RD-6]; [RD-16]).

SVC uses highly accurate in situ measurements of water-leaving radiances, which are the best quality radiometric Fiducial Reference Measurements for ocean colour. SVC employs these FRMs to reduce residual biases in Level-2 products. Details of the SVC process can be found in [RD-17].

Validation is focused on independently assessing the accuracy and stability of the satellite products. For ocean colour this involves inter-comparisons with high-quality ground-truth in situ measurements (FRMs) of both the radiometry and bio-optical parameters and inter-comparisons with corresponding products from other stable missions and climatologies. In ocean colour, in situ FRMs provide critical knowledge of the ground truth but are sparse due to the complexity of radiometric and bio-optical measurements from ships and instrumented platforms. Mission inter-comparisons allow for large-scale global time-series evaluations.

To support validation, EUMETSAT and ESA have a permanently-open Announcement of Opportunity call⁴ "To engage world-class validation expertise and activities to complement Sentinel-3 routine validation activities and ensure the best possible outcomes for the Sentinel-3 Mission". Sentinel-3 Validation Team (S3VT) supports Agency product validation efforts and receives privileged access to the Sentinel-3 OLCI data.

⁴S3VT main web page: <u>https://nikal.eventsair.com/QuickEventWebsitePortal/sentinel-3-validation-team-s3vt/esa</u>

This Document is Public

Band number	Central wavelength [nm]	Spectral width [nm]	SNR @ Lref for each of the 5 cameras [*]	Function
Oa1	400.000	15	2420/2396/2324/2369/2278	AC, improved water constituent retrieval
Oa2	412.500	10	2398/2410/2341/2402/2387	CDOM and detrital pigments
Oa3	442.500	10	2161/2200/2167/2186/2198	Chlorophyll-a (Chl-a) absorption maximum
Oa4	490.000	10	2000/2035/1995/1982/1987	High Chll-a and other photosynthetic pigments
Oa5	510.000	10	1979/2013/1982/1965/1984	Chl-a, TSM, turbidity and red tides
Oa6	560.000	10	1776/1802/1801/1794/1818	Chl-a reference (minimum)
Oa7	620.000	10	1591/1610/1625/1593/1615	TSM
Oa8	665.000	10	1547/1559/1566/1533/1560	Chl-a (2nd absorption maximum), TSM and CDOM
Oa9	673.750	7.5	1329/1338/1350/1324/1341	Improved fluorescence retrieval
Oa10	681.250	7.5	1320/1327/1338/1314/1332	Chl-a fluorescence peak
Oa11	708.750	10	1420/1421/1434/1413/1429	Chl-a fluorescence baseline
Oa12	753.750	7.5	1127/1120/1133/1124/1138	O ₂ (oxygen) absorption and clouds
Oa13	761.250	2.5	502/498/505/500/507	O ₂ absorption band and AC aerosol estimation
Oa14	764.375	3.75	663/658/667/661/669	AC
Oa15	767.500	2.5	558/554/562/556/564	O ₂ A-band absorption band used for cloud top pressure
Oa16	778.750	15	1514/1496/1523/1509/1524	AC aerosol estimation
Oa17	865.000	20	1243/1213/1238/1245/1250	AC aerosol estimation, clouds and pixel co- registration, in common with SLSTR
Oa18	885.000	10	823/801/814/824/831	Water vapour absorption reference band
Oa19	900.000	10	691/674/683/693/698	Water vapour absorption
Oa20	940.000	20	535/523/525/539/542	Water vapour absorption, linked to AC
Oa21	1020.000	40	346/338/349/346/351	AC aerosol estimation

Table 1: OLCI wavebands; updated from [RD-7] Image: Contract of the second second

^{*} Data supplied by Donlon (pers. comm.), correct as of June 2017 for Sentinel-3A

This Document is Public

4.6 Where to go for further information on the algorithms

The detail of each algorithm is written within an Algorithm Theoretical Basis Document (ATBD), which is publicly accessible⁵. A list of the ATBD documents is provided in Table 2.

Table 2: OLCI ocean colour product primarily ATBDs

Product	ATBD	ATBD Reference
Oa##_reflectance, A865 & T865	Baseline AC: Atmospheric correction over Open Waters with integrated OLCI Bright Pixel Correction (BPC)	S3-L2-SD-03-C07-LOV-ATBD & EUM/OPS- SEN3/DOC/17/961973(MERIS ATBD 2)
PAR	Instantaneous Photosynthetically Active Radiation	S3-L2-SD-03-C12-ARG-ATBD
CHL_OC4ME & KD490_M07	Ocean Colour Products in Open Water	S3-L2-SD-03- C10-LOV-ATBD
ADG443_NN, CHL_NN & TSM_NN	Alternative AC: Atmospheric correction over Complex Waters, based on Neural Network regression	S3-L2-SD-03-C17-GKSS-ATBD
	Ocean Colour Complex Water	S3-L2-SD-03-C11-GKSS-ATBD
IWV	Integrated Water Vapour column	Lindstrot et al., 2012 [RD-14]

⁵ EUMETSAT's ocean colour webpage: <u>https://www.eumetsat.int/ocean-colour-services</u>, <u>https://www.eumetsat.int/ocean-colour-resources</u>

This Document is Public

5 **PROCESSING LEVELS AND SCHEMES**

The OLCI operational processor comprises three major processing levels:

• Level 0

This step processes raw data contained in instrument source packets. Level 0 products are internal products, and are not disseminated to users.

• Level 1

This step processes the Level 0 data to geo-located and calibrated top of atmosphere radiances for each OLCI band.

• Level 2

This step processes the Level 1 data to water leaving reflectances and bio-optical variables (e.g. chlorophyll).

5.1 Level-1 processing approach

The OLCI L1B processor has 3 modes, each of which produce their own L1B products. The radiometric and spectral calibration modes process OLCI calibration data which are used offline to develop instrument radiometric and spectral models that are stored in dedicated look up tables. The Earth observation mode produces L1B calibrated and geolocated products at the full and reduced spatial resolution. The main data processing steps taken to produce Earth observation L1B products [RD-20] are:

- Data extraction and quality checks
- Radiometric Calibration
 - Primary instrument corrections and radiometric scaling
 - Stray light correction
- Geo-referencing
- Pixel classification
- Spatial re-sampling
- Annotations
- Products formatting

The OLCI Radiometric Model is based on the continuous set of in-flight radiometric calibrations. It includes radiometric gain coefficients at a reference date and a long-term evolution model. From 05/07/2017 and 29/10/19 onwards for OLCI-A and OLCI-B, respectively, and for reprocessed data, the set of radiometric gain coefficients used to derive both the Reference Gains and the Evolution Model have been computed using up-to-date geometric and spectral calibrations and instrument settings and the upgraded diffuser BRDF model based on in-flight data as well as diffuser ageing (browning) correction. The Radiometric Model is continuously monitored against new Radiometric Calibration acquisitions and updated calibration is used in the processing. More details can be found in the OLCI product notices⁶.

⁶ https://www.eumetsat.int/ocean-colour-services

This Document is Public

5.2 Level-2 processing approach

OLCI L2 processing flow is illustrated in Figure 1. Auxiliary data and parametrization of the processor are available in Auxiliary Data Files (ADFs) [RD-32].

Level-2 pre-processing includes pixel classification, gaseous correction, computation of the Integrated Water Vapour product (IWV), alongside the smile correction, adjustments for white caps and sun glint, and application of System Vicarious Calibration gains. Then, the default operation is that two atmospheric correction (AC) approaches are run in parallel: the Baseline Atmospheric Correction (BAC) and the Alternative Atmospheric Correction (AAC). The BAC feeds the majority of further ocean colour steps and products, denoted here as Open Water products. The AAC feeds the NN Case 2 Regional / Coast Colour (C2RCC) processing and outputs three Complex Water products.

The Baseline AC (BAC) algorithm is based on the algorithm developed for MERIS (Antoine and Morel, 1999 [RD-8]), to ensure consistency between the two instruments' records. BAC was designed for Open Waters, with a spectral signature dominated by phytoplankton pigments. The Bright Pixel Correction (BPC) integrated with BAC allows adaptation of the processing to more complex waters (Moore et. al. 1999 [RD-9] and Moore et al., 2017 [RD-10]). The BPC accounts for situations where the Near Infrared (NIR) water-leaving radiance is not negligible i.e., high scattering waters where there is a high Chl and/or TSM concentration. The version implemented in the OLCI processing chain is an update of the Moore et. al. 1999 [RD-9] paper, with improvements to the OLCI ATBD [RD-10] resulting from the 4th reprocessing of the MERIS data. Further improvements have been made as part of the OL_L2M.003 collection (see [RD-24] and references within). The OLCI algorithm uses a coupled atmosphere-hydrological model where the water contribution is implemented in terms of Inherent Optical Properties (IOPs). The model is solved using spectral optimization inversion at six NIR bands.

The output of the BAC processing is the water reflectance (see Eq. 3) alongside the aerosol optical depth (T865) and Ångström exponent (A865) that are calculated as part of the BAC process, and indicate the AC's success in subtracting the atmospheric contribution. If the BAC is working correctly then the atmospheric by-products should not show contamination from marine features.

The Photosynthetically Active Radiation (PAR) product, inherited from MERIS, is the instantaneous PAR at the water surface. It was originally developed for Sun-stimulated fluorescence calculations (Aiken and Moore, 1997 [RD-11]).

The following bio-optical products, primarily applicable in Open Waters, are then calculated from water reflectance:

Algal pigment concentration based on the Ocean Colour for MERIS (OC4Me) algorithm developed by Morel et al. (2007 [RD-12]), following the approach of O'Reilly et al. (1998 [RD-22]), with the product called CHL_OC4ME. To complement the OC4Me algorithm, a chlorophyll index (CI) approach was developed for Collection OL_L2M.003 for application specifically in low-chlorophyll oligotrophic waters [RD-25]. The CI implementation is in response to S3 OLCI/SYN QWG and S3VT-OC recommendations. The CI methodology follows Hu *et al.* (2012) [RD-26], and the switching between CI and OC4Me (i.e. low and higher chlorophyll concentrations) follows Wang and Son (2016) [RD-27]. The CI algorithm

This Document is Public

equation was parametrised for OLCI bands at 442.5, 560, and 665 nm, which are different from the original SeaWiFS bands used in the paper by Hu *et al.* (2012) [RD-26]. The parametrization applied in situ HPLC measurements of chlorophyll concentrations in the range below 0.16 mg/m³ and simultaneous in situ Rrs measurements in the three aforementioned OLCI bands, from NASA's SeaBASS database [RD-28]. The switching between CI and OC4Me algorithms, based on Wang and Son (2016) [RD-27] R_{rs} ratio approach, 442.5/560 nm, uses the thresholds and the algorithm mixing span adapted to OLCI bands and to the chlorophyll range from the CI parametrization. Collection OL_L2M.003 keeps the historical name of OC4Me Algal Pigment Concentration product but implements CI and OC4Me algorithms. The details of OLCI CI algorithm implementation and its validation results are described in EUMETSAT document (RD-25). The original OC4Me algorithm used in the previous OLCI processing versions systematically underestimated the low range of chlorophyll concentrations, as documented by S3 OLCI/SYN QWG and S3VT-OC.

• Diffuse Attenuation coefficient at 490 nm (KD490_M07), as outlined in [RD-12].

This Document is Public

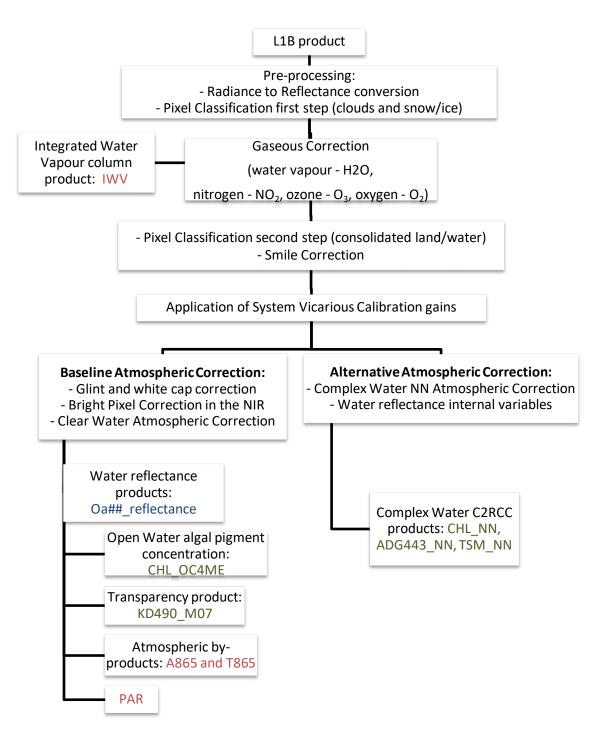


Figure 3: L1 to L2 processing.

The output of the AAC processing is water reflectance, which is an internal processor product. AAC is based on an artificial neural network (NN), considering the correction over complex waters with significant CDOM and/or TSM contributions. The TOA reflectances in 15 bands (400-753 nm, 778, 865 and 1020 nm), corrected for absorbing gases and the smile effect (see Section 8.1.1), are used together with wind speed, salinity, temperature, altitude of the water surface and observation geometry to estimate the water reflectances and atmospheric

This Document is Public

parameters. These reflectances and atmospheric parameters are not included within the standard products. The second NN retrieves Inherent Optical Properties from the internal water reflectance, including total backscattering coefficient b_{bp}, phytoplankton absorption coefficient a_{pig}, and coloured Detrital and Dissolved Material absorption coefficient a_{detritus} + a_g, all at 442.5 nm. This alternative processing chain was originally developed for MERIS (Doerffer and Schiller, 2007 [RD-13]), and was updated following several ESA funded projects to become the C2RCC processor. A further update was made to the NNs with collection OL_L2M_003 [RD-24] (NNv2). The three OLCI NN operational products (i.e. CHL_NN, ADG443_NN, and TSM_NN) are derived from IOPs outputted by the second IOP NN. Then, the following products are generated:

- ADG443 [m⁻¹] as the product ADG443 NN
- Algal pigment concentration [mg.m⁻³] as the product CHL_NN, calculated as in Eq. 7

$$CHL_NN = 21 APH442.5^{1.04}$$
 (Eq. 7)

• TSM [g.m⁻³] as the product TSM_NN, calculated as in Eq. 8

$$TSM_{NN} = 1.06 BBP442.5^{0.942}$$
 (Eq. 8)

The NNv2 processor produces similar results to the C2RCC processor as available in SNAP. However some differences are the result of pixel classification, gaseous correction, smile correction, and most significantly, SVC gains, all of which are applied in the operational processor but not automatically included in the SNAP processing (see [RD-24] for SVC details).

This Document is Public

6 OLCI PRODUCTS AND FILE TYPES

There are two OLCI marine product types that are disseminated to users. These are provided at two resolutions, full (FR) and reduced (RR).

• Level 1B EFR/ERR

The Level-1B product provides calibrated upwelling radiances at TOA for each pixel, each view and each OLCI band, plus annotation data associated to OLCI pixels.

• Level 2 WFR/WRR

The Level-2 water product provides water and atmospheric geophysical parameters.

For the nominal orbit, at sub-satellite point, OLCI Full Resolution is approximately 300 m on ground. For the nominal orbit, at sub-satellite point, OLCI Reduced Resolution is approximately 1.2 km on ground.

OLCI Level-1B EFR/ERR and Level-2 WFR/WRR data products are freely available to the public. OLCI files are collected into a SAFE container containing free-standing NetCDF-4 format files.

6.1 **Product timeliness**

OLCI data are provided as Near Real-Time (NRT) and Non-Time Critical (NTC) products, with the NTC products being constrained by the timeliness of the input ancillary meteorological information. NRT products use ECMWF meteo forecast data and NTC products use ECMWF analysis data. At Level 1B, the difference between OLCI NRT and NTC products is in the ancillary meteo values at tie points and in sun_glint_risk flag that uses the ECMWF wind speed. There is no difference in the radiance products between NRT and NTC at Level 1B.

OLCI product timeliness:

NRT - 3 hour timeliness from the time of data sensing

NTC – up to 1 month timeliness from the time of data sensing

6.2 File naming

The file naming is based on a sequence of fields [RD-19]:

MMM_SS_L_TTTTTT_YYYYMMDDTHHMMSS_YYYYMMDDTHHMMS S_YYYYMMDDTHHMMSS <instance ID> GGG <class ID>.<extension>

Which for Sentinel-3 OLCI marine data would be, for example:

S3A_OL_1_EFR___20160509T103945_20160509T104245_20160509T124907 0180 004 051 1979 MAR O NR 001.SEN3

- **MMM** Mission id, e.g. S3A
- SS Data source/consumer, e.g. OL is for OLCI
- L Processing level, e.g. 1 for L1 and 2 for L2
- TTTTTT Data Type ID, e.g.
 - \circ "EFR___" = L1B product at FR

This Document is Public

- "ERR___" = L1B product at RR
- "WFR____" = L2 FR water (marine) product
- "WRR____" = L2 RR water (marine) product
- YYYYMMDDTHHMMSS 15 character date and time (date plus "T" plus time) for (1) Data Start (2) Data Stop time, and (3) Creation Date
- <instance id > 17 characters e.g. 0180_004_051_1979 is *duration* (sensing time interval in seconds), *cycle number*, *relative orbit number*, and *frame along track coordinate* (elapsed time in seconds from the ascending node indicating the frame start time)
- **GGG** Product Generating Centre e.g., MAR = MARINE (EUMETSAT)
- <class ID> 8 characters to indicate the processing system e.g., O_NR_001 is (1) the *software platform* (O for operational, F for reference, D for development and R for reprocessing), (2) the *processing workflow* (NR for NRT, ST for STC and NT for NTC) and (3) 3 letters/digits indicating the *baseline collection*.
- <extension> Filename extension, SEN3

6.3 Data format

The data format is a Standard Archive Format for Europe (SAFE) product package containing a collection of files, see Figure 4. The manifest file (xfdumanifest.xml) explains the contents of the package at an overarching level. Each of the measurement and annotation data files are stored in netCDF (version 4) format, with the filenames given in Section 6.4 and 6.5. The product package can exist as a directory in a filesystem, zipped folder or tarball.

OLCI products are disseminated in Product Dissemination Units (PDUs). OLCI RR PDUs are provided as whole daylight orbits, while the FR PDUs are provided as 3-minute granules as it is much larger in file size than the RR data.

manifest file (xfdumanifest.xml) netCDF measurement and annotation data files

Figure 4: OLCI file format

6.4 Level 1 product contents

The L1B products are TOA (upwelling) radiances [mW.m⁻².sr⁻¹.nm⁻¹], calibrated to geophysical units and ortho-geolocated onto the Earth's surface. They are spatially resampled onto an evenly spaced cross-track grid, FR or RR, based on the computed pointing angle and according to the surface of the reference ellipsoid. Product pixels are filled with nearest neighbour instrument pixels for FR products, and nearest neighbour averages of the surrounding instrument pixels for RR products. The products are then annotated with the illumination and observation geometry, environment data (meteorological data) plus quality and classification flags.

The measurement netCDF data files include [RD-21]:

This Document is Public

- "OL_1_ERR___" contains:
 - Oa##_radiance.nc 21 measurement data files (one per band) containing the TOA radiances at each band, accompanied by the associated error estimates e.g.,
 Oa01 radiance.nc for the band 1 OLCI radiance data.
- "OL_1_EFR___" contains the:
 - Oa##_radiance.nc the same 21 measurement data files as "OL_1_ERR____",
 - removed_pixels.nc providing all data related to pixels that have been removed during the re-sampling process.

Note: The accompanied product uncertainty estimates Oa##_radiance_err are currently not present in OLCI L1B products.

The annotation netCDF data files [RD-21] include:

- time coordinates.nc time stamp of the each frame of the product
- geo_coordinates.nc longitude, latitude and altitude
- qualityFlags.nc quality_flags, as specified in Table 3.

Table 3: L1 Quality flags

Flag	Description
land	land as the underlying surface, whatever the atmosphere conditions i.e., whether cloudy or not
coastline	coastline pixels
fresh_inland_water	pixels within inland water bodies, and so are also flagged as land
tidal_region	pixels enclosed in areas of high tidal activity
bright	any pixel with a TOA reflectance greater than a defined threshold [RD-20] is assumed to be cloud contaminated, thick aerosols or haze, bright land surfaces (such as sand, snow and ice) or bright water surfaces (such as sea ice or sun glint)
straylight_risk	identifies pixels for which an insufficient number of neighbours were available for a good correction of the Ground Imager straylight [RD- 7]
invalid	missing data due to a transmission error, resulting in missing packets, or due to out of swath or defects in the CCD cells [RD-20]
cosmetic	if missing data have been cosmetically filled, e.g. because the transmission error gap was between valid frames, i.e. lines [RD-20]
duplicated	duplicated pixel during cross-track ground pixel resampling
sun_glint_risk	Sun glint risk flag, estimated from the wind speed and Solar Zenith and Viewing Angles (SZA, VZA) [RD-20]
dubious	pixels within potential contamination by neighbouring saturated pixels

This Document is Public

saturated_Oa01 to saturated_Oa21	saturation at the ADC and sensor levels	
----------------------------------	---	--

- Tie-point based data available at every 16th cross-track pixel along each row
 - tie_geo_coordinates.nc longitude and latitude
 - tie_geometries.nc solar and observation geometries SZA, SAA, OZA and OAA
 - tie_meteo.nc ECMWF modelled atmospheric_temperature_profile, horizontal_wind (vector at 10m altitude), humidity, reference_pressure_level, sea_level_pressure, total_columnar_water_vapour and total_ozone
- instrument_data.nc OLCI band central wavelengths and bandwidths (lambda0 and FWHM), equivalent in-band extraterrestrial solar irradiance corrected for the Sun-Earth distance (Solar Flux), instrument detector index representative of product pixel (detector_index), frame_offset and relative_spectral_covariance.

6.5 Level 2 product contents

The Level 2 products include the water- reflectance, atmospheric by-products and bio-optical products as shown in Table 4; see Section 5.2 for further details on the processing.

Product Name	Units	Products netCDF file → Product name	Description	Application
Water reflectances	dimensionless	Oa##_reflectance → Oa##_reflectance where ## is the band number	Primary output of the Baseline AC (BAC) processing, based on Antoine and Morel (1999 [RD-8]) and Moore et. al. (2017 [RD-10]). In the viewing geometry and so not normalised for the bidirectional reflectance distribution function (BRDF).	
Algal pigment concentration in open waters	mg.m ⁻³	chl_oc4me → CHL_OC4ME	Ocean Colour for MERIS (OC4Me) developed by Morel et al. (2007 [RD-12]) and CI developed by Hu et al. (RD[25]).	Ocean Colour Open Water
Diffuse attenuation coefficient at 490 nm	m ⁻¹	trsp → KD490_M07	Developed by Morel et al. (2007 [RD-12]).	Products
Photosynthetically Active Radiation	µEinstein.m ⁻²	par \rightarrow PAR	Instantaneous PAR at the ocean surface (Aiken and Moore, 1997 [RD-11]).	
Aerosol Optical Thickness	dimensionless	w_aer \rightarrow T865	By-product of the BAC processing.	

 Table 4: OLCI L2 water reflectance and bio-optical products and atmospheric by-products

EUM/OPS-SEN3/MAN/17/907205 v2G e-signed, 12 March 2021

Sentinel-3 OLCI Marine User Handbook

This Document is Public	ent is Public
-------------------------	---------------

Product Name	Units	Products netCDF file → Product name	Description	Application
Ångström exponent	dimensionless	w_aer \rightarrow A865	By-product of the BAC processing.	
Algal pigment concentration in complex waters	mg.m ⁻³	chl_nn → CHL_NN	Complex water products derived from water reflectances obtained from the Alternative AC (AAC)	
Coloured Detrital and Dissolved Material absorption coefficient at 443 nm	m ⁻¹	iop_nn → ADG443_NN	processing. AAC is a neural network (NN) AC for correction over complex waters. The products are derived from a NN inverse	Ocean Colour Complex
Total suspended matter concentration	g.m ⁻³	tsm_nn → TSM_NN	radiative transfer model, originally developed for MERIS by Doerffer and Schiller (2007 [RD-13]), and updated to become the Case 2 Regional / Coast Colour (C2RCC) processor. NNv2.	Water Products
Integrated Water Vapour column	kg.m ⁻²	$iwv \rightarrow IWV$	Total columnar water vapour based on 1D-Var retrieval originally developed for MERIS by Lindstrot et al. (2012 [RD-14]).	Atmospheric Products

The processing, dissemination and archiving of the near-real-time and offline marine products are carried out at the Sentinel-3 Marine Centre located in EUMETSAT [RD-18].

The marine L2 products include:

- Water reflectance in 16 bands in files named Oa##_reflectance.nc (excludes Oa13, Oa14, Oa15, Oa19 and Oa20 which are dedicated to atmospheric gas absorption measurements)
- Ocean colour products
 - CHL in chl oc4me.nc and chl nn.nc from Open and Complex Water approaches
 - ADG443 in iop_nn.nc
 - TSM in tsm_nn.nc
- KD490 in trsp.nc
- Atmospheric by-products
 - PAR in par.nc
 - T865 and A865 in w_aer.nc
 - o IWV in iwv.nc

Note: The accompanied product uncertainty estimates, e.g. Oa##_reflectance_err, are currently only recommended for qualitative analyses because they do not contain the full uncertainty budget from L1 and L2 processing chains.

There are also annotation netCDF data files that include:

• time_coordinates.nc - Timestamp

This Document is Public

- geo_coordinates.nc Longitude, latitude and altitude
- wqsf.nc Water quality and science flags, which include Classification and Quality Flags as given in Table 5 and Table 6, respectively

Flag	Description
INVALID	Invalid flag: instrument data missing or invalid
WATER	Water (marine) with clear sky conditions, i.e. no clouds
CLOUD	Cloudy pixel
CLOUD_AMIBUOUS	Possibly a cloudy pixel, the flag removes semi-transparent clouds and other ambiguous cloud signatures
CLOUD_MARGIN	Cloud edge pixel, the flag provides an a-priori margin on the 'CLOUD or CLOUD_AMBIGUOUS' flag of 2 pixels at RR and 4 pixels at FR
COASTLINE	Direct copy of the L1B coastline flag
SNOW_ICE	Possible sea-ice or snow contamination
INLAND_WATER	Fresh inland waters flag (from L1B); these pixels will also be flagged as LAND rather than WATER
TIDAL	Pixel is in a tidal zone (from L1B)
COSMETIC	Cosmetic flag (from L1B)
SUSPECT	Suspect flag (from L1B)
HISOLZEN	High solar zenith: SZA > 70°
SATURATED	Saturation flag: saturated within any band from 400 to 754 nm or in bands 779, 865, 885 and 1020 nm
MEGLINT	Flag for pixels corrected for sun glint
HIGHGLINT	Flag for when the sun glint correction is not reliable
WHITECAPS	Flag for when the sea surface is rough and the whitecap correction is no more reliable at the wind speed above 12 m/s, see section 3.2.3 of RD-24
ADJAC	Flag for adjacency effect indicating bright coastal pixels, see details in section 3.4.4.1 of RD-24
TURBID_ATMOSPHERE	Pixel's diffuse path transmittance in band 865 nm (obtained from the NN AAC) is lower than a threshold (0.955), or pixel is saturated or excessively bright at 442.5 nm [RD-24]
WV_FAIL	IWV retrieval algorithm failed

Table 5: L2 Water quality flags

This Document is Public

AC_FAIL	BAC atmospheric correction is suspect
OC4ME_FAIL	OC4Me algorithm failed
OCNN_FAIL	NN algorithm failed
KDM_ FAIL	KD490 algorithm failed

- Tie-point based data available at every 16th cross-track pixel along each row
 - tie_geo_coordinates.nc longitude and latitude
 - $\circ~$ tie_geometries.nc solar and observation geometries SZA, SAA, OZA and OAA
 - tie_meteo.nc ECMWF modelled atmospheric_temperature_profile, horizontal_wind (vector at 10m altitude), humidity, reference_pressure_level, sea level pressure, total columnar water vapour and total ozone
- instrument data.nc
 - OLCI band central wavelengths and bandwidths (lambda0 and FWHM)
 - equivalent in-band extraterrestrial solar irradiance (Solar Flux)
 - instrument detector index representative of product pixel (detector_index)
 - frame_offset and relative_spectral_covariance

Flag	Description		
BPAC_ON	Bright Pixel Correction converged and a NIR signal was determined		
WHITE_SCATT	"White" scatterer within the water e.g. coccoliths		
LOWRW	Water reflectance at 560 nm is less than a defined threshold or HIINLD_F raised (flag for low pressure water i.e., high altitude inland waters)		
HIGHRW	High water reflectance at 560 nm or the TSM retrieved as part of the BPAC is above a threshold		
ANNOT	Annotation flags for the quality of the atmospheric correction, including:		
	ANGSTROM (Ångström exponent cannot be computed);		
	AERO_B (blue aerosols);		
	ABSO_D (desert dust absorbing aerosols);		
	ACLIM (aerosol model does not match aerosol climatology);		
	ABSOA (absorbing aerosols);		
	• MIXR1 (aerosol mixing ratio is equal to 0 or 1);		
	• DROUT (value of residual surface reflectance for the selected aerosol model candidate pairs is above a certain threshold compared to climatology);		
	• TAU06 (aerosol optical thickness is greater than a defined threshold)		

Table 6: L2 Science flags

This Document is Public

—	Provides a "negative water reflectance" flag for each band's water
RWNEG_021	reflectance: the value below which pixels are flagged varies according to
_	the band, with the threshold stored in OL_2_ACP_AX ADF [RD-32]

6.6 **Product features and limitations**

In Level 2 products, inland waters have both the INLAND_WATER and LAND flags activated, but not the WATER flag. While marine waters have the WATER flag activated.

The BPAC_ON flag indicates that the spectral optimization inversion in the BAC's Bright Pixel Correction was activated, converged, and a NIR signal of water was determined.

Product limitations are described in detail in Product Release Notices. Please refer to the Notices for the detailed status of the products (https://www.eumetsat.int/ocean-colour-services).

This Document is Public

7 HELPDESK, DATA ACCESS AND TOOLS

7.1 Registration

Registration for EUMETSAT data access is required and is available from https://eoportal.eumetsat.int/. The registration and data access are free, full and open. Beyond access to data, one may also register for the User Notification Service which provides information on product releases and warnings in case of space or ground segment anomalies. Members of S3VT may also request privileged access to certain datasets by contacting EUMETSAT Help Desk at ops@eumetsat.int.

7.2 Helpdesk and Training

The EUMETSAT User Helpdesk is available to all users during standard office hours. The service provides support on data access and product usage and application. All user requests on the EUMETSAT OLCI Marine data products should be directed to the EUMETSAT Help Desk at <u>ops@eumetsat.int</u>.

Information on training, including sessions with a focus on the Copernicus Marine Data Stream, is available via <u>https://www.eumetsat.int/data-and-user-support/training</u>.

7.3 Data Access Methods

EUMETSAT provides data access through a number of routes, depending on your preferred delivery mode and the latency of the data that's needed. The central catalogue in the first tier / row of Figure 5 and Table 7 lists all EUMETSAT missions (Meteosat, Metop, and Jason-2) in addition to the Copernicus Sentinel-3 marine and atmosphere products.

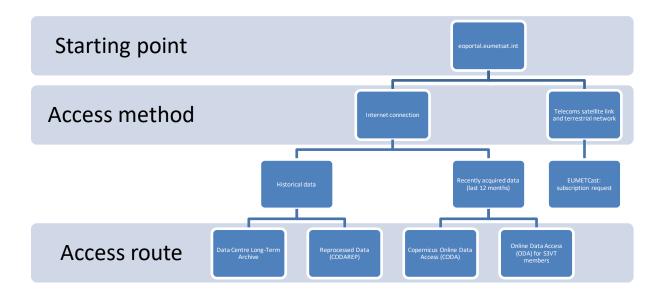


Figure 5: Data access routes

For those downloading data from the internet, there are at least 3 routes. If you are interested in just recently acquired data (up to 1 year) then the best access route is the Copernicus Online

This Document is Public

Data Access (CODA) that provides an interactive interface. Batch scripting is also possible. In order to discover CODA's functionalities and example scripts to download Sentinel-3 data using CODA APIs, read the User Guide (after registering and logging-in to CODA):

https://coda.eumetsat.int/manual/CODA-user-manual.pdf

EUMETCast eumetcast.com	Multi service push dissemination system based on multicast technology, which is transported to the user via satellite (EUMETCast Satellite, with coverage over Europe, the Middle-East and Africa).
CODA <u>coda.eumetsat.int</u> <u>codarep.eumetsat.int</u>	Download service offers all the recently acquired Sentinel-3 marine and atmospheric products through a rolling archive that (at a maximum) will span 12 months. Products from the last year are also available via the EUMETSAT Data Centre Long-Term Archive. Users should note that reprocessed ocean colour data is made available through the parallel codarep portal. Routine access is supported by API and a Python toolkit (https://gitlab.eumetsat.int/eumetlab/cross-cutting- tools/sentinel-downloader)
Data Centre Long-Term Archive archive.eumetsat.int	Ordering application that enables users to browse and select products, from EUMETSAT's long-term archive, including the Copernicus Sentinel-3 marine and atmospheric products.
EUMETView eumetview.eumetsat.int	A visualisation service that allows users to view EUMETSAT's data and Copernicus Sentinel-3 marine data in an interactive way using an online map view.
WEkEO wekeo.eu	WEkEO is one of the Copernicus Data Information and Access Services (DIAS), and is coordinated by EUMETSAT, ECMWF and Mercator Ocean. It offers data access and hosted processing resources.

Table 7: Data access locations

Data older than one year, but not yet reprocessedcan be accessed from the EUMETSAT Data Centre. The Data Centre allows you to access either the global dataset (under the Products tab: enter OLCI as a search term so you see just these products) or regions of interest such as the North Atlantic and Mediterranean Sea (under the Sentinel 3 Datasets tab); see Figure 6. Then, on subsequent screens you can define a region of interest and time period before ordering the products. Selecting a given dataset or a region of interest will return all products that intercept that region.

This Document is Public

ALLEY PRODUCT		Directed Protoci D. D. Loval 1 Product, Pul Parent doe too of U.P.	1012	RIV.II SHART WORKT		Contract Printed COLUMN THE WORK ADDRESS
Bank Ter (10)			ALLON AND	HOLYON Laure Tarr		OLGI CITHI NOR NEW SOFIC
Products Rendined 3 DataBase	Transmis Piller	10 C C C C C C C C C C C C C C C C C C C	and the state of the	Fridada Destroit Strandels	"bende Fre-	
Output: Caref C Product Schoolshow Shine as white Product Schoolshow Schoolshow Shine School Output: School School School School School Output: School School School School School Output: School School School School School Constantiant Constantiant School School School School School Constantiant School School School School School School School School Constantiant School Sc	Partne		LOBUT	Lance Statutes and Wey (W) 0.001 (1194)(2007) 0.001 (1194)(2007) 0.001 (1194)(2007) 0.001 (1194)(2007) 0.001 (1196)(2007) 0.001 (1196)(2007) 0.001 (1197)(2007) 0.001 (1197)(2007)	Matem - Land Amagines Land Amagines Amagines	GLC 12 Hitteds August 34

Figure 6: Choosing OLCI datasets within the EUMETSAT Data Centre.

For those who are members of the S3VT, see Section 4.5, there is also FTP access via the ODA that allows you to access both datasets and minifiles. Minifiles are products extracted over small areas of interest and provided in the standard SAFE format.

7.4 Software Tools

7.4.1 Sentinel-3 Toolbox

The Sentinel-3 Toolbox consists of visualisation, analysis and processing tools for the exploitation of OLCI and SLSTR data, and is an extension to the SeNtinel Application Platform (SNAP) that can be downloaded from the Science Toolbox Exploitation Platform (STEP)⁷.

Once SNAP has been downloaded and installed it is possible to open L1 and L2 OLCI products. If you need questions answered about the SNAP tool and associated Sentinel toolboxes then there is an on-line forum⁸.

7.4.1.1 Installing the toolbox

To install SNAP, click/double-click the installer and follow the on-screen instructions to install SNAP.

7.4.1.2 Opening a Sentinel-3 product

Sentinel-3 products are provided not as single files but as a product package containing a collection of files, the package is a folder. The folder name is the actual product name, ending with ".SEN3". Each folder contains a metadata file named xfdumanifest.xml and at least one netCDF file. Each netCDF file contains a subset of a Sentinel-3 product's content.

To open a Sentinel-3 product you can either:

- Drag and drop the whole folder into the "Products View"
- Drag and drop the xfdumanifest.xml file into the "Products View"
- Choose "File->Open Product", navigate to the xfdumanifest.xml file and click "Open Product"
- Choose "File->Import Raster Data->Multispectral Data->SENTINEL-3", navigate to the xfdumanifest.xml file and click "Open Product"

⁷ STEP download page: <u>http://step.esa.int/main/download/</u>

⁸ STEP forum: <u>http://forum.step.esa.int/</u>

This Document is Public

You can also open single netCDF files. However, keep in mind that this will provide a generic netCDF access without associated information about geocoding, flags and other functionalities. This is particularly important for OLCI data.

Guidance on opening and working with OLCI data in SNAP is available in a youtube tutorial: https://www.youtube.com/watch?v=V3NAuafvIFM&t=1s

7.4.1.3 Basic functionality

Once you have opened a product in SNAP there are many different things you can do next. Here are some basic activities:

- Displaying a colour composite: choose "Window->Open RGB Image Window".
- Displaying spectra, choose "Optical->Spectrum View".
- Displaying flags/masking the data: using the Mask Manager, see example in Section 8.2.3.
- Displaying pixel values, geolocation etc...

7.4.2 **METIS**

The Monitoring & Evaluation of Thematic Information from Space (METIS) tool⁹ provides near-real time diagnostics of EUMETSAT's operational L2 and Level 3 (L3) optical products. Ocean Colour functionality will become available in the near future.

⁹ METIS: <u>http://metis.eumetsat.int/</u>

This Document is Public

8 DATA QUALITY

With Sentinel-3 being an operational mission, three main objectives were defined for the Cal/Val activities [RD-15]:

- a) To provide a comprehensive initial assessment of product validity and quality at the end of commissioning activities.
- b) To monitor the stability and the quality of the products throughout the operational phase of the mission.
- c) To continuously improve the quality of the products in accordance with the evolving user requirements.

OLCI mission requirements are documented in 'Sentinel-3: Mission Requirements Document' [RD-33].

Algorithm evolutions, validation results and product quality are provided in OLCI L2 Collection reports and the summary is given in Product Notices available from https://www.eumetsat.int/ocean-colour-services. The recent Collection 3 report is also available https://www.eumetsat.int/media/47794 [RD-24].

In addition, the Global Climate Observation System (GCOS) has identified ocean-colour as an Essential Climate Variable (ECV) with the GCOS Implementation Plan [RD-23] defining the following set of ocean-colour requirements for climate research; see Table 8.

Dcean-colour requirement

Table 8: GCOS ocean-colour requirements for accuracy and stability

Requirement category	requirement	
Water-leaving radiance uncertainty (blue & green wavelengths)	5.0 %	
Water-leaving radiance stability per decade	0.5 %	
Ocean chlorophyll-a uncertainty	30.0 %	
Ocean chlorophyll-a stability per decade	3.0 %	

Information on the current status of data quality from the OLCI instruments aboard Sentinel-3A and B, can be found in the data product quality reports:

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/data-quality-reports

and through the Sentinel-3 Validation Team activities (<u>https://s3vt.org/</u>).

This Document is Public

9 UPDATES TO PROCESSING BASELINES AND REPROCESSING CAMPAIGNS

Periodic improvements to the processing of OLCI data are made and reflected in changes to the processing baseline. These changes are accompanied by product notices that describe any impacts on the data at level 1 and/or 2. The product notices can be viewed here: https://www.eumetsat.int/ocean-colour-services

Data are periodically reprocessed using the current baseline and this data is distributed via <u>https://codarep.eumetsat.int</u>. Details on the reprocessing can also be found in the product notices at the link above.

A diagram summarising the changes to the processing baseline and reprocessing campaigns since the launches of Sentinel-3A and B, is provided below. Further details are summarised at the following link:

https://www.eumetsat.int/olci-processing-baselines

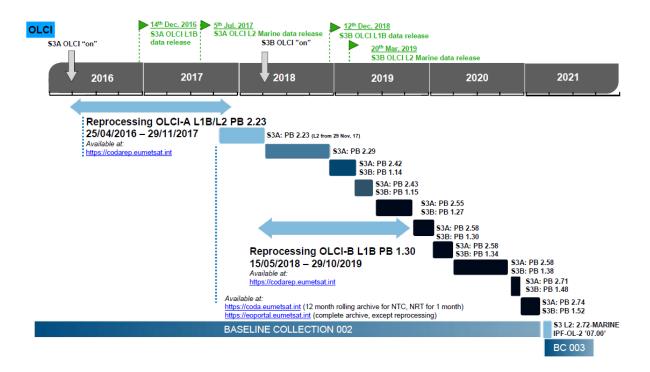


Figure 7: OLCI processing baseline changes and reprocessing campaigns since launch.

This Document is Public

10 FREQUENTLY ASKED QUESTIONS

Please email any questions to the EUMETSAT User Helpdesk at ops@eumetsat.int.

Additional information around topics of frequently asked questions is provided below. These include questions on:

- Data characteristics: camera discontinuities, South Atlantic anomaly, and sun glint.
- Handling the data: using netCDF, calculating TOA reflectance, and applying flags.

10.1 OLCI data characteristics

10.1.1 Camera-to-camera discontinuities

Like with MERIS, you may see boundaries between the 5 cameras within the L1 products, and occasionally in L2 data. This is primarily due to the smile effect that causes small variations in the TOA radiances due to slight changes in central wavelengths across the CCDs in the cameras. This effect is visible at L1. At L2, the smile correction is applied which brings all pixels across the cameras' FOV to the nominal instrument centre wavelengths for each band and the effect should be minimized.

As the central wavelength is not constant within a L1 scene, the wavelength is provided as an array for each band in the file instrument_data.nc (lamda0 and FWHM groups); see Figure 8.

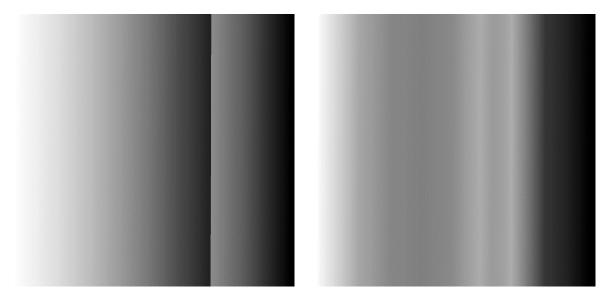


Figure 8: Example arrays of (left) lamda0 and (right) FWHM for band Oa1.

10.1.2 South Atlantic Anomaly

The South Atlantic Anomaly is an area where the Earth's inner Van Allen radiation belt comes close to the Earth's surface, which exposes orbiting satellites to higher-than-usual radiation levels. For OLCI, this is visible in all bands but particularly in the wider bands, like Oa21, where radiation hitting the CCD is visible as single pixel noise in an image; see Figure 9 which shows an OLCI scene captured over Argentina.

This Document is Public

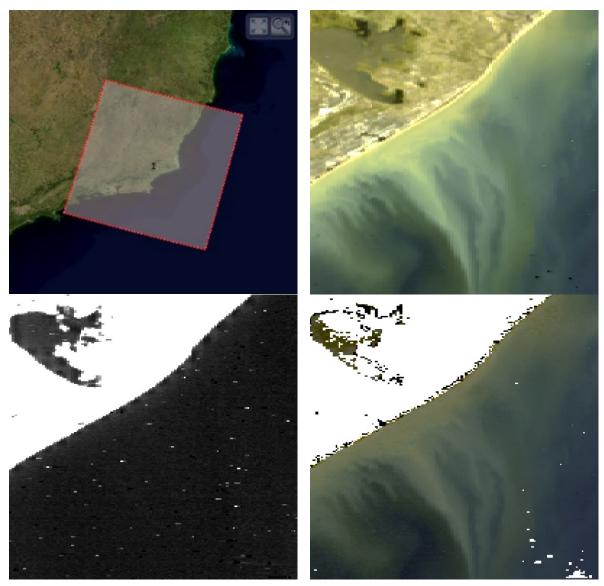


Figure 9: Subset of a Sentinel-3 FR scene with (top left) SNAP's World View and (top right) TOA Tristimulus RGB colour composite with the South Atlantic Anomaly as visible in (bottom right) the TOA band Oa21 radiance and (bottom left) atmospherically corrected data (Tristimulus RGB colour composite).

10.1.3 Sun glint affecting the right-hand side of scenes

OLCI was designed to be tilted to avoid Sun glint, and so has reduced glint contamination compared to MERIS. However, sun glint is not completely avoided. Therefore, you will see it in scenes where there is water; such as in Figure 10.

This Document is Public



Figure 10: Example L1 scenes showing sun glint down the right-hand side of the scene.

10.1.4 OLCI anomalous spectral samples

Anomalously low radiances have been identified in OLCI Level-1B products at the edges of bright, saturated areas. These low radiances occur in some bands and do not correspond to geophysical expectations. The anomalies are present over bright clouds in both OLCI-A and OLCI-B. No impact on OLCI operational Level-2 products has however been determined because L2 products are not available over bright surfaces. More detailed description of the anomaly is available from here https://www.eumetsat.int/media/47581.

10.1.5 Anomalous low water reflectances in the NIR for waters with low-to-moderate TSM values

It has been observed that standard Level 2 water reflectances in the NIR show lower values when compared to in situ data in the range [0 - 0.005]. This issue is under investigation.

10.1.6 Open issues and future improvements

Known issues with the OLCI processing are highlighted in each of the product notices that accompany new process releases (see <u>https://www.eumetsat.int/ocean-colour-services</u>). A summary of open issues and future improvement plans is provided in [RD-24] with reference to the latest baseline collection (OL_L2M.003) at <u>https://www.eumetsat.int/media/47794</u>.

10.2 Handling the data

10.2.1 How to view the contents of a netCDF file?

If you want to browse the detailed contents or metadata of a netCDF file (as opposed to visually looking at and interrogating the array in SNAP) then there are interactive tools such as Panoply¹⁰ alongside Linux commands such as nedump. There is a tutorial showing how to access netCDF files using Python programming here:

¹⁰ Panoply download: <u>https://www.giss.nasa.gov/tools/panoply/</u>

This Document is Public

https://www.youtube.com/watch?v=XqoetylQAIY

10.2.2 How would I calculate the Top of Atmosphere Reflectance from a Level 1 product?

The solar irradiance provided in the L1 products varies throughout the year. It is computed for each product, in order to represent the solar irradiance at the Earth due to the Earth orbit eccentricity around the sun at the current date i.e., the modelling of the seasonal variations is included. Therefore, the OLCI TOA reflectance can be obtained by dividing the L1 TOA radiance by the solar irradiance in the L1 product and by the cosine of the SZA (Cosine Rule), and multiplying by π (if assuming a Lambertian upwelling radiance at TOA).

10.2.3 Which Level 2 flags should I apply?

Table 9 contains the definition of user recommended flag combinations for masking of cloudy and unreliable pixels in OLCI Level-2 Ocean Colour products from Collection OL_L2M.003 [RD-24].

Users are advised to apply the flag recommendations from Table 9. Implementing the recommendations is central to the traceability of OLCI L2 product status across applications and the validation process. This flag recommendation is particularly important for large scale analyses and automated processes. It is understood that advanced users would want to experiment with application of flags that suit their particular local region or application. However, it is advised that, at the same time, the results based on the recommended flags are also reported.

Figure 11 shows an example of a scene with this masking applied.

This Document is Public

Product names	Products	Common flags	Processing chain flags	Product flags
Water reflectance – BAC Open Waters	Oa^{**} _reflectance \rightarrow Oa^{**} _reflectance	Ocean Colour Products (WATER or INLAND_WATER) and not (CLOUD CLOUD_AMBIGUOUS CLOUD_MARGIN INVALID COSMETIC SATURATED SUSPECT HISOLZEN HIGHGLINT SNOW_ICE)	Baseline Atmospheric Correction Open Water Products not (AC_FAIL WHITECAPS ADJAC RWNEG_02 RWNEG_03 RWNEG_04 RWNEG_05 RWNEG_06 RWNEG_07 RWNEG_08)	none
Waters	chl_oc4me → CHL_OC4ME			<i>not</i> OC4ME_FAIL
Diffuse attenuation coefficient – BAC Open Waters	trsp \rightarrow KD490_M07			<i>not</i> KDM_FAIL
Photosynthetically Active Radiation – BAC Open Waters	$par \rightarrow PAR$			<i>not</i> PAR_FAIL
Aerosol Optical Thickness and Ångström exponent – BAC Open Waters	$\begin{array}{l} \text{w_aer} \rightarrow \ \text{T865}, \\ \text{A865} \end{array}$			none
Algal pigment concentration – AAC Complex Waters	$chl_nn \rightarrow CHL_NN$		Alternative Atmospheric Correction Complex Water Products no specific flags to be applied	not OCNN_FAIL
Total suspended matter concentration – AAC Complex Waters	tsm_nn \rightarrow TSM_NN			<i>not</i> OCNN_FAIL
Coloured Detrital and Dissolved Material absorption – AAC Complex Waters	iop_nn → ADG443_NN			<i>not</i> OCNN_FAIL
Integrated Water Vapour Column	$iwv \rightarrow IWV$	Atmospheric Products	Water Vapour not MEGLINT	not WV_FAIL

This Document is Public

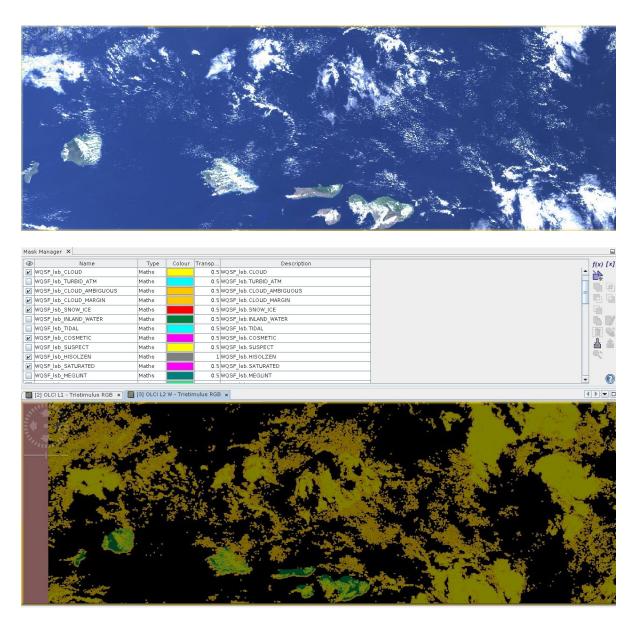


Figure 11: Example (top) L1 scene (bottom) L2 equivalent with the recommended L2 flags applied.